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Abstract

Temperature is one of the most significant environmental factors that affects germination of grass seeds. Reliable prediction
of the optimal temperature for seed germination is crucial for determining the suitable regions and favorable sowing timing
for turf grass cultivation. In this study, a back-propagation-artificial-neural-network-aided dual quintic equation (BP-ANN-QE)
model was developed to improve the prediction of the optimal temperature for seed germination. This BP-ANN-QE model
was used to determine optimal sowing times and suitable regions for three Cynodon dactylon cultivars (C. dactylon,
‘Savannah’ and ‘Princess VII’). Prediction of the optimal temperature for these seeds was based on comprehensive
germination tests using 36 day/night (high/low) temperature regimes (both ranging from 5/5 to 40/40uC with 5uC
increments). Seed germination data from these temperature regimes were used to construct temperature-germination
correlation models for estimating germination percentage with confidence intervals. Our tests revealed that the optimal
high/low temperature regimes required for all the three bermudagrass cultivars are 30/5, 30/10, 35/5, 35/10, 35/15, 35/20,
40/15 and 40/20uC; constant temperatures ranging from 5 to 40uC inhibited the germination of all three cultivars. While
comparing different simulating methods, including DQEM, Bisquare ANN-QE, and BP-ANN-QE in establishing temperature
based germination percentage rules, we found that the R2 values of germination prediction function could be significantly
improved from about 0.6940–0.8177 (DQEM approach) to 0.9439–0.9813 (BP-ANN-QE). These results indicated that our BP-
ANN-QE model has better performance than the rests of the compared models. Furthermore, data of the national
temperature grids generated from monthly-average temperature for 25 years were fit into these functions and we were able
to map the germination percentage of these C. dactylon cultivars in the national scale of China, and suggested the optimum
sowing regions and times for them.
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Introduction

Cynodon dactylon (Linnaeus) Persoon (Family: Poaceae, bermuda-

grass in English) is a perennial, creeping grass. Although it is

widely found in the tropical and warm temperate regions,

bermudagrass is predominantly distributed between 45u North

and 45u South latitudes [1,2]. Currently, C. dactylon is globally used

as a turf grass, fodder and medicinal plant, and it was also used for

removal of heavy metals from contaminated soils [3–5]. This grass

is adapted to extremely variable environments, such as fertile

fields, arid land, saline land, wet irrigation canals and even

contaminated wastelands with high levels of Pb, Cd, Zn and Cu

[6–10]. In addition, the extracts from bermudagrass are well

known for various medicinal properties including antimicrobial

[11,12], anti-inflammatory [13,14], immunomodulatory [15,16]

and anti-diarrhea activities [17]. It has been therefore used to treat

traumatic wounding, kidney calculi [18], hypoglycemia [19],

depression [20] and cancer [21–23].

Seed germination percentage is a major criterion used for

evaluating suitability of an environment for grass cultivation.

Previous studies showed that extreme temperatures could lead to

seed dormancy and significantly decreased germination percent-

age [24–26]. Constructing a precise mathematical model that

correlates the germination percentage with temperature may avoid

failure of plantation due to inappropriate sowing timing or

mismatch between the grass species and climate zone. Hence it

would be very helpful for decision-makers to select grass species

and sowing time for lawn, erosion control and forage cultivation.

Using thermal time approach, Bradford [27] constructed temper-

ature/water potential based seed germination and dormancy

models. This study showed that germination experiments under

temperature regime with discrete (stepwise) changes could also be

used to accurately predict thermal responses of seeds in field

environment with continuously changing temperature. Hardegree

and Van Vactor [28,29] used the Piece-wise linear (PWL)

regression equations to confirms that constant-temperature
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experimental results derived mathematical models could be used

to predict the germination/growth responses to the combined

effects of multiple environmental factors in the field. Although

various experimental procedures have been established to generate

data for the development and validation of reliable prediction

models [30–35], the R2 values of temperature-germination

percentage functions in some of the previous studies were relatively

low (0.61–0.80) [34,36] and more accurate predictions are desired.

