
Journal of Advanced Research 42 (2022) 17–28
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Original Article
Identification of Pseudo-R genes in Vitis vinifera and characterization
of their role as immunomodulators in host-pathogen interactions
https://doi.org/10.1016/j.jare.2022.07.014
2090-1232/� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.� 2022 Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding author.

E-mail address: kashmirbio@pu.ac.in (K. Singh).
1 Current address.
Naina Garewal a, Shivalika Pathania a, Garima Bhatia a,b, Kashmir Singh a,⇑
aDepartment of Biotechnology, Panjab University, Chandigarh, India
bDepartment of Biology, University of Pennsylvania, Philadelphia, USA1
h i g h l i g h t s

� Resistance genes associated
pseudogenes (pseudo-R genes)
derived from whole-genome
duplications were identified in the
genome of Vitis vinifera and were
annotated for their roles in plant
defence responses.

� Novel antifungal (EKA-AFPs) and
antimicrobial peptides (W-AMPs)
identified and characterized can serve
as promising anti-microbial
candidates.

� The co-expression network analysis
between pseudogenes-lncRNAs-
genes revealed six pathogen-
responsive pseudo-R genes as
significant during pathogen invasion.

� Pseudo-R genes were also exhibiting
tissue-specific expression patterns.

� Pseudo-R genes play by regulating the
gene expression either directly by
acting as mRNA mimics for
miRNA/tasiRNA targeting or
indirectly by lncRNA mediated
regulation of miRNA/tasiRNAs.
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Introduction: Duplication events are fundamental to co-evolution in host-pathogen interactions.
Pseudogenes (Ws) are dysfunctional paralogs of functional genes and resistance genes (Rs) in plants
are the key to disarming pathogenic invasions. Thus, deciphering the roles of pseudo-R genes in plant
defense is momentous.
Objectives: This study aimed to functionally characterize diverse roles of the resistanceWs as novel gene
footprints and as significant gene regulators in the grapevine genome.
Methods: PlantPseudo pipeline and HMM-profiling identified whole-genome duplication-derived (WGD)
Ws associated with resistance genes (W-Rs). Further, novel antifungal and antimicrobial peptides were
characterized for fungal associations using protein–protein docking with Erysiphe necator proteins.
miRNA and tasiRNA target sites and transcription factor (TF) binding sites were predicted in W-Rs.
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Finally, differential co-expression patterns in W-Rs-lncRNAs-coding genes were identified using the
UPGMA method.
Results: 2,746 W-Rs were identified from 31,032 WGD Ws in the genome of grapevine. 69-antimicrobial
and 81-antifungal novel peptides were generated from W-Rs. The putative genic potential was predicted
for five novel antifungal peptides which were further characterized by docking against E. necator proteins.
395 out of 527 resistance loci-specific W-Rs were acting as parental gene mimics. Further, to explore the
diverse roles ofW-Rs in plant-defense, we identified 37,026 TF-binding sites, 208 miRNA, and 99 tasiRNA
targeting sites on these W-Rs. 194 W-Rs were exhibiting tissue-specific expression patterns. The co-
expression network analysis between Ws-lncRNA-genes revealed six out of 79 pathogen-responsive W-
Rs as significant during pathogen invasion.
Conclusions: Our study provides pathogen responsive W-Rs integral for pathogen invasion, which will
offer a useful resource for future experimental validations. In addition, our findings on novel peptide gen-
erations fromW-Rs offer valuable insights which can serve as a useful resource for predicting novel genes
with the futuristic potential of being investigated for their bioactivities in the plant system.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University.� 2022 Published by Elsevier
B.V. on behalf of Cairo University. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).
Introduction

Pseudogenes (Ws) are paralogous genic fragments incapable of
forming fully functional proteins due to disarming mutations such
as indels and frame-shift mutations. Ws are of two main types:
processed and non-processed (also known as duplicated Ws).
Duplicated Ws will have typically lost their function with time
due to lack of selection pressure on their genic structure. This often
leads to the generation of novel genes, possibly throughWs gaining
new functions by escaping detrimental mutations and becoming
functional again [1]. Although inert, Ws are involved in the forma-
tion of long non-coding RNAs (lncRNAs), micro RNAs (miRNAs),
trans-acting siRNAs (tasiRNAs), etc. and modulate their parental
genes by acting as anti-sense RNA molecules, siRNA molecules,
competitive endogenous miRNA targets via target mimicry, regula-
tion of translational machinery, and through interactions with RNA
binding proteins, [2–4]. The close co-relation of lncRNA and Ws as
being biologically active has led to speculationsWs could form new
lncRNAs to modulate their parent genes via target mimicry. [5–7].

Powdery mildew (PM) caused by a biotrophic fungus E. necator
is a colossal terror for extreme yield losses of grapevine crops
worldwide. Resistance (R) genes comprising primarily of nucleo-
tide binding site-leucine rich repeat genes (NLRs) are involved in
conferring post-penetration resistance against PM pathogens. The
NLRs arise after reiterated tandem duplications in the genome
and random shuffling through evolution leading to formation of
novel receptors in conjunction with pathogen effectors. The occur-
rence of novelty in R-genes is largely preserved especially in the
wild genotypes of the vegetatively propagated crop plants [8].

Interestingly, considerable research has been directed towards
Ws such as those involved in cancer after the discovery of PTEN-
W being functionally active [5]. Similarly in plants, the majority
of research circumscribes their genome-wide identification, phylo-
genetic analysis, plant-host studies, etc. [9]. In addition, Ws have
reportedly been transcriptionally active in some plants [10,11].
The emerging significance ofWs in innate immune response in var-
ious cancers such as gastric cancer, breast cancer, pancreatic can-
cer, hepatic cancer etc. laid the foundations of our study [12]. In
2015, Plasmodium falciparum resistance-associated locus pfcrt
aided in the identification of novel Ws in malaria patients [13]. In
addition, certain Ws are able to transcribe mRNA fragments into
peptides which serve as target antigens and induce immune
responses in humans [14]. Plant antimicrobial peptides are a pri-
mary component of the barrier defense system against various
phytopathogenic infections [15]. Studies involving pseudogene
derived antimicrobial peptides were previously conducted in Dro-
sophila melanogaster and Escherichia coli [16,17]. Although, the
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studies involving the artificial expression of pseudogene-based
peptides are still in their infancy, but exhibit great potentials of
pseudogenes being expressed as novel and functional proteins
[18]. To the best of our knowledge, this is the first ever report pre-
dicting novel antifungal peptides from pseudogenes in plants and
investigating in-silico their roles as potential antifungal agents
against the E. necator.

