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Abstract

UK Biobank (UKB) is a key contributor in mental health genome-wide association studies 

(GWAS) but only ~31% of participants completed the Mental Health Questionnaire (“MHQ 

responders”). We predicted generalized anxiety disorder (GAD), posttraumatic stress disorder 

(PTSD), and major depression symptoms using elastic net regression in the ~69% of UKB 

participants lacking MHQ data (“MHQ non-responders”; NTraining=50%; NTest=50%), maximizing 

the informative sample for these traits. MHQ responders were more likely to be female, from 

higher socioeconomic positions, and less anxious than non-responders. Genetic correlation of 

GAD and PTSD between MHQ responders and non-responders ranged from 0.636-1.08; both 

were predicted by polygenic scores generated from independent cohorts. In meta-analyses of 

GAD (N=489 579) and PTSD (N=497 803), we discovered many novel genomic risk loci (13 

for GAD and 40 for PTSD). Transcriptomic analyses converged on altered regulation of prenatal 

dorsolateral prefrontal cortex in these disorders. Our results provide one roadmap by which sample 

size and statistical power may be improved for gene discovery of incompletely ascertained traits in 

the UKB and other biobanks with limited mental health assessment.

Introduction

Psychiatric disorders are highly polygenic with thousands of risk loci across the genome 

contributing to their liability. Because of this polygenicity, extremely large sample sizes 

are required to detect the small individual effects associated with risk alleles.1-6 Biobanks 

and consortia play a critical role in organizing, curating, and facilitating large genetic 

studies of mental health and psychopathology.7-10 The UK Biobank (UKB) represents 

a resource of homogeneously ascertained participants with detailed information related 
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to physical health, anthropometric measurements, and sociodemographic characteristics, 

etc. A primary limitation of UKB for studying mental health is the limited availability 

of participant responses to voluntary mental health questions and surveys. Among the 

approximately 502,000 UKB participants, only 31% completed the online Mental Health 

Questionnaire (herein termed “MHQ responders”).11 These missing data impose an upper 

limit on the UKB sample that is available for genetic studies using direct information. 

Indeed, many studies have had only modest success with risk locus discovery when studying 

psychopathologies in the subset of MHQ responders.4, 12

We hypothesized that carefully selected features ascertained in the entire UKB could permit 

genetic studies of MHQ phenotypes in the UKB participants who did not complete the 

survey (herein termed “MHQ non-responders”).13 We demonstrate the reliability of studying 

the collection of comorbid phenotypes, hereafter referred as a co-phenome,13 using several 

independent methods. Here we maximized the use of unrelated individuals from the UKB 

– more than doubling the available sample size relative to only MHQ responders – for 

genome-wide association studies (GWAS) of generalized anxiety disorder (GAD) and 

posttraumatic stress disorder (PTSD) symptoms. In meta-analyses adjusted for the effects 

of the major co-phenome correlate and an important transdiagnostic feature of internalizing 

psychopathologies, neuroticism, we identified multi-omic and cross-phenotype contributions 

of genes expressed in the prenatal brain. Using these novel GAD and PTSD data, we 

report putative cross-phenotype drug repurposing targets and identify drugs that may induce 

adverse effects that resemble anxiety symptoms. Our results provide one roadmap by which 

sample size and statistical power may be improved for gene discovery of incompletely 

ascertained traits in the UKB and other biobanks with limited mental health assessment.

Subjects and Methods

UKB Participants and Genetic Data

The UKB is a population-based cohort of over 502 000 participants that assesses a 

wide range of factors including physical health, anthropometric measurements, circulating 

biomarkers, and sociodemographic characteristics. The use of UKB individual-level data 

has been conducted through application reference number 58146. UKB has approval from 

the North West Multi-Center Research Ethics (MREC) as a Research Tissue Bank (RTB) 

approval. This approval means that researchers do not require separate ethical clearance and 

can operate under the RTB approval.

A subset of individuals (N=157 366) completed an online mental health questionnaire 

(MHQ)11 covering topics of self-reported mental health and well-being. GAD-714, PCL-615, 

and PHQ-914 were derived from the MHQ using summed totals of participants responses 

to various questions (Supplementary Methods). Mean scores among MHQ-responders of 

European (EUR) descent were 8.97±3.09 (N=124 534) for GAD-7, 6.59±3.68 (N=126 219) 

for PCL-6, and 11.73±3.67 for PHQ-9 (N=110 291).