Recently, the Geographic Information System (GIS) based

spatial prediction approach was introduced for the creation of

quantitative and accurate grass suitability maps [36]. The grid

data of mean minimum and maximum temperatures [37] were

used for calculating suitability values of regions via the tempera-

ture-germination percentage functions. Therefore, the suitability

of grass for different regions could be appropriately visualized on

the map. However, the visualization of time scale (season) of these

maps remains to be streamlined for readability to facilitate their

practical application.

The objectives of this research were to: (i) explain the

correlation error between temperature and seed germination

percentage caused by selection of functions (ii) provide a new

program for optimizing the temperature-germination function, (iii)

use temperature-based seed germination percentage function in

combination with national temperature grids in China for

predicting the suitability of three bermudagrass cultivars, C. dacty-

lon, ‘Savannah’ and ‘Princess VII’.

Results

Germination response to Diurnal Fluctuations of
Temperature

The germination response of the three bermudagrass cultivars

was similar (Tables 1–3). All the three cultivars were capable of

germinating in warm-period temperature (T2) from 25 to 35uC
and cool-period temperature (T1) ranging from 5–40uC. The

optimal temperature for seed germination is defined as that which

is not lower than the maximum germination minus one-half of its

confidence interval (P = 0.05). For example, the maximum

germination percentage (the optimal temperature for seed

germination) of C. dactylon was 87.3% at 15/35uC (Table 1); and

the germination percentage at 5/30uC was only 80.7%, but it was

still accepted as the optimal temperature for seed germination

since the one-half of its confidence interval was 7.0% and

80.7%.(87.3%–7.0%). Fluctuating between 5–25uC cool-period

temperature and 30–40uC warm-period temperature gave rise to

the optimal temperature for seed germination. On the other hand,

germination percentage was usually lower than 50% at constant

temperature ranging from 20 to 40uC (except the ‘‘Savannah’’ at

constant 25/25uC in Table 2), for example the germination

percentages of ‘‘Princess VII’’ (Table 1), were 0, 36.0%, 5.3%,

12.7% and 20.0% at constant temperature regimes of 20/20, 25/

25, 30/30, 35/35 and 40/40uC, respectively. Interestingly,

germination percentage of C. dactylon seed at a constant 30uC
only reached 1.3%.

The maximum germination and the mean of germination of the

three bermudagrass cultivars are presented in Table 4. The

germination percentage of ‘Princess III’ appeared to be the highest

(96.7%), but it was not significantly different (P.0.05) from that of

the other two cultivars (87.3% and 94.0% for C. dactylon and

‘Savannah’, respectively). Depending on the cultivar, 25%–27.8%

of the temperature regimes supported the optimal temperature for

seed germination. Only eight temperature regimes, 30/5, 30/10,

35/5, 35/10, 35/15, 35/20, 40/15 and 20/40uC, supported the

optimal temperature for seed germination for all three tested

cultivars (Tables 1–4).

Performance of Different Regression Models
All the regression equations of temperature treatments that

assess the germination suitability of the three bermudagrass

cultivars are summarized in Table 5. Quadratic and quintic

general equations were used for data simulation. The bisquare and

BP-ANN approaches (Fig. 1) were utilized for optimizing these

equation coefficients. There was no significant difference between

the quintic functions and bisquare optimized quintic functions.

Bisquare quintic functions of cultivars C. dactylon, ‘Savannah’ and

‘Princess VII’ showed lower R2 than quintic functions (data not

Table 1. Quadratic response surface based on estimated percent germination with confidence interval at the 0.05 probability level
for seeds of the C. dactylon.

Cool period

temperature (6C)

16 h Warm period temperature (6C) 8 h

5 10 15 20 25 30 35 40

% Germination after
15–20 days

5 0.060.0 0.060.0 0.060.0 0.060.0 28.067.2 80.767.0* 76.769.5* 21.364.2

10 0.060.0 0.060.0 0.060.0 36.763.1 82.768.1* 84.765.0* 42.066.9

15 0.060.0 0.060.0 44.064.0 82.063.5* [87.368.3] 79.363.1*

20 0.060.0 4.761.2 59.368.1 79.367.0* 81.3613.3*

25 4.761.2 5.361.2 52.768.1 58.765.0

30 1.361.2 1.361.2 7.363.1

35 5.363.1 13.365.0

40 3.362.3

*Note: 1. Data presented are mean 6 a half of the confidence interval as determined from regression equations. The maximum calculated germination is enclosed by
brackets.
2. Means not lower than the maximum germination minus one-half of its confidence interval.
doi:10.1371/journal.pone.0082413.t001