Materials and methods

Identification of whole-genome duplication derived Ws

Genome-wide identification of whole-genome duplication
(WGD)-derived Ws was conducted by using PlantPseudo pipeline
[19]. The V. vinifera genome (PN40024-12X.v2) was downloaded
from Ensembl Plants. The inputs of pipeline were unmasked gen-
ome, repeat-masked genomic sequences, non-redundant set of
protein sequences in the genome, and GFF3 (General Feature For-
mat) files for lncRNAs, genome, and repeat-masked genomic
sequences. All FASTA and genome.gff3 files were obtained from
Ensembl Plants, except the repeat masked genomic sequences
gff3 file, which was obtained from its FASTA file using pblat
sequence alignment tool [20]. V. vinifera lncRNA annotation was
obtained from previous studies [21,22].

Identification and characterization of Pseudo-R genes (W-Rs)

Further, to identify R-genes associated Ws, a Hidden Markov
Model (HMM) profile was generated for the reference R-genes
downloaded from the Plant Resistance Genes Database (PRGdb-
3.0) [23]. The multiple sequence alignment (MSA) for reference
R-genes was performed using Clustal Omega from the EBI web ser-
ver and their FASTA sequences were used as an input to build the
HMM profile using module ’hmmbuild’ in HMMER v3.3 [24]. Fur-
ther, the HMM profile obtained was searched against the V. vinifera
protein sequences using module ’hmmsearch’ to shortlist
sequences with a significant e-value of 1e-03. These were further
examined using the ’hmmscan’ module in HMMER to confirm the
presence of NLR domains. The identified W-Rs were then plotted
using Circos software along with lncRNA and WGD-Ws. The W-Rs
were functionally annotated using OmicsBox 2.0 (formerly known
as Blast2GO) with default parameters [25]. Gene Ontology (GO)
terms were assigned to the annotated sequences based on three
categories such as biological process (BP), molecular function
(MF), and cellular component (CC) along with pathway enrichment
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis.
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Table 1
Molecular function GO terms and substitution rates of novel EKA-peptides of fungal defense response.

EKA-AFPs PFP-Molecular function GO-prediction dN/dS Selection type

EKA-15 FUNGUS DEFENSE RESPONSE, ncRNA Processing 0.82186235 Negative selection
EKA-22 FUNGUS DEFENSE RESPONSE, Defense response 1.44003056 Positive selection
EKA-49 FUNGUS DEFENSE RESPONSE, Defense response 1.03092784 Positive selection
EKA-74 FUNGUS DEFENSE RESPONSE, ncRNA Processing, Defense response, pathogenesis, response to stress 0.96357013 Negative selection
EKA-75 FUNGUS DEFENSE RESPONSE, ncRNA Processing, Defense response, innate immune response, response

to stress
1.52645721 Positive selection

EKA-51 Defense response, suppresses host, negative regulator of MAPK pathway, negative regulator of innate
immune response, pathogenesis, response to stress, response to symbiont

1.03711519 Positive selection

EKA-53 Defense response, suppresses host, negative regulator of MAPK pathway, negative regulator of innate
immune response, pathogenesis, response to stress, entry in host, response to symbiont

0.82724719 Negative selection
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Identification and characterization of novel peptides from W-Rs

W-Rs were six-frame translated and their corresponding open
reading frames (ORFs) were extracted using Emboss-sixpack and
Emboss-getorf, respectively, from The European Molecular Biology
Open Software Suite EMBOSS-v 6.6.0 suite. A length filter of a min-
imum of 100 bp (33 aa) was applied to extract putative peptides.
These peptides were further used for the identification of novel
pseudo-peptide sequences. BLASTp search was conducted against
the local non-redundant (nr-2019) proteins database downloaded
from NCBI using default parameters. The unique no-hit sequences
were extracted and cross-verified for their novelty by searching
against the nr-2021 database. The unique peptides were next
examined for their anti-microbial and anti-fungal potentials. The
filtered novel peptides with potent antimicrobial potential were
thus renamed as W-AMPS’s, while those with antifungal potential
were renamed as ‘‘EKA” peptides following the nomenclature pro-
vided in the previous literature [26].

The anti-microbial potential of peptides was predicted using
the database of anti-microbial activity and structure of peptides
(DBAASPv3.0) [27]. The filtered peptides were further character-
ized by BLAST search in the Plant Peptide Database (PlantPepDB)
[28]. The W-AMPs were characterized based on matched peptide
families mainly ‘‘defensins”, ‘‘thionins”, ‘‘thaumatin”, ‘‘lipid-
transfer”, ‘‘cyclotides”, and ‘‘miscellaneous”. The novel peptides
were also screened for their anti-fungal potential using the Anti-
fungal peptides webserver (Antifp server) and renamed as EKA-
AFPs [29]. The physicochemical characterizations were done using
ProtParam and Antimicrobial Peptides Database-v3 as ‘Peptide
length’ ‘APD hydrophobic ratio’, ‘Total net charge’, ‘pI’, ‘grand-
average of hydropathicity index (GRAVY)’, ‘molecular weight’,
‘Boman index’, ‘aliphatic index’ and ‘instability index’ for W-
AMPs and EKA-AFPs [30,31].