Briefly, UKB participants were genotyped using a custom Axiom array capturing genome-

wide genetic variation and short insertion/deletions, including coding variants across a 

range of minor allele frequencies and markers providing good coverage for imputation in 
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EUR populations. UKB was imputed using the Haplotype Reference Consortium reference 

panel.8

Million Veteran Program Phenotypes

Independent assessments of anxiety, PTSD, and depression phenotypes were obtained 

from the MVP (Supplementary Methods). We used GWAS data from a two-item anxiety 

trait (GAD-2, N=199 611),16 a 17-item PTSD trait (PCL-17, N=186 689),5 and a broad 

depression trait for which cases were identified by 18 ICD codes (N=1 154 267).

First-Pass Feature Selection

The UKB assesses thousands of potentially informative phenotypes for predicting a given 

outcome. We selected features with >200 000 responses, not part of the MHQ, and lacking 

highly dimensional structure (e.g., ICD-9/10 codes, medication endorsements), and those 

attributes available through special requests (e.g., greenspace and water percentages). The 

final feature set included 772 phenotypes.

Elastic Net Regression Parameter Optimization

To further refine the feature list, we selected phenome-wide Spearman correlates of 

GAD-7, PCL-6, and PHQ-9 (tested in 132 016 unrelated MHQ-responders) where the 

estimate of ρ was based on data from at least 10% of the sample. Multiple iterations of 

elastic net regression were performed in glmnet17 using varying thresholds of Spearman’s 

rho for feature inclusion. We tested three training and test proportions (25%train∣75%test, 

50%train∣50%test, and 75%train∣25%test) and four thresholds of rho: ρ>0.3, >0.25, >0.2, 

>0.15. Standardized 50-fold cross-validation used the best-fit penalizing parameter lambda. 

Parameter combination success was determined by comparing predicted outcomes to direct-

report outcomes. Using the optimal feature inclusion settings, feature weights (elastic net β) 

were extracted and used to calculate phenotype risk scores (PheRS).

Co-phenome Risk Scores

PheRS are the weighted sum of the co-phenome:13 PℎeRS = ∑i = 1
Np wpXi, p, where Np is the 

number of phenotypes determined by Spearman’s ρ, xi,p is 0 if the trait response was coded 

as missing, “prefer not to answer,” or a comparable derivative indicating a non-answer to the 

question, and wp is the effect size (β) obtained from elastic net regression. Sample sizes for 

each feature are provided in Supplementary Table 1.

GWAS and Meta-Analysis

GWAS were performed in unrelated EUR MHQ-responders and non-responders separately. 

Detailed description of sample quality control is provided in the Supplementary Methods 

or at https://pan.ukbb.broadinstitute.org/docs/technical-overview. Linear regression was 

performed in PLINK 2.0 using SNPs with imputation INFO scores>0.8, minor allele 

frequencies>0.01, missingness<0.05, and Hardy-Weinberg equilibrium P-values>1x10−10. 

We included age, sex, age×sex, and the first ten within-ancestry principal components 

as covariates in each GWAS. GWAS of each trait were meta-analyzed together and 

again with the MVP counterpart GWAS using METAL.18 Per meta-analyzed GWAS, we 
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applied a genome-wide significance threshold of P<5x10−8. To account for multiple testing, 

we considered a study-wide significance threshold of P<1.25x10−8=0.05/1 000 000 LD 

independent SNPs in EUR/2 meta-analyses/2 internalizing traits.

Reliability of Co-Phenome Risk Scores

We determined the reliability of predicted traits and PheRS several ways. First, within 

MHQ-responders and non-responders, we correlated quantitative outcomes, PheRS, and 

case/control status. Second, we tested genetic correlation (rg) within and between MHQ-

responders and non-responders. As controls, we included GWASs of neuroticism (expected 

positive rg) and subjective well-being (expected negative rg).19 SNP-heritability (h2) and rg 

were calculated using Linkage Disequilibrium Score Regression (LDSC) using the 1000 

Genomes Project (1kGP) EUR reference. Liability-scale h2 estimates were generated using 

GAD = 16%,20 PTSD = 7%,21 MDD = 20%22 population prevalence estimates. Third, 

we calculated polygenic risk scores (PRS) for each unrelated EUR participant in the 

UKB using GAD-216 and PTSD PCL-175 from the Million Veteran Program (MVP). To 

our knowledge, these GWAS represent the largest and most powerful genetic assessments 

of GAD and PTSD outcomes with no known overlap with UKB. PRS were calculated 

with PRSice v223 with the following clumping parameters to select linkage disequilibrium 

independent variants: r2=0.001, P=1, in 10 000-kb windows. Relationships between PRS, 

PheRS, quantitative outcomes, and case/control status were covaried with age, sex, age×sex, 

and ten within-ancestry principal components.