Bermudagrass Temperature-Germination Model
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shown). Similar optimization results were observed for all the

cultivars tested. Generally, quintic equations performed better

than quadratic equations (Fig. 2, Table 5). The highest R2 values

were generated by the back propagation artificial neural networks

aided dual quintic equation (BP-ANN-QE) model (0.9439 to

0.9813). In contrast, the dual quadratic equation model (DQEM)

generated the lowest R2 values (0.6940 to 0.8177).

Contour plot maps were then used to visualize the prediction

errors generated from different simulation functions (Fig. 2). The

blue spot represents the experimental germination percentage

associated with particular fluctuating temperature combinations.

Obviously, DQEM is the one most prone to produce prediction

errors among the compared models (Fig. 2A, D and G). However,

some weakness in functional convergence of quintic equations was

observed, a small portion of observed temperature-germination

spots were still out of their equation derived surfaces (Fig. 2B, C, E,

F, H and I).

Spatial Mapping of Optimal Planting Times
The temperature–germination functions derived from our

experimental data were used to predict germination percentage

for various regions in China in different seasons using the 25 years

mean minimum and mean maximum earth surface temperature

grids as input. The percentage reflected the likelihood of

germination suitability at each grid cell of the maps via FreeMicaps

(Fig. 3–5). The results reveal that most of the Chinese regions are

not suitable for seed germination of all the tested bermudagrass

cultivars from November to March. Although ‘Savannah’ has the

Table 2. Quadratic response surface based on estimated percent germination with the confidence interval at the 0.05 probability
level for seeds of the cultivar ‘Savannah’.

Cool period

temperature (6C)

16 h Warm period temperature (6C) 8 h

5 10 15 20 25 30 35 40

% Germination
after 15–20 days

5 0.060.0 0.060.0 0.060.0 24.7.064.2 77.366.1 86.065.3* 91.362.3* 82.7613.3*

10 0.060.0 0.060.0 34.7.063.1 83.364.2 88.063.5* 88.762.3* 80.763.1

15 0.060.0 33.3.064.6 83.363.1 71.364.2 92.761.2* 87.366.4*

20 13.7.066.4 46.069.2 81.364.2 83.3611.4* [94.063.5]

25 61.364.2 42.0613.1 73.364.6 91.364.6*

30 36.767.0 66.065.3 40.063.5

35 49.368.3 60.064.0

40 35.365.0

5 0.060.0 0.060.0 0.060.0 24.7.064.2 77.366.1 86.065.3* 91.362.3* 82.7613.3*

*Note: 1. Data presented are mean 6 a half of the confidence interval as determined from regression equations. The maximum calculated germination is enclosed by
brackets.
2. Means not lower than the maximum germination minus one-half of its confidence interval.
doi:10.1371/journal.pone.0082413.t002

Table 3. Quadratic response surface based on estimated percent germination with the confidence interval at the 0.05 probability
level for seeds of the cultivar ‘Princess VII’.

Cool period temperature (6C) 16 h Warm period temperature (6C) 8 h

% Germination after 15–20 days

5 10 15 20 25 30 35 40

5 0.060.0 0.060.0 0.060.0 0.060.0 54.761.2 91.362.3* 96.063.5* 66.0613.1

10 0.060.0 0.060.0 0.060.0 76.764.6 [96.762.3] 95.361.2* 49.366.4

15 0.060.0 0.060.0 83.363.1 94.062.0* 94.761.2* 94.063.5*

20 0.060.0 16.062.0 84.767.0 [96.7611.4] 92.763.1*

25 36.062.0 18.768.3 86.766.4 90.065.3*

30 5.365.8 18.062.0 16.0612.5

35 12.765.8 34.766.1

40 20.067.2

*Note: 1. Data presented are mean 6 a half of the confidence interval as determined from regression equations. The maximum calculated germination is enclosed by
brackets.
2. Means not lower than the maximum germination minus one-half of its confidence interval.
doi:10.1371/journal.pone.0082413.t003
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narrowest geographic range of germination with percentages

arranging from above 0 to 100%, it was predicted to have optimal

temperatures for germination in widest geographic range in China

(Fig. 4). In contrast, C. dactylon had the narrowest range for the

optimal temperatures for seed germination (Fig. 3). For both

C. dactylon and ‘Princess VII’, the widest range with the optimal

temperatures for seed germination was in the month of June,

whilst for ‘Savannah’ it was in May (Fig. 3–5).