The EKA peptides were further screened based on their GO-MF
predictions in the Protein function prediction (PFP) server into ten
defense-related classes i.e., ‘‘fungal defense”, ‘‘ncRNA processing”,
‘‘defense response”, ‘‘suppression of host immune-response”,
‘‘stress-related MAPK pathway activation”, ‘‘innate immune-
response”, ‘‘pathogenesis”, ‘‘response to stress”, ‘‘entry into host”
and ‘‘response to symbiont” [32]. The EKA sequences directly and
even distantly involved in ‘‘fungal defense” irrespective of their
low prediction scores were screened out for further analysis and
their substitution rates (dN/dS) were calculated using MEGAX.
The dN/dS < 1 indicates negative selection, dN/dS = 1 indicates
neutral selection and dN/dS > 1 indicates positive selection in
pseudogenes with respect to their parent genes.
Stability prediction and structural analysis of novel EKA-AFPs

Secondary structures of EKA-AFPs were predicted using JPred
(v4) webserver [33]. In addition, the free-energy of EKA-AFPs was
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examined using the UNAFold webserver [34]. Further, tertiary
structures of peptides were devised using I-TASSER webserver
[35] and the best 3-D structure models were selected based on
their Confidence scores (C-score) and Root mean square deviation
(RMSD) values.
Target protein prediction of EKA-AFPs

Targets were predicted for seven selective EKA-AFPs using 3-D
structures of 66 E. necator target protein sequences [36] down-
loaded from Protein Model Database (PMDB) [37]. Protein-
protein docking between EKA-AFPs and targets predicted their
most compatible associations based on their maximum dock-
score and surface area using the PatchDock algorithm [38]. The
refined docked structures for EKA-AFPs and their corresponding
targets were regenerated using ClusPro 2.0 [39]. The best-docked
models were then selected based on their lowest energy and
weighted mean scores. The downloaded models were further visu-
alized using PyMOL 2.5.0 [40]. These interactions were further val-
idated using a Protein binding energy prediction (PRODIGY)
webserver [41] by calculating their binding affinities and dissocia-
tion constants (Kd).
Extraction of W-Rs as potent mRNA mimics of R-gene mediated
resistance

The QTL mapped and experimentally validated R-loci sequences
of RUN1, RPV1 and RPW8 from V. vinifera were downloaded from
the UniProt [42] to setup a local protein database. Blastx with
default parameters identifiedW-Rs aligning to R-loci and were sub-
sequently differentiated into coding and non-coding transcripts
using Coding Potential Calculator (CPC 2.0) [43]. Protein coding
sequences (CDS) of V. vinifera were downloaded from Ensembl
Plants and their local nucleotide BLAST database was setup.
BLASTn of all the CDS sequences was done with default parameters
in order to filter out W-Rs associated with various mature mRNA
sequences. The filtered W-Rs with coding and non-coding tem-
plates were further used for studying passive interactions (with
non-coding regulators such as miRNA, and tasiRNA’s) as well as
active interactions with coding regulators such as TF’s.
Potential interactors of W-mRNA mimics of R-gene mediated
resistance

Plant small RNA target analysis server (psRNATarget) [44,45]
was used for predicting miRNA & tasiRNA target sequences from
the mRNA associated W-Rs (coding and non-coding). V. vinifera
186-miRNA sequences from miRBase and 37-tasiRNA sequences
from Plant non-coding RNA’s Database (PNRD) were used for this
analysis. [46]. Similarly, TF-binding sites were assessed in W-R
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regions by using Plant transcription factor database (PlantTFDB-
v5.0) [47].

Differential expression (DE) analysis of W-Rs

To analyze the expression footprints of W-Rs, high-throughput
RNA sequencing data from NCBI Sequence Read Archive (SRA)
database [48–51] for 10 developmental stages of three tissues
i.e., leaf (young, medium, large-sized and mature), seedless berries
(veraison, intermediate and mature) and inflorescence (3, 5 and 7-
days after 100 % cap-fall) were used to study tissue specific DE pat-
terns of W-Rs (Table S1). In addition, the RNA-Seq data for PM-
infection in grapevine from bio-project no. PRJNA395634 [52] for
two treatment conditions i.e., control and 36 h post infection
(hpi) was used for studying expression profiles ofW-Rs in response
to infection (Table S1). The expression analysis was done using
Trinity-v2.03 package. The FPKM analysis using RSEM method
and edgeR (with default parameters) was used to identify DE of
all W-Rs in developmental stages (p-value:0.001, c-value:2) and
PM-response (p-value:0.05, c-value:1) [53]. Genes with sample
outliers were excluded at this step to reduce noise, leaving behind
most informative genes, followed by data normalization. Heat
maps of DE W-Rs were plotted using pheatmap library in
Rstudio-v4.1.2. The PM-responsive DE patterns were also predicted
for 29,927 CDS sequences and 61,078 lncRNA sequences to be sub-
sequently used for co-expression analysis [21,22].

Co-expression network construction and integration of W-Rs, lncRNAs
& CDS

Integrative network analysis of W-lncRNAs-CDS network was
performed to determine the functionality of putative W-Rs at
systems-level against PM in V. vinifera based on similar expression
patterns across coding and non-coding interacting partners. Three
separate weighted gene co-expression networks (WGCNs) (Ws-
CDS, Ws-lncRNAs, and lncRNAs-CDS) were constructed using DE
values for control and treatment conditions. All WGCNs were con-
structed using Pearson correlation coefficient (PCC) as weight
which was calculated using the PERL script [54].

PCC was enumerated using the following equation:

PCC ¼
Pðx� x

�Þðy� y
�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x
�Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� y

�Þ2
q

Where x and x
�
as well as y and y

�
represent expression data and

the corresponding mean of interacting genes. Mean of expression
profile data is determined by sample size which is different for
both the sets of genes.

A biologically significant PCC threshold was obtained indepen-
dently for all three (Ws-CDS, Ws-lncRNAs, and lncRNAs-CDS) net-
works, with both positive and negative set of PCCs, by analyzing
their topological parameter like network density (ND) at different
PCC cutoffs [55].