Functional Annotation

Liability loci were mapped with Multi-marker Analysis of GenoMic Annotation (MAGMA 

v1.08) implemented in FUMA v1.6a24 using 2-kb window and r2>0.6.25 Enrichment of 

tissue transcriptomic profiles was tested relative to Genotype-Tissue Expression (GTEx 

v826) 53 tissues and the BrainSpan Atlas of the Developing Human Brain27 age-stratified 

brain tissues. Cell-type transcriptomic profile enrichments were performed using 13 human-

specific transcriptomic datasets related to the brain (Supplementary Methods) and assessed 

in three ways: (1) profile enrichment within each dataset, (2) within-dataset conditionally 

independent profile enrichment and (3) across-dataset conditionally independent profile 

enrichment.25 Hi-C coupled MAGMA was used to perform gene-based association tests in 

the context of fetal brain chromatin interaction data using the 1kGP EUR reference.28

Locus Fine Mapping

LD-independent regions with ≤10 causal variants were fine-mapped to determine the 95% 

credible set using susieR.29 A variant’s credible set membership (i.e., the variant is among 

the most likely causal variants) was evaluated using the posterior inclusion probability (PIP). 

PIP ranges from 0-1 with values closer to 1 indicating greater causal probability.

Casual Effect of Medication Use

Twenty-three GWAS of medication use60 were evaluated for genetic overlap and causal 

relationships with GAD and PTSD. Each GWAS tested associated ~7 million SNPs and 

medication endorsement (e.g., diuretics, opioids, antidepressants, etc.) in more than 320 
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000 European ancestry participants from the UKB. Data may be accessed here: https://

cnsgenomics.com/content/data.

We performed Mendelian randomization (MR) to test the bidirectional causal relationship 

between two traits. MR relies on three assumptions about the genetic instrument: (i) SNPs 

are associated with the exposure, (ii) SNPs are not associated with confounding factors, and 

(iii) SNPs are associated with the outcome only through its association with the exposure. 

Using the R package TwoSampleMR, we tested different MR methods to account for 

instrumental variable weakness and perform sensitivity tests.

Latent causal variable (LCV56) analysis infers genetic causal relationships between trait 

pairs. LCV assumptions include (i) symmetry in cross-trait shared genetic architectures 

arises from a latent genetic component rather than a non-genetic confounder and (ii) a single 

latent factor mediates trait relationships. LCV modelling was implemented in R using the 

1kGP EUR reference. The genetic causality proportion (gĉp) is the degree to which genetic 

risk for trait 1 is causal for trait 2. Gĉp estimates range from 0 to 1 with values closer 

to 1 indicating fully causal relationships. The Supplementary Material provides a detailed 

description of these methods.

Drug Repurposing

Drug repurposing was performed using Gene2drug30 which uses gene-set enrichment 

analysis to reveal pathways of genes up- or down-regulated by a drug based on 

gene expression profiles from ConnectivityMap.31 Gene2drug reports a P-value for the 

Kolmogorov-Smirnov statistic. Each drug is assigned an enrichment score (“EScore”) to 

describe the magnitude and direction of regulation with EScores>0 indicating upregulation 

and EScores<0 indicating downregulation.

Gene Ontology terms were selected by positionally mapping lead SNPs to the nearest gene. 

When >1 gene mapped to a lead SNP, we retained the gene with the greatest probability 

of loss of function intolerance. Gene Ontology (GO) terms were extracted from ShinyGO32 

after multiple testing correction (FDR<0.05, Padj=4.55x10−6 based on 72 394 human gene 

sets) and tested with Gene2drug.

Results

A study overview is provided in Fig. 1.

Elastic net features and regression

GAD-7, PCL-6, and PHQ-9 quantitative scores were derived in MHQ responders.11 After 

multiple testing correction for 772 phenotypes (FDR<0.05), GAD-7, PCL-6, and PHQ-9 

were correlated with 312, 347, and 358 phenotypes, respectively (Supplementary Table 

1). We tested different combinations of training-test ratios and feature inclusion thresholds 

defined by Spearman’s rho (ρ) relative to each trait (Supplementary Table 2).33 We predicted 

each outcome in MHQ-non-responders using the elastic net regression parameters with the 

lowest root mean square error (50∣50 for GAD-7 and PCL-6 and 75∣25 for PHQ-9). Using 

ρ>0.20 as a feature inclusion threshold, we predicted GAD-7 with 19 phenotypes (observed 
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versus predicted ρ=0.33, P<2x10−16), PCL-6 with 15 phenotypes (observed versus predicted 

ρ=0.21, P<2x10−16), and PHQ-9 with 17 (observed versus predicted ρ=0.33, P<2x10−16) 

phenotypes.

