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Graphical Abstract

Summary
In this study, we evaluated the efficacy of 3 Food and Drug Administration-approved generally recognized as 
safe antimicrobials [nisin (NIS), lauric arginate ethyl ester (LAE), ε-polylysine (EPL), and an endolysin (PlyP100)] 
against growth of Listeria monocytogenes in Queso Fresco (QF) at 4°C, 7°C, and 10°C. The treatments were 
applied individually and in combination. Additionally, L. monocytogenes growth curves were achieved in brain 
heart infusion (BHI) broth and QF. PlyP100 + NIS was the most effective treatment and resulted in nondetectable 
levels of L. monocytogenes at prolonged storage (28 d) at 4°C. At 7°C and 10°C, none of the antimicrobial 
treatments could inhibit L. monocytogenes growth. The growth curve results indicated that L. monocytogenes 
can reach very high levels both in BHI broth and untreated QF regardless of storage temperature. 

Highlights
• A combination of antimicrobial treatments provides a more effective approach against L. monocytogenes 

growth in QF.
• PlyP100 + NIS was the most effective treatment for L. monocytogenes growth in QF.
• Listeria monocytogenes can grow up to dangerously high levels regardless of the storage temperature in 

untreated QF.
• EPL + LAE are good candidates to further evaluate for improving safety of QF during cold storage.
• Temperature abuse dramatically reduces the effectiveness of the tested antilisterials in QF.
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Abstract: Queso fresco (QF), a fresh soft cheese, is one of the most popular Hispanic cheeses in the United States and is frequently 
associated with Listeria monocytogenes outbreaks. Listeria monocytogenes can grow and thrive at room temperature as well as re-
frigeration temperatures. A combination of antimicrobial agents provides a larger spectrum of listeriostatic and listeriocidal activity 
resulting in a more effective approach toward the control of L. monocytogenes. In this study, we evaluated the efficacy of 3 Food and 
Drug Administration-approved generally recognized as safe (GRAS) antimicrobials, nisin (NIS), lauric arginate ethyl ester (LAE), and 
ε-polylysine (EPL), and the endolysin PlyP100 individually and in combination for control of L. monocytogenes in QF at 4°C, 7°C, 
and 10°C. Additionally, growth curves of L. monocytogenes were obtained in BHI broth and QF at these temperatures. In order for an 
antimicrobial to be considered a postlethality treatment for L. monocytogenes, it should not allow an increase of more than 2-log over the 
product’s shelf life. Three treatments, PlyP100, PlyP100 + NIS, and EPL + LAE, effectively kept the pathogen below the 2 log growth 
threshold at 4°C. However, at 7°C and 10°C, none of the antimicrobial treatments could inhibit L. monocytogenes growth (i.e., <2 log). 
Overall, our results suggest the importance of considering the effect of cold storage temperatures above 4°C on the antilisterial efficacy 
of antimicrobial treatments in QF.

The ingestion of food contaminated with Listeria monocytogenes 
can cause a severe invasive illness called listeriosis that affects 

pregnant women, newborns, elderly, and immune-compromised 
individuals leading to abortion, bacteremia, sepsis, and meningo-
encephalitis (Farber and Losos, 1988). Due to its high mortality 
rate (approximately 25–30%), listeriosis is considered to be one of 
the most severe foodborne illnesses (Carlton et al., 2005). Listeria 
monocytogenes causes approximately 1,600 foodborne infections 
and 260 deaths each year in the United States (Hoffmann et al., 
2015). Because L. monocytogenes can tolerate extreme environ-
mental stresses, for example, pH (4.0–9.5), temperature (1 to 
45°C), as well as high salt concentrations (up to 10% NaCl), it 
can thrive well in food processing environments (Liu et al., 2005; 
Friedly et al., 2008).

The Food and Drug Administration (FDA) has established a 
zero-tolerance policy for L. monocytogenes in ready-to-eat (RTE) 
food products, which results in huge economic losses to the dairy 
industry and hinders the growth of the market due to liability con-
cerns (Van Tassell et al., 2015). Soft cheeses in particular are one of 
the most common food products associated with L. monocytogenes 
contamination (Guenther and Loessner, 2011; Ibarra-Sánchez et 
al., 2017) as factors such as high water-activity, low salt content, 
high pH, and storage at refrigeration temperatures favor growth of 
L. monocytogenes (Soni et al., 2010; Ibarra-Sánchez et al., 2018). 
Seventeen out of 58 (30%) listeriosis outbreaks reported between 
1998 and 2014 were related to soft cheese and 11 out of those 17 
(65%) outbreaks were linked to Latin-style cheeses (Jackson et al., 

2018). Queso fresco (QF) is a Hispanic-style fresh, high moisture 
(45–55%), crumbly, salty, soft white cheese with near-neutral pH 
(6.0–6.5) that supports the growth of L. monocytogenes (Soni et 
al., 2012).