ND was computed as follows:

ND ¼ 2m
nðn� 1Þ

Where m and nðn�1Þ
2 specify the number of observed edges and

possible links of nodes, respectively.
The interaction pairs in each network were shortlisted at

selected PCC threshold, and then subjected to implement ‘t-test’
for the selection of statistically significant interactions (with p
value � 0.05) to reduce the rate of false positives in each network
[56]. Subsequently, false discovery rate (FDR) estimation [57] was
calculated, using ‘‘stats” library of R-statistical package-v3.4.4, to
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further reduce the false positives through multiple testing correc-
tion. Finally, the resulting interaction pairs were used to construct
three independent WGCNs, and Cytoscape-v3.7.0 [58] was used to
visualize these networks. The PCC values for all interacting pairs
were applied as edge weights to construct individual networks,
where weights constitute the strength of correlation (co-
expression). Additionally, to elucidate the scale free nature of all
WGCNs, random networks with same number of nodes and edges,
corresponding to each weighted network, were constructed using
‘igraph’ library in R package, so as to compare for their network
topology to interpret their biological nature. The complexity of
system-level analysis for three (Ws-CDS, Ws-lncRNAS, and
lncRNAs-CDS) co-expression networks was established by their
clustering through Markov cluster (MCL) algorithm [59], of plugin
clusterMaker [60] from cytoscape, and was implemented to
achieve immensely interconnected but comparatively smaller
and functional gene modules at default inflation value of 2.5. Topo-
logical analysis of integrated disease network was also obtained
using ‘NetworkAnalyzer’ tool in cytoscape. To perform GO enrich-
ment analysis for significant modules, DE W-Rs were first assigned
unique identifier by comparing against grapevine proteome, fol-
lowed by implementation of ‘topGO’ library in R package. Signifi-
cantly enriched terms were determined by comparing them
against background reference, obtained from the OMICSBOX (W-
Rs, lncRNAs) and Vitis ontology (CDS). Statistically significant terms
were obtained using p-values from Fisher’s Exact Tests with the
classic model. To perform pathway enrichment analysis of signifi-
cant modules, DE W-Rs were first assigned unique TAIR identifier
by comparing their protein sequences against Arabidopsis pro-
teome using BLASTp program [61], followed by identification of
significant pathways using DAVID-v6.7 [62].
Results and discussion

Pseudogenes of NLRs acting in plant immune response pathways

Several genome-wide W identification studies have been con-
ducted in plants such as Arabidopsis thaliana, Oryza sativa, Soy-
abean, Barley, Populus trichocarpa etc. [11,63–65]. In our study,
PlantPseudo pipeline identified 31,032 WGD Ws based on duplica-
tion blocks for 9,246 parent genes from the genome of V. vinifera
(Table S2). Chromosomal (Chr) distribution of the predicted Ws
demonstrated Chr18 possessing maximum and Chr11 having least
number (Fig. 1a). The pipeline also predicted 7,411 lncRNA’s asso-
ciated with WGD-derivedWs (Table S3) with maximum number of
lncRNA’s occurring on Chr13 and minimum on Chr10 (Fig. 1a). Fur-
ther, theW associations with lncRNAs were characterized into four
types as Body associated, Co-promoter associated, Promoter asso-
ciated and Tail to Tail associated with majority Ws existing as co-
promoter associated with lncRNAs (Fig. 1b).

V. vinifera is susceptible to a plethora of pathogenic microorgan-
isms. E. necator causing PM infection is the most notorious patho-
gen and was used in our analysis. R-genes, activators of an innate
immune response in plants are regarded as core components for
delivering plant immune responses via effector-triggered immu-
nity (ETI). Also, NLRs (major class of R-genes) are encoded in the
genome as clustered tandem repeats and thus can act as paralo-
gous R-gene reserves which protest against foreign attacks by the
pathogenic microorganisms. SinceWs have been reportedly known
to induce a functional immune response in human, chicken, rabbit,
and other vertebrates [66]. Role of Ws in plant immune response
especially for ETI have been scarcely analyzed in rice and wheat
plants [67,68]. Thus, in our study 2,746Ws (after removing unchar-
acterized Chr sequences) specifically involved in R-gene mediated
immune response were filtered out using homology modelling



Fig. 1. Distribution and characterization statistics of noncoding genes. (a) Circos plot depicting chromosomal distribution of WGD-derived pseudogenes, lncRNAs and
pseudo-R genes in the genome of V. vinifera (b) Categorical distribution of putative pseudogenes based on distance of their proximal upstream regions containing lncRNAs.
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from WGD-derived Ws. Their chromosomal distribution depicted
chr09, chr12, and chr18 possessing majority of 289, 254 and 328
W-Rs respectively (Fig. 1a).

Subsequently, these W-Rs were functionally characterized in-
silico to identify their putative roles in plants. Their functional
characterizations unveiled their annotations based on GO terms
for BP, CC, and MF. GO-based MF predicted several W-R sequences
involved in ADP binding, ATP binding, protein serine/threonine
kinase activity, protein kinase activity etc which have been demon-
strated to be crucial for NLRs in disease resistance pathways. CC-
based GO distribution affiliated the majority of W-Rs being
membrane-associated, followed by cytoplasm and nucleus, which
was in conjunction with activity of NLRs acting as primary recep-
tors for pathogen recognition. W-Rs involved in BP were primarily
annotated to be involved in defence-response, protein-
phosphorylation, signal-transduction, phosphorylation, DNA-
integration etc. Predicted functions of W-Rs were from defence-
responses to bacterium (23W-Rs), oomycetes (24W-Rs), fungus
(20W-Rs) also reaffirms their significance in NLR-mediated
immune response [69]. Also, W-Rs were involved in several devel-
opmental processes such as lateral-root formation, development of
root-cap, stomatal-complex, pollen, flower, and phloem etc. in
addition to hormone signalling pathways of auxin, gibberellic acid,
abscisic acid, brassinosteriod etc. Further, pathway enrichment of
Ws using KEGG inferred their roles in 112 pathways including
important pathways of MAPK-signalling pathway in plants
(ko:04016), Plant-Pathogen interaction pathway (ko:04626), Plant
hormone signalling pathways (ko:04075) etc which are integral
pathways of plant defense response.

W-derived peptides as novel antifungal agents against PM

Duplications in thewhole genome are considered key players for
appearance of new genes via neofunctionalization event. Dupli-
cated Ws arise from block duplication events and undergo a
multi-step process for their formation. The existence and character-
ization of novelWs arising because of segmental duplications in the
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human genome established strong correlations between segmental
duplications and existence of Ws [70]. Further, the clustered tan-
dem duplication pattern of evolution existing in NLRs catered to
the idea behind identification novel W-R peptides in our study.
Six-frame translation and length cut-off (33 aa) filter on 2,746 W-
Rs resulted in 1,923 peptide sequences. BLAST alignment of these
peptides against nr proteins reported 665 novel peptide sequences.