“Neuroticism score” was the feature most strongly correlated with, and a major predictor 

of, internalizing symptoms (“neuroticism score” versus GAD-7 ρ=0.482, P<4.13x10−307, 

elastic net β=0.286; “neuroticism score” versus PCL-6 ρ=0.378, P<4.13x10−307, elastic net 

β=0.103; “neuroticism score” versus PHQ-9 ρ=0.41, P<4.13x10−307, elastic net β=0.03). 

The remaining predictors of each trait capture relevant relationships, including features such 

as “tenseness” and “frequency of tiredness in the last two weeks” (Supplementary Table 3).

Characteristics of MHQ-responders and non-responders

PheRS were more strongly correlated with predicted internalizing outcomes (MHQ-non-

responders) than the directly ascertained outcome likely due to the dependence of 

these variables in MHQ-non-responders (Supplementary Tables 4 and 5). All predicted 

quantitative outcomes were greater in magnitude among MHQ-non-responders suggesting 

more severe symptoms compared to MHQ-responders. The difference was minor for PCL-6 

(Cohen’s d=−0.048, P=9.96x10−27) and PHQ-9 (Cohen’s d=0.096, P=2.21x10−144) but was 

large for GAD-7 (Cohen’s d=−0.749, P=1x10−322; MHQ-responder mean=8.97, s.d.=3.09; 

non-responder mean=12.36, s.d.=4.78). Based on these observations, UKB participants 

with the highest “neuroticism scores” (i.e., 12; mean MHQ-responder probability=97.7%, 

s.d.=0.151) were 6.04-times more likely to contribute to the MHQ than those with 

the lowest “neuroticism score” (i.e., 0; MHQ-responder probability=16.2%, s.d.=0.872, 

Pdiff=1.03x10−203). This effect appeared strongest among participants with medium and low 

GAD scores (GAD-7=14 and GAD-7=7, respectively) but was attenuated among those with 

higher GAD scores (GAD-7=21; Supplementary Fig. 1). We expand upon these observations 

in the Supplementary Methods and Results.

SNP-based heritability

We used multiple tests to verify that elastic net-predicted outcomes and PheRS capture the 

same genetic liability as true observations of each outcome.

We performed three GWAS for each trait (Supplementary Fig. 2): quantitative score, 

PheRS, and case-control status derived from quantitative scores. Though elastic-net 

prediction accuracies were low, genetic analyses captured similar information to that 

of direct-report data. Due to the high elastic net weight of “neuroticism score”, the 

difference between MHQ-responder and non-responder “neuroticism scores,” and the 

heritable component of neuroticism,19 we analyzed GWAS only after subjecting their effect 

sizes to multi-trait conditioning with a GWAS of neuroticism.19, 34, 35 After conditioning 

(Supplementary Table 6), all GWAS had h2 estimates that differed significantly from 

zero (GAD range: MHQ-responder GAD-7-PheRS [h2=0.81%, s.e.=0.40, P=0.043] to 

MHQ-non-responder GAD-7-PheRS [h2=3.52%, s.e.=0.32, P=3.82x10−28]; PTSD range: 

MHQ-responder PTSD [h2=1.88%, s.e.=0.21, P=3.55x10−19] to MHQ-responder PCL-6 

[h2=5.57%, s.e.=0.46, P=9.35x10−35]; depression range: MHQ-non-responder current 

depression [h2=1.61%, s.e.=0.10, P=2.55x10−58] to MHQ-non-responder PHQ-9 [h2=5.89%, 
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s.e.=0.39, P=1.62x10−51]). Unless otherwise noted, all in-text results reflect GWAS after 

multi-trait conditioning with neuroticism and pre-conditioning results are in Supplementary 

Material. Several h2 estimates differed significantly between the MHQ-responder and non-

responder GWAS, but there was no evidence of systematic over- or under-estimation of h2 in 

either cohort (Fig. 2 and Supplementary Table 6).

To evaluate the cross-ancestry portability of European-ancestry-derived PheRS, we 

calculated PheRS for each trait in five other ancestries defined by the Pan-UKB project: 

African (N=868 MHQ-responders), Admixed American (N=879 MHQ-responders), Central/

South Asian (N=1 109 MHQ-responders), East Asian (N=601 MHQ-responders), and 

Middle Eastern (N=270 MHQ-responders). GAD-7, PCL-6, and PHQ-9 were calculated 

using responses to the MHQ. For all ancestries, the correlation between PheRS and the 

true quantitative trait was lower than that in the European population, supporting the weak 

translation of PheRS feature weights across populations. The maximum correlation among 

diverse ancestry cohorts was ρ=0.413 for GAD-7 and GAD-7-PheRS among Central/South 

Asians, ρ=0.449 for PCL-6 versus PCL-6-PheRS among Africans, and ρ=0.518 for PHQ-9 

versus PHQ-9-PheRS among Middle Eastern individuals. The GWAS of diverse ancestry 

PheRS also resulted in non-significant h2 estimates (Supplementary Tables 4 and 6).