Discussion

Simulation models have been widely used to correlate

cultivation conditions and plant germination/growth [38–40].

These regression models were generally used to predict the plant

suitability to particular regions where climate and soil environ-

ment information is available. These mathematical models could

help grass cultivation in three major aspects. First, these functions

combined with a visual suitability map may help decision makers

in selecting a grass species and planning its seeding timing [36,41].

Second, they may serve as useful tools for identifying and

evaluating desirable quantitative characteristics for specific grass

breeding objectives [42], which is helpful in coupling genotype and

phenotype of a target cultivar, a technology with significant

application value in the rapidly expanding turf industry [43].

Third, these grass-condition models may improve our under-

standing of how changes in agricultural systems would quantita-

tively influence grass germination/growth [44].

Comparison of Regressions Using Quadratic and Quintic
Equations

The quadratic equation was broadly accepted as an effective

statistical tool for simulating continuous variable-response rela-

tionship, and quadratic response surface has been a predominant

method to analyze germination performance of grass seeds under

various temperature regimes, especially to test the seed germina-

tion affected by diurnal temperature treatments [36,41]. However,

the weakness of quadratic equation is also obvious. Since the two-

dimensional quadratic response surface cannot display some errors

in the global fitting between quadratic function and experimental

data [36], the weakness of low R2 values (0.61–0.80) was ignored.

In this study, quintic equation was employed for regression to

simulate diurnal temperature-germination responses of three

bermudagrass cultivars. Compared to quadratic surfaces, quintic

approaches had significantly lower fitting errors and higher

confidence (Fig. 2 and Table 5). This may be due to the nonlinear

temperature-germination correlation. Hence these quintic equa-

tion models could provide more reliable predictions for field

performance of grasses, further improving the reliability of the

suitability map of grasses tinted with different color based on

predicted germination percentage data.

BP-ANN and Bisquare for Intercept and Coefficients
Fitting

Artificial Neural Network (ANN), an algorithm for simulating

the thinking processes of the human brain which usually have

multiple networks that are logically arranged as fundamental units

[45]. The information of any unit can be learnt, recalled,

concluded and speculated. Hence, the ANN has many advantages

such as distributed storage of information, self-adaptability, self-

organization and fault-tolerance properties [40]. As a computer

based program, it could be used to perform large-scale parallel

calculations to simulate nonlinear correlation [46]. Therefore,

ANN is broadly used in various of fields including biomedical

research [47,48], optimization of soil nutrient distribution

coefficient [43,49,50], forecasting of microorganism community

assemblages [51], prediction of animal metabolism and diets

correlation [52], and simulation of fruit post-ripening process [53–

55].

Currently, there are tens of ANN models. Amongst them, the

back propagation (BP) network is the most widely used one for

simulation of nonlinear relationship [56]. The BP-ANN model

belongs to supervised study and its training process has two phases,

forward propagation and backward propagation [57]. In the

forward propagation, the weighted value and threshold value of

each layer is calculated by iteration and passed into the BP three-

layer network. Subsequently, the backward propagation uses the

weighted value and threshold values for revision [58]. These two

phases commonly occur repeatedly for about 10, 000 times, and

the weighted value and threshold values alternate until they

converge. The target of these training processes is to generate a

function that can globally ‘distinguish’ and ‘remember’ all the

input raw data [59]. Therefore, the simulated BP-ANN functions

could be used to predict proposed parameter with appropriate

input variables.

The robust bisquare estimator, also known as Tukey’s bi-weight

function, was a popular choice for nonlinear function fitting [60].