The novel peptides were screened for their anti-fungal potential
of W-peptides using ‘‘Antifp” database reported 81 peptides pos-
sessing antifungal potential (EKA-AFPs). They were characterized
further based on their physio-chemical properties, stability and
ligand binding efficiencies (Table S4) which pointed to most being
good antifungal candidates (details in SI). These EKA-AFP
sequences were then functionally annotated for MF-based GO pre-
diction using PFP server. The PFP server predicts functional
matrixes based on information of weakest hits in PSI-BLAST and
determines common functional domains even from distant ortho-
logs. The GO MF-based screening was done for different host-
pathogen interaction categories (Fig. 2b) to filter out total 48 out
of 81 protein sequences to be involved in plant immune responses
and were further analyzed for their substitution rates (Table S5).
Seven peptides annotated to be involved in fungal defense
responses were filtered out i.e., EKA-15, EKA-22, EKA-49, EKA-74
and EKA-75 as fungal defense peptides and EKA-51 and EKA-53
as promoters of fungal infection in plants based on PFP MF-GO
terms (Table 1). Further their substitution rate analysis determined
EKA-15, EKA-74 and EKA-53 being under negative selection while
EKA-22, EKA-49, EKA-75 and EKA-51 being under positive selec-
tion (Table 1), which is significant for neofunctionalization of
genes. Sequence based physio-chemical characterization reported
EKA-AFPs as cationic and hydrophilic (except EKA-22) in nature.
EKA-51 and EKA-53 were predicted to be multi-functional based
on their boman indexes (Table 2). Finally, the secondary structure
analysis of the EKA-AFPs predicted EKA-51, EKA-53 and EKA-75 to
be forming most stable secondary structures (Table 2). The tertiary
structures of seven out of 81 EKA-AFPs were primarily used for
docking with E. necator target proteins.



Fig. 2. Characterization of novel peptides from pseudo-R genes. (a) Distribution of novel peptides (W-AMPs) obtained from pseudo-R genes into Plant antimicrobial
families. (b) Functional characterization of novel antifungal EKA-peptides based on plant-host interaction responses.

Table 2
Properties of EKA-peptides of fungal defense response based on their sequence stability.

EKA peptides mFOLD Free-energy
change (DG) (KJ/mol)

I-TASSER 3-D
model scores

Net
charge

APD-Hydrophobicity
ratio

Boman index
(kcal/mol)

Aliphatic
index

GRAVY
index

EKA-15 �31 c-score:
�2.19
rmsd: 6.2 ± 3.8 Å

0 33 % 1.97 76.67 �0.5788

EKA-22 –23.4 c-score:
�1.49
rmsd: 4.8 ± 3.1 Å

2 47 % 0.71 114.71 0.241

EKA-49 �14.5 c-score:
�2.5
rmsd: 7.1 ± 4.1 Å

6.5 35 % 1.54 100 �0.403

EKA-51 �56.9 c-score:
�1.79
rmsd: 6.3 ± 3.9 Å

9 38 % 2.86 73.58 �0.651

EKA-53 �48.3 c-score:
�1.51
rmsd: 5.1 + -3.3

7 41 % 3.05 67.44 �0.526

EKA-74 �31.5 c-score:
�1.51
rmsd: 4.8 ± 3.1 Å

4 38 % 0.9 117.35 �0.197

EKA-75 �45.2 c-score:
�3.04 rmsd: 9.2 ± 4.6 Å

7 22 % 3.01 52.41 �1.341

Table 3
Protein-protein docking parameters of fungal defense responsive EKA-peptides and their corresponding targets in E. necator.

EKA-peptides Target protein Target Protein
PMDB ID

Patch
Score

Weighted Score of lowest
energy ClusPro2.0 model

Binding affinity of the
complex (kcal/mol)

Dissociation constant
of the complex at 25 ℃

EKA-15 Adenylosuccinatesynthetase PM0082752 16,034 �960.1 �15.8 2.40E-12
EKA-22 Putative myosin class v myosin PM0082816 15,736 �1032.7 �13.7 9.20E-11
EKA-49 Adenylosuccinatesynthetase PM0082752 19,400 �1354.9 �17.1 3.00E-13
EKA-51 mRNA-capping enzyme subunit alpha PM0082805 16,818 �1315.7 �16.3 1.00E-12
EKA-53 Adenylosuccinatesynthetase PM0082752 17,422 �937.6 �12 1.50E-09
EKA-74 Serine/threonine-protein kinase Tel1 PM0082778 16,118 �771.7 �8.8 3.40E-07
EKA-75 Non-specific serine/threonine

23 protein kinase
PM0082756 18,840 �1090.6 �12.9 3.20E-10
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Docking scores were obtained from individually docking all the
seven EKA-AFPs with 66 protein sequences of E. necator. E. necator
was used as a template pathogen for studying role of AFPs as
potential antifungal agents due to easy availability of target genes
from the pathogen [36] using molecular docking. The identified
target sequences of EKA-AFPs in E. necator are shown in Table 2.
Out of five target proteins of E. necator ‘adenylosuccinate syn-
thetase’ (ubiquitous enzyme playing significant role in purine
biosynthesis) is a target for three peptides i.e., EKA-15, EKA-49
22
(positive defense-regulator) and EKA-53 (negative defense-
regulator). The best docked models were generated in ClusPro 2.0
(Table 3) and visualized in PyMOL-2.5 (Fig. 3). The binding affinity
(DG) and dissociation constant (Kd) values of the predicted pro-
tein–protein complexes using the PRODIGY webserver (Table 3)
identified EKA-49 and EKA-51 as the best docked models overall
while EKA-53 and EKA-74 were the weakest models in terms of
protein–protein interaction between EKA-AFPs and their corre-
sponding targets.