Genetic overlap between MHQ-responders and non-responders

The rg between MHQ-responders and non-responder GWAS were high: MHQ responder 

versus non-responder GAD-7-PheRS rg=1.55, s.e.=0.406, P=1.0x10−4; PCL-6-PheRS 

rg=1.19, s.e.=0.097, P=2.05x10−34; PHQ-9-PheRS rg=1.15, s.e.=0.084, P=3.52x10−42 and 

likely exceed one as a consequence of conditioning. The corresponding MVP phenotype had 

high rg with each MHQ-responder and non-responder phenotype (Supplementary Table 7). 

All traits were negatively genetically correlated with subjective well-being.

We next evaluated how genetic effects detected in the MVP predicted internalizing outcomes 

in MHQ-responders and non-responders (Fig. 2 and Supplementary Fig. 3). MHQ-non-

responders generally had greater PRS Z-scores and R2 relative to MHQ-responders 

(Supplementary Table 8), likely reflecting greater statistical power and higher mean 

symptom scores of the MHQ-non-responder sample. Regression coefficients for GAD and 

PTSD PheRS and predicted case-control status presented similar power improvements 

among MHQ-non-responders. Due to complete sample overlap between UKB depression 

and MVP broad depression,3 PRS were not performed for PHQ-9.

Gene discovery through meta-analysis

We meta-analyzed MHQ-responders and non-responders to describe how using the entire 

UKB enhances gene discovery. Then, we meta-analyzed the two UKB cohorts with the 

MVP. Results of meta-analyzed depression (UKB only) offered no increase in sample size or 

h2 relative to MVP broad depression,3 and therefore was omitted from in silico analyses.

Per GWAS (P<5x10−8), we discovered (i) 10 and 12 risk loci for GAD when meta-analyzing 

with GAD-7 and GAD-7 PheRS, respectively and (ii) 32 and 26 risk loci for PTSD 

when meta-analyzing with PCL-6 and PCL-6 PheRS, respectively. 70% of GAD-7, 50% 

of GAD-7 PheRS, 46.8% of PCL-6, and 23.1% of PCL-6 PheRS loci were part of a 
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credible set (Supplementary Tables 9-11). Some detected loci that have prior evidence of 

association with GAD (e.g., PHF2-rs12376738 and resistance to depression- and anxiety-

like symptoms36 and memory consolidation37), PTSD (e.g., IL2-rs45510091 and low dose 

cytokine treatments to reverse anxious symptoms), or related symptoms.38

After study-wide multiple testing correction (P<1.25x10−8), 7 and 6 loci were associated 

with GAD in meta-analyses using GAD-7 and GAD-7 PheRS, respectively and 22 and 

19 loci were associated with PTSD in meta-analyses using PCL-6 and PCL-6 PheRS, 

respectively (Fig. 3 and Supplementary Tables 9 and 10). Positional mapping identified 

six genes common to the GAD and PTSD GWAS: ADAD1-IL2-IL21-KIAA1109 cluster, 

CRHR1-MAPT-NSF-PLEKHM1-WNT3 cluster, FAM120-FAM120AOS-PHF2 cluster, 

MAD1L1, SOX6, and TMEM106B.

The out-sample PRS and prenatal transcriptomic enrichment in the following sections were 

performed using the most powerful conditioned meta-analysis for each outcome (i.e., highest 

h2 z-score): GAD meta-analysis using GAD-7 PheRS (h2=2.96%, s.e.=0.16, P=2.06x10−76) 

and PTSD meta-analysis using PCL-6 PheRS (h2=4.08%, s.e.=0.18, P=8.86x10−114; Fig 3. 

and Supplementary Table 12).

Out-Sample PRS

We evaluated overlap of GAD and PTSD with previous GWAS of anxiety and PTSD 

traits from FinnGen (KRA_PSY_ANXIETY N=15 770 cases and 161 129 controls; 

F5_PTSD N=781 cases and 161 390 controls), the PGC (PTSD v1 N=2 424 cases and 

7 113 controls)39, and ANGST (N=17 310).40 At all P-value thresholds (PT), GWAS 

from this study predicted all out-sample GWAS (P<0.05; Supplementary Table 13). The 

maximum association for each trait was: GAD versus FinnGen KRA_PSY_ANXIETY 

(R2=0.029%, PT=0.1, P=2.34x10−13) and PTSD versus PGC PTSD v1 (R2=0.006%, PT=0.3, 

P=6.03x10−4).