As L. monocytogenes grows and proliferates both under refriger-
ation and mild temperature abuse conditions, it may get transferred 
to foods in domestic refrigerators (Jackson et al., 2007), which 
would be a huge risk for RTE foods. Listeria monocytogenes was 
recovered from 1.2% out of 342 domestic refrigerators in one study 
(Jackson et al., 2007). In another study, Listeria spp. were found in 
6 of 137 refrigerators (Kilonzo-Nthenge et al., 2008). A study that 
assessed the temperatures of 200 refrigerators in the United States 
demonstrated that the temperature was above the recommended 
4.4°C for 33% (top shelf), 45% (middle shelf), and 80% (door) for 
more than 2 h per day (Godwin et al., 2007). The recommended re-
frigeration temperatures differ around the world but are still <7°C. 
A study on domestic storage malpractices in older adults pointed 
out the prolonged storage of RTE foods at temperatures above the 
recommended temperatures. The implications of these practices 
on growth of L. monocytogenes in soft cheese were tested at rec-
ommended temperature (2.5°C), slightly above recommendation 
(7.8°C), and ambient temperature (19.5°C; Evans and Redmond, 
2019). The study revealed that longer storage at temperatures 
higher than recommended led to faster L. monocytogenes growth. 
In the United States, the recommended temperature is ≤4.4°C 
(James et al., 2017). Studies in the United States, United Kingdom, 
and France have indicated that food placed in open refrigerated 
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display cases in retail undergoes temperature abuse between −1 to 
16°C (Monge Brenes et al., 2020). Therefore, it becomes necessary 
to test the pathogen growth and antimicrobial treatments in QF at 
temperatures above the recommended 4.4°C.

Several FDA-approved, generally recognized as safe (GRAS) 
antimicrobials such as nisin (NIS), lauric arginate ethyl ester 
(LAE), and ε-polylysine (EPL) have exhibited antilisterial activ-
ity in milk and cheese. Nisin is a GRAS food preservative and 
the most commonly used bacteriocin in the food industry up to 
a level of 250 ppm (Gadotti et al., 2014). It is the only approved 
bacteriocin for use in cheese products and demonstrates broad-
spectrum inhibition of gram-positive bacteria including L. mono-
cytogenes (Van Tassell et al., 2015; Lourenço et al., 2017). Lauric 
arginate ethyl ester, a cationic surfactant, is a food preservative 
with a usage limit of up to 200 ppm in foods to inhibit microbial 
growth in cheese, meat, and poultry products (Soni et al., 2010; 
Ma et al., 2013, 2020). Several studies have demonstrated the ef-
fectiveness of LAE against L. monocytogenes in milk (Soni et al., 
2010; Ma et al., 2013; Kozak et al., 2018a) and QF (Soni et al., 
2010, 2012; Kozak et al., 2018b). ε-Polylysine, a homopolymer 
naturally produced by Streptomyces albulus, is a commercially 
available preparation that has been shown to inhibit growth of L. 
monocytogenes in milk and QF (limit 250 ppm in foods; Kozak 
et al., 2017, 2018a). Endolysins are the viral hydrolytic enzymes 
that cause the hydrolysis of the bacterial cell wall leading to cell 
lysis and death. Previous work in our laboratory has demonstrated 
the effectiveness of the endolysin PlyP100 from L. monocytogenes 
phage P100 in controlling Listeria in QF (Van Tassell et al., 2017; 
Ibarra-Sánchez et al., 2018).

A combination of antimicrobial agents provides a broader spec-
trum of listeriacidal and listeriostatic activity (Soni et al., 2012) 
and also helps reduce factors such as cost, usage limit, and likely 
changes in sensory properties (Kozak et al., 2017, 2018a). In this 
study, commercially available NIS (Danisco), LAE (CytoGaurd 
LA 20, A&B Ingredients Inc.), EPL (Wilshire Technologies), and 
PlyP100 (prepared as previously described by Van Tassell et al., 
2017) were evaluated individually and in combination for their 
ability to control growth of L. monocytogenes in QF at 4°C, 7°C, 
and 10°C. Additionally, growth curves of L. monocytogenes were 
obtained in brain heart infusion (BHI) broth and QF at the given 
temperatures. We hypothesized that antimicrobial combinations 
would be effective at limiting L. monocytogenes growth in QF 
stored at the 3 selected cold temperatures.