Fig. 3. Protein-protein docking of EKA-peptides and their corresponding Erysiphe necator target proteins: Protein-protein docking models obtained from ClusPro 2.0 of
anti-fungal peptides i.e., positive regulators of defense response (a) EKA-15 with Adenylosuccinatesynthetase of E. necator (PM0082752). (b) EKA-22 with Putative myosin
class v myosin of E. necator (PM0082816). (c) EKA-49 with Adenylosuccinatesynthetase of E. necator (PM0082752) (d) EKA-74 with Serine/threonine-protein kinase Tel1 of E.
necator (PM0082778) (e) EKA-75 with Non-specific serine/threonine 23 protein kinase of E. necator (PM0082756); and pro-fungal peptides i.e., negative regulators of defense
response (f) EKA-51 with mRNA-capping enzyme subunit alpha of E. necator (PM0082805) (g) EKA-53 with Adenylosuccinatesynthetase of E. necator (PM0082752).
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Additionally, anti-microbial potential of 665 novel peptides
identified 69 anti-microbial pseudogenic-peptides (W-AMPs).
Antimicrobial peptides have been widely characterized in amphib-
ians, insects, non-vertebrates as well as humans [71]. These novel
W-AMPs belonged to five antimicrobial families of (Fig. 2a) Cyclo-
tides (5-W-AMPs), Defensins (7-W-AMPs), Lipid-transfer peptides
(1-W-AMPs), Thaumatins (42-W-AMPs), and Thionins (6-W-
AMPs) which play integral roles in plant defenses. Their physio-
chemical characterizations (Table S6) advocated to W-AMPs as
ideal anti-microbial candidates with properties like majority of
natural antimicrobial peptides (details in SI). Most naturally occur-
ring antimicrobials have peptide length of 10–50 aa, molecular
weight 2–9 kDa, are positively charged, contain high hydrophobic
amino acids, and display helical structures [72]. AMPs work by
pore formation on the membranes of the pathogens causing
metabolite leakage and ultimately cell death. This mode of action
is facilitated by their amphipathic nature and positive charge
which allows for peptides to interact with membrane lipids leading
to their accumulation at the membrane surface [15]. All the 69
novel AMPs predicted in our study were cationic in nature and
were medium sized peptides which makes them promising anti-
microbial candidates (Table S6). Novel anti-microbial peptides
derived from Ws have been functionally annotated in Drosophila
[16] till now. Eight out of 69 antimicrobial peptides had antifungal
potential in them and were analyzed for their respective targets
and binding efficiencies (Table S6). Thus, supporting our hypothe-
sis that Ws might be playing roles in generation of new antifungal
23
genes and act as major driving force for modulation of coevolution
between host-pathogen interactions [73].

W-Rs as modulators of gene expression machinery

Resistance Locus specific W-R mapping identified 102 W-Rs
from coding and 425 W-Rs from non-coding transcripts aligning
to the resistance hotspots. Majority of W-Rs were observed on
Chr09 and Chr18 for coding and non-coding transcripts, respec-
tively. Further, W-Rs acting as potential mRNA mimics were
screened out to identify 90 coding and 305 non-codingW-Rswhich
might be regulating their parent genes in the Vitis genome. These
numbers strongly advocate for potential of interaction mimicry
in W-Rs for CDS owing to their sequence homology.

Since endogenous RNAs (lncRNAs, miRNA and tasiRNAs)
undergo activation or silencing in response to pathogenic invasion
and regulate expression of disease resistance genes through tran-
scription or post-transcriptional gene silencing. Thus, W-Rs identi-
fied as mature mRNA mimics were further screened for prediction
of miRNA and tasiRNA target sequences on them. This was done to
understand the putative pre-existing target sites in Ws which
might be playing key roles in regulation by sequestration of miRNA
and tasiRNAs thereby modulating post-translational gene silencing
throughWs. A considerable number of targets for both miRNA (138
Ws out of 305) and tasiRNA (63 Ws out of 305) were predicted in
the non-coding W-Rs and more targets for miRNA’s (70 out of 90
Ws) and tasiRNA’s (36 out of 90 Ws) were present in coding tran-
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scripts (Fig. 4a). Out of 90 coding W-Rs, 32 sequences were com-
mon targets for both miRNA and tasiRNA’s. Similarly, out of 305
non-coding W-Rs, 41 sequences were common targets for miRNA
and tasiRNA’s. Thus, indicating W-Rs might be modulating their
parent genes via RNA mediated gene silencing and vice versa. In
addition to target prediction, W-Rs of CDS were also aligned with
the predicted lncRNA’s through BLASTn and consequently 6 W-Rs
for coding and 22 for non-coding transcripts were aligned
(Fig. 4e). In addition, 3 Ws from coding and 6 from non-coding
transcripts were common among lncRNAs and W-Rs (mRNA-
mimics) of miRNA and tasiRNA targets (Fig. 4e), strongly pointing
towards important regulatory roles of W-Rs towards CDS in co-
ordination with other non-coding RNA’s. Since lncRNAs act by
sequestering miRNA/tasiRNAs and Ws can lead to lncRNA genera-
tion, this could point to the W-Rs being the master regulators of
gene regulation either directly (by acting as mRNA mimics for
miRNA/tasiRNA targeting) or indirectly (by lncRNA mediated regu-
lation of miRNA/tasiRNAs). Interestingly, a lot of the miRNA and
tasiRNA target sites were also found on pseudogenes forming novel
AFPs (Fig. 4c) and W-AMPs (Fig. 4d), thus pointing to the impor-
tance of W-Rs in regulation of novel genes through post-
transcriptional gene silencing events.

According to the previous literature, the regulation by Ws
include siRNA, miRNA and lncRNA formation and associations with
TFs and RNA polymerase II [19]. Our results are in conjunction with
the hypothesis, as our analysis also found 37,026 TF binding sites
in pseudogenic regions for 283 TFs which were common with R-
loci of V. vinifera. The TF-binding sites identified were 15,011 bind-
ing sites (for coding transcripts) and 22,015 binding sites (for non-
coding transcripts) for total 283 TFs. 9 major TF-families were
Fig. 4. Potential interactions of pseudo-R genes with mRNAs (resistance locus spec
potentially involved in mRNA mimicry and in-turn acting as miRNA and tasiRNA target
responsive transcription factor families in pseudogenic counterparts of resistance gen
peptides (d) Venn diagram depicting endogenous targets on pseudogenes of antimicrobi
acting as mRNA mimics.
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identified involved in stress response (Fig. 4b) and MYB (89),
NAC (87) and bZIP (85) TF families were present in majority in cod-
ing and MYB (251), NAC (197) and bHLH (193) in the non-coding
transcripts. These TF-binding sites in W regions might function as
promoters or enhancers and regulate their parental gene expres-
sion levels by serving as gatekeepers of expression in general [19].