GAD and PTSD meta-analyses were used to predict reexperiencing and self-reported 

anxiousness in individual-level data from the Philadelphia Neurodevelopmental Cohort41, 42 

and Yale-Penn43, 44 (Fig. 4 and Supplementary Material). All PRS models were significant 

with at least one PT (P<0.05) but the best prediction was observed for the corresponding 

trait: GAD and PNC self-reported anxiousness (R2=0.103%, PT=5x10−8, P=0.015) and 

PTSD and PNC reexperiencing (R2=0.874%, PT=1x10−7, P=1.57x10−4).

Prenatal Transcriptomic Enrichment

GAD and PTSD GWAS were enriched for Brodmann Area 9 (BA9, part of the 

dorsolateral prefrontal cortex (DLPFC)) transcriptomic profiles: GAD β=0.022, s.e.=0.007, 

P=9.07x10−4; PTSD β=0.030, s.e.=0.007, P=2.85x10−5; Supplementary Table 14). Each 

GWAS also was associated with transcriptomic profiles from late-mid prenatal tissue 

(Fig. 5): GAD β=0.041, s.e.=0.014, P=0.003; PTSD β=0.042, s.e.=0.015, P=0.003 

(Supplementary Table 15). These findings were complemented with 3-D chromatin-aware 

gene-based association in fetal brain tissue. After study-wide multiple testing correction 

(FDR<0.05), 86 and 584 genes were associated with GAD and PTSD, respectively 

(Supplementary Table 16), including CRHR1 (GAD P=1.54x10−5; PTSD P=1.75x10−8), 
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THSD7A (GAD P=1.27x10−8; PTSD P=1.29x10−7), and LAMB2 (GAD P=5.16x10−5; 

PTSD P=4.44x10−7).

Consistent with tissue and 3-D chromatin data, cell-type enrichments reinforce the 

contribution of prenatal development in GAD and PTSD liability (Supplementary Tables 

17 and 18). GAD and PTSD GWAS were enriched for independent signals from post-

conception prefrontal cortex neurons.45 In PTSD, two brain cell types had cross-dataset 

significant effects: GABAergic neurons from gestational week 26 (GW26) prefrontal 

cortex tissue (β=0.041, s.e.=0.012, P=2.64x10−4) and from the midbrains of 6-to-11-week-

old embryos (β=0.246, s.e.=0.050, P=5.58x10−7). Cross-data set analyses support partial 

independence of these signals with primary effects from 6-to-11-week-old midbrain 

neurons (proportional significance of midbrain GABAergic neurons given prefrontal cortex 

GABAergic neurons: PSMid_NbGaba,GW26_Gaba=0.700; PSGW26_NbGaba,Mid_Gaba=0.269).25

Drug Effects and Repurposing

GAD and PTSD GWAS were most strongly genetically correlated with opioid use 

(GAD rg=0.530, s.e.=0.035, P=1.08x10−50; PTSD rg=0.603, s.e.=0.028, P=1.27x10−100) and 

antidepressant use (GAD rg=0.597, s.e.=0.041, P=1.94x10−48; PTSD rg=0.632, s.e.=0.035, 

P=3.23x10−74; Supplementary Table 19). We detected one putative causal relationship 

(FDR<0.05) between vasodilator use and GAD (gĉp=0.093, s.e.=0.285, P=1.04x10−4; 

Supplementary Table 20), but two-sample MR between MVP GAD-2 and vasodilator use 

was insufficiently powered to support this causal hypothesis (Supplementary Results and 

Supplementary Table 21).

We next applied gene-ontology based drug repurposing using 9 GAD and 17 PTSD genes 

(Supplementary Table 22) and detected 87 GAD and 28 PTSD gene-sets (FDR<0.05, 

Padj=4.55x10−6 based on 72,394 human gene sets,32 Supplementary Table 23). After 

multiple testing correction (FDR<0.05 applied per trait) we uncovered upregulation of GAD 

gene-sets in the context of aminohippuric acid, a putative biomarker of depression and 

anxiety disorders (P=1.08x10−5, EScore=0.917; Supplementary Table 24).46

Discussion

Extremely large cohorts are required to discover polygenic signals associated with 

anxiety12, 16, 40, 47 and PTSD.4, 5, 39, 48 Biobanks, such as UKB, offer an opportunity to 

boost sample size, power, and trait ascertainment homogeneity. In practice, UKB mental 

health studies are limited by MHQ response (31% of participants8, 11, 12) and non-random 

missingness in questionnaire participation. Due to the large proportion of missingness in the 

UKB MHQ, we aimed to maximize the sample size informative for GAD and PTSD by 

studying the genetic architecture of co-morbid phenotype patterns (PheRS) associated with 

these traits.