The following strains, Listeria innocua ATCC 33090, Listeria 
monocytogenes NRRL B-33104, NRRL B-33513, NRRL B-33420, 
NRRL B-33424, and NRRL B-33419, were used in this study. The 
strains were grown in brain heart infusion broth (BHI; Difco) with 
250 rpm agitation at 37°C for 24 h. The L. monocytogenes cock-
tail was prepared by combining equal volumes of the stationary 
phase cultures of 5 strains associated with foodborne outbreaks. 
The cocktail was serially diluted in PBS to attain 3 log10 cfu/mL 
concentration. Enumeration was conducted on PALCAM Listeria 
selective agar supplemented with 20 μg/mL ceftazidime (Tokyo 
Chemical Industry Co. Ltd.) and incubated at 37°C for 48 h 
(Ibarra-Sánchez et al., 2018). All research activities described in 
this publication were approved by the University of Illinois Institu-
tional Biosafety Committee (IBC-107.1). 

Miniature laboratory fresh cheese batches were prepared as 
described earlier (Van Tassell et al., 2015; Ibarra-Sánchez et al., 
2018). Briefly, 50-mL batches of pasteurized whole milk were 
warmed to 35°C. The milk was then combined with rennet and 
CaCl2 and divided into 1-mL portions. Nisin (Nisaplin, Danisco) 
was added to the milk at this point and the tubes were returned to 
the water bath. The curds were inoculated with L. monocytogenes 
cocktail and set by centrifugation. The LAE, EPL, and PlyP100 
were added to the drained, contaminated curds before the final 
pressing step. Antimicrobial treatments and their concentration 
(Figure 3) evaluated in QF (NIS, PlyP100, LAE, EPL, PlyP100 
+ NIS, and LAE + EPL) were selected based on their efficacy to 
inhibit L. monocytogenes in QF at 4°C from our previous studies 
(Ibarra-Sánchez et al., 2018; Martínez-Ramos et al., 2020). Chees-
es were then stored at 4°C, 7°C, and 10°C for further analysis. 
Additionally, BHI broth was inoculated with the L. monocytogenes 
cocktail and stored at 4°C, 7°C, and 10°C to obtain growth curves.

The doubling times were calculated using a MATLAB program 
developed by Hoeflinger et al. (2017). The results indicated that 
the doubling times for L. monocytogenes cells were directly cor-
related with the storage temperature, being longest at 4°C and 
shortest at 10°C (Figure 1). However, the results also indicate that 
in case postprocessing contamination occurs, L. monocytogenes 
could grow to high numbers during prolonged storage regardless of 
the storage temperature. The results that we obtained for L. mono-
cytogenes growth curves in QF (Figure 2) are comparable to data 
reported by earlier studies. A study that conducted the growth of L. 
monocytogenes in soft, semi-soft, and semi-hard artisanal cheeses 
reported that L. monocytogenes growth potential ranged between 
1.8 and 4.0 log10 cfu/g on soft cheeses stored at 7°C for 14 d (La-
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Figure 1. Listeria monocytogenes growth curves in brain heart infusion broth. 
Doubling time was 43.37 ± 1.25, 11.34 ± 0.32, and 9.84 ± 0.14 h at 4°C, 7°C, 
and 10°C, respectively. Values are means ± SEM of 3 independent experi-
ments.
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hou and Uyttendaele, 2017). Similarly, our data showed that by d 
14 the L. monocytogenes levels had increased by 4.69 log10 cfu/g 
at 7°C. Another study found that the L. monocytogenes population 
increased from initial inoculation level of 2.7 to 5.5 log10 cfu/g in 
soft cheese at the recommended storage temperature of <5°C (2.5 
± 2.2°C) at d 16 of storage and reached up to 6.8 log10 cfu/g at 
7.8°C ± 0.4 by d 12 (Evans and Redmond, 2019). Our data indicate 
that the growth of L. monocytogenes had increased above 3 log10 
cfu/g in 7 d at 7°C and above 4 log10 cfu/g by d 14 at 10°C. Soni et 
al. (2010) reported that the levels of L. monocytogenes increased 
by 4.3 log10 cfu/g (initial 4 to 8.3 log10 cfu/g) during 3 wk of stor-
age of QF at 4°C. Similarly, our data indicated a growth of 4.71 
log10 cfu/g at d 21 of storage at 4°C.

An antimicrobial application could be considered a postlethality 
if it could reduce at least 1 log cfu L. monocytogenes in a product 
before it leaves the facility and would not allow more than a 2 
log increase in L. monocytogenes levels over the product’s shelf 
life (USDA-FSIS, 2014; Kozak et al., 2018b). Four antimicrobi-
als, NIS, LAE, EPL, and PlyP100, were tested for their efficacy in 
keeping L. monocytogenes levels in QF below the 2 log threshold. 
Our results indicated that only 3 treatments, PlyP100, PlyP100 
+ NIS, and EPL + LAE, were effective to control the pathogen 
below the 2 log growth threshold at 4°C (Figure 3). The efficacy of 
PlyP100 by itself and in combination with NIS against the growth 
of L. monocytogenes in QF has been previously demonstrated 
in our laboratory (Van Tassell et al., 2017; Ibarra-Sánchez et al., 
2018). The combination exhibited strong synergism and resulted 
in nondetectable levels of L. monocytogenes after storage of QF at 
4°C for 28 d. The synergy between PlyP100 and NIS may be the 
result of both antimicrobials targeting the cell wall such that NIS 
pore formation and PlyP100 peptidoglycan hydrolysis resulted in 