This estimator was often used for smoothing the nonlinear

response surface [61,62]. It was reported that bisquare estimator

could be adapted to process noisy data with outliers [63].

In our study, both BP-ANN and bisquare methods were used to

optimize the temperature-germination functions for three bermu-

dagrass cultivars. We did not find significant difference between

general quintic functions and bisquare fitted quintic functions.

Furthermore, most bisquare quintic functions in this study had

slightly lower R2 values than the quintic functions. Therefore, the

BP-ANN optimized quintic equations were found to be the best

option for fitting temperature-germination functions of the tested

bermudagrass cultivars.

To some degree, the BP-ANN based temperature-germination

functions could be evaluated by the visualized suitability map

(Figs. 3–5) and the observed temperature-germination results

(Tables 1–3). Generally, the cultivar ‘‘Savannah’’ could germinate

under the widest temperature regimes (Tables 1–3), from about

20/5uC to 40/40uC, it also present the highest suitability with

widest geographic regions in China (eg. Fig. 4D–I). On the other

Table 4. Comparison of the temperature–germination
profiles for the five bluegrass cultivars.

Germination
parameter Sources

C. dactylon Savannah Princess VII

Profile mean 31.3 52.7 45.0

Regimes with some
germination

72.2 83.3 72.2

Maximum germination 87.3 94.0 96.7

Mean of some
germination*

43.3 63.2 62.3

Mean of optima 81.6 88.5 94.1

Regimes with optimum
germination

25.0 27.8 27.8

Profile mean 31.3 52.7 45.0

Note: *The mean of some germination refers to the mean value of regimes with
any germination more than zero [47,52].
doi:10.1371/journal.pone.0082413.t004

Bermudagrass Temperature-Germination Model
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hand, the predicted suitability map worked in concert with the

observations that all the three cultivars preferred warm temper-

ature above 15/15uC (Tables 1–3), and little germination could be

found during the cool seasons in China (eg. Fig. 4A–C).

Conclusions

This study tested the influence of diurnal fluctuations of

temperatures on seed germination of three bermudagrass cultivars

(C. dactylon, ‘Savannah’ and ‘Princess VII’). Eight temperature

regimes, 5/30, 10/30, 5/35, 10/35, 15/35, 20/35, 15/40 and 20/

40uC, supported the optimal temperature for seed germination for

the three cultivars. However, the germination percentage of all the

three cultivars was lower than 50% under conditions of constant

temperatures ranging from 5 to 40uC.

To simulate the grass germination-temperature response

function, both quadratic and quintic equations were employed.

Quintic functions performed significantly better (R2 were around

0.9439) than the quadratic ones (R2 ranging from 0.6940,0.8177)

for the tested cultivars. The main objective of this study was to test

the nonlinear fittin\g approaches, bisquare and BP-ANN, for

optimizing the regression functions. Our results suggested that BP-

ANN has significant advantages over bisquare for fitting the

intercept and coefficients of the temperature-germination func-

tions.

Based on the experimentally derived BP-ANN functions and

available climate data, we prepared a seed suitability map of three

bermudagrass cultivars for cultivation in the People’s Republic of

China. We observed that most of the regions in China are not

suitable for bermudagrass seed germination from November to

March. The cultivar ‘Savannah’ had the widest geographic range

of the optimal temperature for seed germination, whilst C. dactylon

had the narrowest range of the optimal temperature for seed

germination percentage. The month with widest range of the

optimal temperature for seed germination for C. dactylon and

‘Princess VII’ is June, whilst for ‘Savannah’, it is May.

Materials and Methods

Seeds and Conditioning
The bermudagrass cultivars (C. dactylon, ‘Savannah’ and

‘Princess VII’) were planted widely in China. All the grass seeds

were purchased from Shanghai Chunyin Turf Inc., (Shanghai,

China) and stored at room temperature until use. Seed viability

was tested on sterilized wet filter paper at 25uC in darkness [36].