Predicted outcomes and PheRS reliably capture the genetic architecture of GAD and 

PTSD. Unsurprisingly, “neuroticism score” contributed substantial predictive power to 

elastic net regression. In the context of socioeconomic variables and internalizing spectrum 

psychopathologies, higher neuroticism scores were paradoxically associated with higher 
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probability of MHQ participation. However, this effect appears to be driven by participants 

with low-to-medium GAD-7 scores and therefore may be due to liability to a subtype rather 

than neuroticism more broadly. Our data suggest that the interplay between neuroticism 
and GAD may affect MHQ participation bias. This could be due to the elevated anxiousness/

tenseness elements rather than worry/vulnerability elements of neuroticism.49 We initially 

hypothesized that prior internalizing studies in the UKB were under powered due to sample 

size but the data reported here support a more refined hypothesis. Following previous 

evidence of a two-factor model of neuroticism, the depletion of a subtype (e.g., worry/

vulnerability factor) in MHQ-responders relative to non-responders may at least partially 

explain the limited success of anxiety and PTSD GWAS in the UKB.34, 49 We leveraged 

the higher neuroticism scores of MHQ-non-responders to more than double the sample 

size upper limit for GWAS of GAD and PTSD outcomes while enriching the sample for 

individuals with objectively more severe symptoms. This procedure resulted in detection of 

more than twice the genomic risk loci associated with anxiety and PTSD relative to previous 

studies.

Meta-analyses using PheRS were more powerful than meta-analyses using predicted 

quantitative traits. Though h2 differences between PheRS and quantitative outcomes were 

relatively small, we hypothesize that PheRSs capture slightly more accurate information 

about each trait because they are derived from tangential responses to questions not 

ascertained in the context of mental health (i.e., as part of the MHQ). Therefore, studying 

genetic liability to PheRS, in combination with directly ascertained symptoms, may help 

reduce analytic noise in self-reported assessments.50

Several approaches to locus functional annotation converged on fetal/prenatal biology. These 

findings are interesting given the childhood to mid-adult onset of internalizing disorders.51 

We attribute our observations to improved statistical power of a larger sample size rather 

than multi-trait conditioning with neuroticism.19, 34 Consistent with previous studies,52, 53 

the DLPFC was identified here as a tissue of interest for GAD and PTSD. We extended 

these observations to cell-type and 3-D chromatin interaction data to detect gestational week 

GABAergic neurons and several genes of interest with effects in fetal brain tissue (GAD: 

TMEM106B; PTSD: CRHR1, LAMB2). In a prior single-cell RNA-seq study of the DLPFC 

(N=1 057 neurons), the late gestational periods detected in our study were most enriched for 

genes related to axon guidance, neuron differentiation, and axonogenesis.45, 54

We utilized the improved power of our meta-analyses to identify potential drug targets 

and/or drugs that induce anxiety and PTSD symptoms as adverse effects. We detected a 

relationship between vasodilator use and GAD that could not be confirmed using a two-

sample MR approach but has been detected in epidemiology research.55 The partial causal 

effect size of vasodilator use on GAD was small, so MR might be under-powered to detect 

this result considering (i) the requirement for non-overlapping samples and (ii) biases in 

latent causal estimates in the presence of strong pleiotropic effects among highly polygenic 

traits.56 The discordance between these methods may reflect a causal relationship between 

GAD and vasodilator use that transcends a genetically-regulated molecular relationship (e.g., 

regulatory or proteomic elements).
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The results from our study expand prior findings on the biology of GAD and PTSD but 

there are several limitations to consider. First, while capturing very similar genetic liability 

to GAD and PTSD, elastic net-predicted phenotypes were weakly correlated with known 

GAD-7 and PCL-6 scores among MHQ-responders. Thus, there is no utility of these values 

for epidemiological studies of GAD or PTSD even though they are valuable in genetic 

studies of psychopathology.57 Second, our study demonstrated that PheRS feature weights 

derived from EUR participants do not generalize to individuals of other ancestries. Lack 

of generalizability may be attributed to genetic differences and/or documented variability 

healthcare experiences across racial and ethnic groups.58 Our group and others aim to 

recognize and reduce these health disparities using carefully tested PheRS for these 

populations.13 Third, machine learning identifies patterns in data, not necessarily trait 

relationships. Thus, we identified mathematically informative and biologically meaningful 

predictors of GAD and PTSD symptoms. However, these features, their predictive patterns, 

and the regression weights reported here may not translate outside the UK Biobank. Future 

studies need to investigate how well PheRS created in one cohort generalize to other 

cohorts. Finally, solutions to non-random missingness can be influenced by the proportion 

of missingness. Our data support the non-random nature of UKB MHQ missingness with 

respect to certain features of mental health (e.g., higher neuroticism scores) but this attribute 

of data missingness may not extend to other biobanks. Future work will require detailed 

investigation of the type of missingness observed, its proportion, and how best to fill those 

gaps including the use of other machine learning or imputation pipelines.