Synergistic effects of W-Rs, lncRNA’s and genes in modulation of
immune response

W-Rs were analyzed for their DE patterns in 10 different devel-
opmental stages i.e., young, medium, large, mature leaf tissues, 3-
day, 5-day, 7-day inflorescence tissues and veraison, intermediate,
mature berry tissues. A total 194 sequences were DE W-Rs with a
fourfold-change (c-value: 2) and p-value of 0.001 in different tissue
stages in comparison to the other two (Fig. 5c) i.e., inflorescence
(180 W-Rs), berry (111 W-Rs) and leaf tissue (185 W-Rs). Further,
the comparative DE between two tissue stages were also deter-
mined (Fig. 5d) i.e., inflorescence vs berry (110W-Rs), berry vs leaf
(108 W-Rs) and leaf vs inflorescence (172 W-Rs). Heat Map depict-
ing the tissue-specific DE-patterns is shown in Fig. 5a. Most DEW-
Rs were in leaves followed by inflorescence and leastWs were seen
in berry tissues. Previously, in plants tissue specific expression pat-
terns of Ws were predicted in rye and soyabean [9].

To the best of our knowledge, this is first ever study to inspect
role of Ws in disease resistance of V. vinifera against pathogen E.
necator infection. In this study, W-Rs were also screened for PM
infection based DE patterns. V. vinifera cv. Thompson Seedless
leaves infected with PM disease after 36 h post infection RNA-seq
data which was used for the screening process. As a result, 79 DE
ific), miRNAs, tasiRNAs, lncRNAs and transcription factors: (a) Pseudo-R genes
s from both coding and non-coding transcripts (b) Abundance estimation of stress-
es (c) Venn diagram depicting endogenous targets on pseudogenes of antifungal
al peptides (e) Venn diagram depicting endogenous RNA interactors of pseudogenes



Fig. 5. Differential expression pattern analysis of pseudo-R genes: (a) Tissue-specific differential expression analysis of pseudo-R genes (194 pseudo-R genes at p-value:
0.001; 4-fold change) in ten developmental stages from three tissues i.e., 180 pseudo-R genes for Inflorescence (3-day, 5-day, and 7-day), 111 pseudo-R genes for Seedless
Berry (Veraison, Intermediate and Mature) and 185 pseudo-R genes for Leaf (young, medium, large, and mature). Blue-purple colors demonstrate up-regulation while orange-
red colors depict down-regulated pseudo-R genes (b) Differential expression analysis of pseudo-R genes in response to powdery mildew (PM) biotic stress response using
samples of control and 36 hpi leaves of Vitis vinifera (79 pseudo-R genes at p-value-0.05; 2-fold change). Blue colour corresponds to upregulated pseudo-R genes in response
to PM stress while red colored pseudo-R genes were experiencing downregulation. (c) Venn diagram depicting DE in individual tissues of pseudo-R genes in comparison with
the other two. (d) Venn diagram depicting comparative DE in two different types of tissues for pseudo-R genes.
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W-Rs were found with a twofold change with a p-value of 0.05 as
depicted in heatmap (Fig. 5b). Consequently, 50W-Rs were seen to
be up-regulated in 36 h post-infected leaves of V. vinifera against
PM infection, whereas 13 W-Rs were down-regulated in control
leaves of V. vinifera in contrast to infected leaves. Similarly, expres-
sion of lncRNAs [21,22] and CDS of V. vinifera led to 306 lncRNAs
and 4,202 CDS differentially expressing in response to PM stress
and were used for analyzing their co-expression analysis.

Subsequently, the co-expression analysis between DE W-Rs,
lncRNAs, and CDS was conducted for PM stress response in V.
vinifera [74]. Previously, non-coding RNAs and mRNA co-
expression networks with lncRNA-mRNA-miRNA based ce-
analysis had been conducted in humans for pre-eclampsia indi-
cating gained momentum in W-based network interaction studies
[75]. In addition, W-based network associations has been widely
studied in human cancers to affirm their prominent roles in
immune system either as prognostic markers or as general medi-
ators of cell survival [76]. In our analysis, possible interactions
between W-lncRNA-CDS for modulation of plant immune
response have been analyzed in-lieu of their importance in cancer
biology in humans.

Consequently, three independent WGCNs (Ws-CDS, Ws-
lncRNAs, and lncRNAs-CDS) were generated and integrated to
25
interpret system-level roles of putative W-Rs in disease resistance
pathways. The congruity of W-Rs with CDS and lncRNAs and vice-
versa, from DE data was used to calculate PCC. Weighted networks
persistently utilize calculated values of PCC as attributes that com-
putes robustness of interactions among nodes to ascertain their
biologically pertinent modules. False positives reduce and connec-
tions of interacting partners strengthen by defining a specific PCC
threshold. Further, ND identifies biologically significant topological
modules by determining statistically relevant PCC threshold.
Therefore, variations in ND as a function of various PCC cutoffs
was investigated, and PCC with minimal ND was considered as a
threshold (shortlisted based on statistical significance). For all
these weighted co-expressions, same criterion of threshold selec-
tion was implemented, and a PCC threshold of 0.95 and �0.90
was selected for positive and negative set of correlation values,
respectively, in Ws-CDS network (Table S7). Similarly, PCC thresh-
old values for �0.80 (Ws-lncRNAs) (Table S8) and �0.90 (lncRNAs-
CDS) (Table S9) were selected as negative set of correlation values
while PCC threshold of 0.95 was selected for positive set correla-
tion values of both networks. A total of 46,214, 4,692, and
2.61,706 interactions were obtained for Ws-CDS, Ws-lncRNAs,
and lncRNAs-CDS networks, respectively, at their respective
thresholds for both positive and negative correlation values. All



Fig. 6. Complete integrated PGs-lncRNAs-CDS co-expression network. This
integrated co-expression network was comprised of pseudogenes (PGs), long
noncoding RNAs (lncRNAs), and coding sequences (CDS), where PGs, lncRNAs, and
CDS were depicted as circular nodes with blue, magenta, and green color,
respectively. In this network, strong positive and negative set of interactions were
also represented as red and blue edges, respectively. Cytoscape is used for the
visualization of the network.
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these interactions were found to be statistically significant at this
threshold with p-value of � 0.05.