Briefly, seeds were surface sterilized in 0.01% HgCl2 for 1 min

followed by four rinses with distilled water. The seeds were

subsequently placed on wet filter papers in Petri dishes. The Petri

dishes were placed in incubators set up for 36 different regimes of

diurnal fluctuations of temperature treatments: 16 h at tempera-

ture T1 and 8 h at temperature T2. The T1 and T2 ranged from 5

to 40uC with 5uC increments [36]. Germinated seeds were

counted daily until no further germination occurred (about 15–

20 days) for viability analysis (Supplementary file Tables 1–3). For

each experiment, three replications of 50 seeds were used in a

randomized block design.

Statistical Analysis
In this study, quadratic and quintic response surfaces were

constructed with estimated means and confidence intervals [64].

Table 5. Equations and R2 values for predicting germination as a function of cool (T1) and warm (T2) temperature treatments for
the three C. dactylon cultivars tested.

Cultivars R2 Equation

C. dactylon Quadratic 0.8177 Y = 20.5856+0.06925*T120.006143*T220.0008586*T1
2+0.0006574*T1*T220.0007847*T2

2

Quintic+Bisquare 0.9166 Y = 0.4026+0.02444*T120.133*T220.0291*T1
2+0.05145*T1*T220.01535*T2

2+0.002361*T1
32

0.002139*T1
2*T220.002076*T1*T2

2+0.001802*T2
326.199e-005*T1

427.613e-006*T1
3*T2+

0.0002068*T1
2*T2

220.0001705*T1*T2
3+2.974e-005*T2

4+5.357e-007*T1
5+5.886e-007*T1

4*T22

2.712e-006*T1
3*T2

2+1.219e-006*T1
2*T2

3+1.018e-006*T1*T2
425.966e-007*T2

5

Quintic+BP-ANN 0.9813 Y = 20.2789+15.74*T1211.43*T2288.16*T1
2+31.27*T1*T2+34.83*T2

2+180.4*T1
3+0.5264*T1

2*T22

128.8*T1*T2
223.322*T2

32139*T1
42163.4*T1

3*T2+510.2*T1
2*T2

22462.2*T1*T2
3+206.5*T2

4+32.55*T1
5+

124.5*T1
4*T22312.5*T1

3*T2
2+248.7*T1

2*T2
3216.93*T1*T2

4259.17*T2
5

Savannah Quadratic 0.7617 Y = 20.5168+0.06924*T120.01989*T220.000934*T1
2+0.001138*T1*T220.0007981*T2

2

Quintic+Bisquare 0.9301 Y = 0.3523+0.04868*T120.1349*T220.0311*T1
2+0.04712*T1*T220.01236*T2

2+0.002363*T1
32

0.001472*T1
2*T220.002595*T1*T2

2+0.001872*T2
326.187e-005*T1

429.422e-006*T1
3*T2+

0.0001502*T1
2*T2

227.953e-005*T1*T2
329.526e-006*T2

4+5.348e-007*T1
5+5.833e-007*T1

4*T22

2.575e-006*T1
3*T2

2+2.423e-006*T1
2*T2

321.543e-006*T1*T2
4+7.051e-007*T2

5

Quintic+BP-ANN 0.9507 Y = 20.1454+6.803*T123.249*T2267.57*T1
2+66.13*T1*T2226.76*T2

2+192.9*T1
32

132.7*T1
2*T2275.01*T1*T2

2+99.66*T2
32198.7*T1

4214.87*T1
3*T2+537.8*T1

2*T2
22

577.8*T1*T2
3+155*T2

4+67.97*T1
5+78.26*T1

4*T22403.7*T1
3*T2

2+
414.8*T1

2*T2
32104.4*T1*T2

4213.94*T2
5

Princess VII Quadratic 0.6940 Y = 20.5152+0.0604*T120.01284*T220.0008349*T1
2+0.001594*T1*T220.001628*T2

2

Quintic+Bisquare 0.9191 Y = 20.4047+0.5009*T120.3331*T220.08726*T1
2+0.06563*T1*T220.002549*T2

2+
0.004956*T1

320.001118*T1
2*T220.00565*T1*T2

2+0.003324*T2
320.0001053*T1

42

0.0001238*T1
3*T2+0.0005272*T1

2*T2
220.000455*T1*T2

3+0.0001159*T2
4+7.324e-007*T1

5+
2.591e-006*T1

4*T228.149e-006*T1
3*T2

2+6.436e-006*T1
2*T2

324.407e-007*T1*T2
427.708e-007*T2

5

Quintic+BP-ANN 0.9439 Y = 20.6384+24.43*T1213.54*T22155.9*T1
2+87.77*T1*T2+6.161*T2