The PheRS derived here permit studies of GAD and PTSD in the whole UKB cohort. 

Our results provide one roadmap by which the community may improve sample size and 

statistical power for enhanced risk locus discovery in the context of incompletely ascertained 

traits in the UKB and other biobanks with limited mental health assessment. We use these 

data to present biological underpinnings uncovered from analysis of the largest GWAS 

meta-analysis of these traits to date.

Data availability

All data used to generate figures for this study are provided as Supplementary Material. 

Elastic net weights are provided as Supplementary Material. GWAS summary data are 

accessible at 10.5281/zenodo.4767570. This research has been conducted using the UK 

Biobank Resource (application reference no. 58146) and is available to bona fide researchers 

through approved access. Out-sample polygenic risk scoring utilized the Yale-Penn cohort 

(dbGaP Study Accession: phs000425.v1.p1) and the Philadelphia Neurodevelopmental 

Cohort (dbGaP Study Accession: phs000607.v3.p2). The dbGAP data used herein is 

available for approved access download from dbGAP data request portal.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Study design for understanding the genetic architectures of internalizing co-phenomes.
Features (i.e., comorbid phenotypes) were correlated with GAD-7, PCL-6, and PHQ-9. 

Outcomes were predicted using elastic net regression in two ways: (i) each quantitative 

outcome was predicted as the dependent variable in elastic net regression and (ii) elastic net 

regression weights were used to calculate a co-phenome risk score.
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Fig. 2 ∣. Verifying the concordant genetic architectures of true and predicted internalizing 
outcomes.
a, SNP-heritability (h2) of each internalizing outcome and the current largest unrelated 

sampling of a corresponding phenotype (GAD-2, PCL-17, and broad depression) after 

multi-trait conditioning with neuroticism. Each data point is the trait h2 point estimate and 

error bars represent the 95% confidence interval (CI) associated with each estimate. b, 
Genetic correlation (rg) within and between internalizing outcomes derived from the Mental 

Health Questionnaire (MHQ responders) and those predicted in the MHQ non-responders of 

the UKB before (bottom left triangle) and after (top right triangle) multi-trait conditioning 

with neuroticism. Pale text indicates a phenotype from the MHQ non-responders and dark 

text indicates a phenotype from the MHQ responders. Each rg heatmap contains a positive 

control with positive rg (largest Million Veteran Program (MVP) corresponding phenotype) 

and positive control with negative rg (subjective well-being) phenotype. All rgs survive 

multiple testing correction (FDR<0.05).
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Fig. 3 ∣. SNP annotation of GAD and PTSD GWAS.
The bottom row shows Manhattan plots for each trait. Two horizontal dashed lines in each 

plot show the genome-wide significance threshold per phenotype (P<5x10−8) and study-

wide (Padj<1.25x10−8). Above each Manhattan plot are Combined Annotation Dependent 

Depletion (CADD) scores and RegulomeDB scores for each genome-wide significant locus.
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Fig. 4 ∣. Out-sample polygenic prediction of relevant phenotypes.
Maximum observed association (R2) between polygenic risk scores (PRS) for GAD and 

PTSD outcomes in this study and out-sample GAD and PTSD phenotypes from large 

consortia (ANGST, FinnGen, and PGC using summary-level PRS in PRSice v1.25, Panel 

A) and individual-level cohorts informative for mental health outcomes (Philadelphia 

Neurodevelopmental Cohort (PNC) and Yale-Penn using PRSice v2, Panel B).
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Fig. 5 ∣. Prenatal transcriptomic signatures of GAD and PTSD outcomes.
a, Enrichment of transcriptomic profiles from prenatal tissue based on BrainSpan 11 

developmental stages. Each bar represents the results from one-sided tests for enrichment of 

a given transcriptomic profile. Effect size estimates (β) are color coded. Dashed horizontal 

lines indicate the significance threshold after multiple testing correction (FDR<0.05) across 

all tests. b, Manhattan plots of Hi-C coupled gene-based association studies of GAD and 

PTSD in fetal paracentral tissue. Each data point represents a single gene positionally 

aligned across each autosome. The height of each point along the y-axis indicates the 

significance of association between gene and phenotype with each colored data point 

indicating a significantly associated gene after analysis-wide multiple testing correction 

(P<9.43x10−7). A subset of genes are labeled and all genes are provided in Supplementary 

Table 16.
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