These three independent networks were integrated to generate
Ws-lncRNAs-CDS network with 4,587 nodes (Ws, 78; lncRNAs, 306;
CDS, 4,203) and 3,12,612 edges, where nodes and edges exempli-
fied as Ws/lncRNAs/CDS and connections between them, respec-
tively. The strength of interactions among nodes was further
quantified using PCC values as edge attributes and differentiated
with red and blue color based on high positive and negative PCC,
respectively (Fig. 6), during network clustering. Scale-free net-
works are usually verified by comparing the biological networks
against random network based on specific topological properties
[77]. Hence, a weighted-random network was constructed with
equivalent number of nodes (4,587) by generating random connec-
tions among edges (3,12,612) for 10,00,000 iterations. As compared
to bell-shaped organization of random network, the degree distri-
bution (DD) of integrated co-expression network was highly
skewed that also fitted the power law which illustrates the pres-
ence of large number of nodes with very few connections
oppressed by some immensely connected ones satisfies scale-free
behavior of integrated [77]. Negative value of assortativity
(-0.679) also augmented the scale-free nature of integrated
Table 4
Distribution of Ws, lncRNAs, and CDS in the most significant modules obtained from clust

S. No. Type of Gene Module 1 (M1) Module 2

1 Pseudogenes (Ws) 63 6
2 Long noncoding (lncRNAs) 207 22
3 Coding sequences (CDS) 1674 950
4 Total 1944 978
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co-expression network when compared to random network
(0.00154). Since integrated co-expression network have to follow
scale-free behavior, such networks are most likely to hit a node
with only few neighbors and robust against random perturbations
to disrupt only a small portion [78].

Module-based analysis was performed to evaluate their inte-
grated response in disease-resistance pathways. Additionally,
recognition of gene clusters in a network determines co-
ordination between interacting partners of each module compris-
ing of a significant set of interacting W-Rs [79]. Network partition-
ing was implemented to determine modules through the active
implementation of MCL algorithmwhich divided the large network
into 5 sub-modules [80]. These 5 modules (1–5) were large in size
with 1944 (Ws, 63; lncRNAs, 207; CDS, 1674), 978 (Ws, 6; lncRNAs,
22; CDS, 950), 669 (Ws, 8; lncRNAs, 12; CDS, 649), 185 (Ws, 0;
lncRNAs, 54; CDS, 131), and 151 (Ws, 1; lncRNAs, 9; CDS,141)
nodes, and were typically referred by their number hereafter
(Table 4). Since the nodes from these five modules counts for
the � 85 % of nodes, rest � 14 % lacking interactions and were con-
sidered independent nodes. GO-enrichment of module 1 identified
their role in defense responses (details in SI).

Further, significant key Ws were present in module 1 (M1) had
maximum number of Ws (63; �80.77 %) as compared to other
modules 2–5 which is 6, 8, 0, and 1, respectively (Table 4). The
topological analysis of integrated disease network (Ws-lncRNAs-
CDS) identified most central genes acting as possible candidate
genes to regulate host-pathogen interactions in PM (Table S10). A
total of six Ws shared top10 positions when sorted by the central-
ity parameters (Table 5). Interestingly, all sixWs were having com-
paratively high values for all these parameters and therefore
considered as key genes to make physical interactions with patho-
gen targets and modulate plant immunity. These Ws were consid-
ered as significant candidates for future validations to extend their
role in disease-associated mechanisms in grapevine against PM.

Limitations and future prospects of the study

Our analysis although thorough is preliminary and based on
computational validations only. In future, extensive wet-lab exper-
imentations can help establish potential functional roles for these
Ws.

Conclusions

In our study, we identified W-Rs of R-gene mediated resistance
from WGD-derived Ws occupy diverse roles in plant defense mod-
ulations. In addition, translation of W-R sequences identified novel
promising anti-microbial candidates with the supporting hypothe-
sis that Ws might be acting as genomic footprints for the genera-
tion of new antifungal genes. Thus, they might be driving the
coevolution of host-pathogen interactions. Also, the network of
Ws with different players of gene expression machinery in con-
junction with endogenous RNA regulators modulate the expression
of W-parent genes thereby directing the plant towards resistance
or susceptibility.
ering of integrative co-expression (Ws-lncRNAs-CDS) network.

(M2) Module 3 (M3) Module 4 (M4) Module 5 (M5)

8 0 1
12 54 9
649 131 141
669 185 151



Table 5
List of common shortlistedWs based on three network parameters such as betweenness (BC), degree (DC), and stress (SC) centralities for module 1 from integrated co-expression
network with their GO terms.

S. No. Pseudogenes (W-Rs) DC BC SC GO term

1 Chr04_240041-240296_VIT_04s0008g00330 806 0.03396 8.7E + 07 GO:0006464, GO:0016301, GO:0043167, GO:0005575
2 Chr04_793408-793803_VIT_04s0008g00370 798 0.03911 1.4E + 08 GO:0006464, GO:0016301, GO:0043167, GO:0005575
3 Chr01_3558981-3560585_VIT_01s0011g03960 784 0.03564 1E + 08 GO:0006464, GO:0016301, GO:0016791 GO:0043167, GO:0005575,
4 Chr04_321505-321961_VIT_04s0008g00370 713 0.0247 1E + 08 GO:0006464, GO:0016301, GO:0043167, GO:0005575
5 Chr04_240649-240892_VIT_04s0008g00440 710 0.03403 2E + 08 GO:0006464, GO:0016301, GO:0043167, GO:0005575
6 Chr16_11036454-11038464_VIT_16s0022g00080 605 0.02274 1.4E + 08 GO:0016301
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