2+356.5*T1
32

117*T1
2*T22165.9*T1*T2

2+75.58*T2
32322.3*T1

42109.2*T1
3*T2+725.6*T1

2*T2
22

663.2*T1*T2
3+212.7*T2

4+99.58*T1
5+134.6*T1

4*T22482.2*T1
3*T2

2+432.9*T1
2*T2

32

94.28*T1*T2
4231.4*T2

5

doi:10.1371/journal.pone.0082413.t005
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Figure 1. Schematic diagram of back propagation artificial neural networks used for fitting the regression functions of
bermudagrass germination response to diurnal fluctuations of temperature.
doi:10.1371/journal.pone.0082413.g001

Figure 2. Three dimensional plot map of bermudagrass germination in which the estimated percent germination values in different
temperature regimes were used for their constructions; (A–C) C. dactylon, (D–F) ‘Savannah’ and (G–I) ‘Princess VII’.
doi:10.1371/journal.pone.0082413.g002
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The quadratic equations were first used for estimating germination

percentages. The generalized equation was [36]:

Y1~A0zA1 � T1zA2 � T2zA3 � T12zA4 � T22

zA5 � T1 � T2,

where Y1: predicted germination percentage, A0: intercept, A1

through A5: coefficients, T1 and T2: two temperature in the

diurnal regime.

Meanwhile, quintic equations with the following generalized

equation were also used to simulate the temperature-germination

function: Y1~
P5

m~1

Pm
n~0

Tn
1 � Tm�n

2

� �
� f Að Þ

� �
zA00, where A0

9:

intercept, f(A): coefficient function. Temperature inputs were

normalized by dividing the maximum value. Subsequently, the

intercept and coefficients were optimized using Bisquare, a default

curve fitting method of MATLAB 7.9-R2009b software and back

propagation artificial neural networks (BP-ANN) approach

described in Fig. 1, respectively. The BP-ANN (or feed-forward

network) has the capability to learn arbitrary nonlinearity and

Figure 3. Maps of monthly germination suitability for C. dactylon in different regions of China; (A–L) January–December.
doi:10.1371/journal.pone.0082413.g003
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great potential for adaptive control applications [46]. In the BP-

ANN, the correlations among the input variables do not need to be

specified. Instead, they learn from the examples fed to them

(Fig. 1). In addition, they can generalize correct responses that

only broadly resemble the data in the learning phase [56,65,66].

Spatial Mapping
The suitability of a grass is represented by seed germination

percentage. The grass suitability maps were created using the

FreeMicaps software (http://bbs.121323.com/guojf/

FreeMicaps20111001.rar). Like the Surfer software [67], FreeMi-

caps also uses grid data at selected points (station) that is

compatible with GIS. The temperature data of adjacent regions

around the station are generated using regression functions. The

data used to construct the temperature grid are curated in the

database in National Aeronautics and Space Administration

(NASA, http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/sse.

cgi?grid@larc.nasa.gov#s11) which are composed of minimum

and maximum daily temperature of earth surface from 313

Chinese weather stations for a period of 25 years (from 1983 to

2007). These mean values of minimum and maximum daily

temperatures were used as the T1 and T2 variables, respectively in

the BP-ANN-Quintic functions for calculating germination

percentages (grass suitability).

Figure 4. Maps of monthly germination suitability for ‘Savannah’ in different regions of China; (A–L) January–December.
doi:10.1371/journal.pone.0082413.g004
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Supporting Information

Table S1 Cumulative seed germination of amount C.
dactylon at different days in 36 temperature regimes (50
seeds in total).

(XLS)

Table S2 Cumulative seed germination amount of
Savannah at different days in 36 temperature regimes
(50 seeds in total).

(XLS)

Table S3 Cumulative seed germination amount of
Princess VII at different days in 36 temperature regimes
(50 seeds in total).

(XLS)
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