enhanced lysis of L. monocytogenes cells. Alternatively, the lis-
teriostatic effect of PlyP100 may complement the gradual loss of 
NIS in QF in that residual NIS in QF reduce L. monocytogenes 
populations, whereas PlyP100 prevents regrowth of survivors 
(Ibarra-Sánchez et al., 2018). A previous study has also reported 
that the combination of EPL + LAE works well as bacteriostatic 
against L. monocytogenes in QF at 4°C (Martínez-Ramos et al., 
2020). Although the aforementioned treatments (PlyP100, PlyP100 
+ NIS, and EPL + LAE) can limit L. monocytogenes growth in QF 
to less than 2 log, only PlyP100 + NIS may comply with the FDA 
zero-tolerance policy of L. monocytogenes due to its efficacy in 
reducing L. monocytogenes populations in QF. Also, whereas L. 
monocytogenes infectious dose may be estimated as low as 10° 
to 104 cfu/g (Busch et al., 2022) and contamination levels of less 
than 100 cfu/g in fresh cheeses have been observed (USDA-FSIS, 
2003), antimicrobial treatments that limit L. monocytogenes growth 
over QF shelf life (e.g., PlyP100 and EPL + LAE) can contribute to 
reducing the risk of L. monocytogenes infection in situations where 
QF is contaminated with the pathogen.

As reported by earlier studies, there is a possibility of tempera-
ture abuse during shipping, handling, and storage. Consequently, 
the efficacy of the antimicrobials was also tested at 7°C and 
10°C. At 7°C and 10°C, none of the antimicrobial treatments 
could inhibit L. monocytogenes growth (<2 log). However, some 
treatments were able to delay the growth at these temperatures. 
At 7°C, 3 extra days relative to control were required for cheeses 
containing PlyP100 and PlyP100 + NIS to achieve 2 log growth. 
At 10°C, 3 extra days relative to control were required for cheeses 
supplemented with EPL.
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Figure 2. Listeria monocytogenes growth curves in Queso Fresco cheese. 
Doubling time was 47.53 ± 1.14, 20.32 ± 1.4, and 12.84 ± 0.94 at 4°C, 7°C, and 
10°C, respectively. Values are means ± SEM of 3 independent experiments.

Figure 3. Required time for 2 log growth of Listeria monocytogenes in Queso 
Fresco (QF) stored at 4°C, 7°C, and 10°C. NIS = nisin (250 µg/g); PlyP100 = 
PlyP100 (2.5 U/g); LAE = lauric arginate (200 µg/g); EPL = ε-polylysine (250 
µg/g); PlyP100 + NIS = 2.5 U/g PlyP100 + 250 µg/g nisin; EPL + LAE = 250 
µg/g ε-polylysine + 66.66 µg/g lauric arginate. Listeria monocytogenes inhibi-
tion over 28 d of QF shelf life: <2 log growth (*); >1 log reduction (**). One 
U = amount of enzyme necessary to decrease the optical density at 600 nm 
(OD600) of Listeria cells in suspension by 0.01/min. Values are means ± SEM.
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Earlier research has demonstrated that treatment of QF with LAE 
leads to an initial reduction of L. monocytogenes, but regrowth 
occurs during storage at 4°C for longer periods of time (Soni et 
al., 2010). Kozak et al. (2018a) reported that following the initial 
reduction of L. monocytogenes in QF, the counts returned to initial 
inoculation levels by d 7 at 7°C. Kozak et al. (2018a) also reported 
that EPL alone did not make a significant difference on the growth 
of L. monocytogenes and that the treatment with combination of 
LAE + EPL did not lead to a significant difference from treatment 
with LAE by itself at 7°C. Nisin alone when used at the permis-
sible levels of 250 ppm does not provide sufficient barrier against 
growth of L. monocytogenes in QF, which may be due to the lack 
of stability of NIS at near-neutral pH (Ibarra-Sánchez et al., 2020).

The growth curves in our study indicate that without any treat-
ment L. monocytogenes could grow in QF up to high levels that 
are unsafe for human consumption regardless of the cold storage 
temperature. The results also support our previous findings that 
PlyP100 + NIS effectively control L. monocytogenes during stor-
age at 4°C. Additionally, EPL + LAE seem to be good candidates 
for further research in improving the safety of QF during cold 
storage. Future work is needed to explore antilisterial interventions 
that effectively inhibits L. monocytogenes in QF under cold tem-
perature abuse conditions.
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