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Minimal sufficient balance (MSB) is a recently suggested method for adaptively
controlling covariate imbalance in randomized controlled trials in a manner
which reduces the impact on randomness of allocation over other approaches
by only intervening when the imbalance is sufficiently significant. Despite its
improvements, the approach is unable to consider the relative clinical impor-
tance or magnitude of imbalance in each covariate weight, and ignores any
imbalance which is not statistically significant, even when these imbalances may
collectively justify intervention. We propose the common scale MSB (CS-MSB)
method which addresses these limitations, and present simulation studies com-
paring our proposed method to MSB. We demonstrate that CS-MSB requires less
intervention than MSB to achieve the same level of covariate balance, and does
not adversely impact either statistical power or Type-I error.
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1 INTRODUCTION

A randomized controlled trial (RCT) is considered the gold standard in medical research, and provides high quality data
that can be used to reliably identify causal relationships between a clinical interventions and patient outcomes. While
randomization eliminates any systematic bias in treatment trial arm assignment, the balance of clinically important prog-
nostic variables across treatment arms can only be guaranteed “in the long run” rather than for a particular clinical trial.1
When such imbalance occurs, it can hamper trial interpretability, as it is not clear if an observed difference in patient
outcomes is due to treatment effect or due to patients in the treatment arm being predisposed to have a better outcome.1-6

A number of trial designs have been proposed to minimize the risks of such imbalances occurring. These include
stratified and permuted block7 randomization, both of which allow covariate adjustment on a small number of cat-
egorical (or discretised) covariates, as well as covariate-adjusted randomization methods,8 which may consider more
covariates, including continuous values. A major drawback of these approaches is that they always interfere with treat-
ment assignment by deviating from a nonbiased purely random assignment, even when covariates are perfectly balanced.
As randomization is a critical method for eliminating bias in clinical trials, this unnecessary intervention is a limitation
to these methods.
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The minimal sufficient balance (MSB) method9 was developed in response to this drawback, and interferes in ran-
domization only when covariates are sufficiently imbalanced. While MSB improves on prior randomization methods by
reducing unnecessary intervention in the randomization process, it cannot consider the relative clinical importance of
each covariate, nor use information about the relative magnitudes of imbalance across each covariate. MSB also ignores
any imbalance information that is considered insignificant, reducing its ability to flexibly respond to covariate imbalances.

To address these limitations, we propose the novel common scale MSB (CS-MSB) adaptive randomization procedure,
which utilizes the MSB principle of only interfering with randomization process when necessary, while extending its
scope and achieving better covariate balance for the same degree of interference. The remainder of this article is structured
as follows. In Section 2, we provide an overview of MSB, highlight the limitations of the method, and set out a list of
desirable properties that any modification of MSB should have in order to address these limitations. In Section 3, we
develop CS-MSB, addressing each of the identified desirable properties outlined in Section 2. We then present simulation
studies in Section 4 to compare the performance of MSB and CS-MSB. Finally, in Section 5 we summarize our results and
outline potential directions for future research.

2 MINIMUM SUFFICIENT BALANCE

Minimal sufficient balance (MSB)9 is a recently proposed method for ensuring covariate balance in randomized controlled
trials. It improves upon conventional covariate-adjusted randomization methods by only biasing when covariate imbal-
ance has become significant enough to warrant intervention, thus maximizing the degree of random treatment allocation.
It is also capable of controlling balance on both numeric and categorical covariates without making strong assumptions
about relationships between variables.

MSB operates by testing the between-group balance of each covariate, using conventional statistical tests such as
Student’s t-test, Pearson’s 𝜒2 test, or Fisher’s exact test as appropriate. If a covariate is significantly imbalanced, then a
vote is placed to bias randomization in whichever direction reduces the imbalance. If one treatment arm receives more
votes than the other, then the probability of being assigned to that arm is set at 𝜉 ∈ (0.5, 1]. Otherwise, the probability of
being assigned to each arm is unbiased, with probability 0.5 for each arm.

Simulation studies of MSB10 have demonstrated that the method successfully controls covariate imbalance when the
number of covariates is large, and does not adversely impact Type-I error. MSB been used to control covariate balance in
stroke,11-13 Parkinson’s Disease14 and postsurgical physiotherapy.15 Despite the improvement that the method offers over
previously developed methods of ensuring covariate balance, it has several limitations.

2.1 Limitations of MSB

Because MSB intervenes based on a simple majority of votes across covariates, it does not consider the magnitude of
imbalance in each covariate. This means that, should two covariates be significantly but slightly imbalanced with votes
toward arm A, and one covariate be both significantly and substantially imbalanced with a vote toward arm B, then MSB
will bias in favor of arm A. This also means that in the event multiple covariates are significantly imbalanced, but the votes
are tied, MSB cannot break the tie and therefore does not intervene, even if one arm is substantially more imbalanced
than the other.

Likewise, a simple majority vote ignores all imbalance in nonsignificant variables. This means that, should all covari-
ates be imbalanced in favor of treatment A, but all are on the cusp of significance, then MSB will not intervene even
if collectively, the consistent and nearly-significant direction of imbalance is a strong argument for intervening. In this
sense, MSB follows a strict Neyman-Pearson interpretation of each individual covariate P-value.

MSB is also limited in its ability to weight individual covariates based on importance. As it operates under simple
majority voting based on individual P-values, it is impossible to weight the relative importance of each covariate without
directly hard-coding the weight of each vote. Such a procedure would require a majority of less important covariates to
be significantly biased in the same direction in order to overrule a single important covatiate, even if that covariate is
significantly, but not substantially imbalanced. This would likely induce instability and inconsistency in the behavior of
MSB, and is therefore not advisable.

Additionally, by operating at the level of statistical tests for each individual covariate, it may be difficult to pro-
vide clinical interpetation regarding how imbalanced the trial actually is in a clinical sense. While this does not inhibit
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the operation of MSB, it limits the ability of trialists to monitor the method during trial operation in order to ensure
that it operates as expected. For example, Pearson’s 𝜒2 test provides a P-value which is commonly used in medical
research, but clinicians are not generally taught how to interpret its test statistic, making it challenging to convey the
severity of the trial’s imbalance at any given point. This may lead to challenges in monitoring trial imbalance in prac-
tice. Furthermore, if there are subtle differences in statistical power and other operating characteristics between each
test, then on average, some covariates may be more likely to vote to intervene than others. This would, without the
knowledge of trialists, add an unspecified on-average “weight” on covariate importance. Such a situation would exac-
erbate MSB’s inability to provide covariate weights, as there would be no way to correct such a problem should it
arise.

2.2 Desirable properties for addressing limitations of MSB

While MSB is an important improvement in covariate-adjustment methods for clinical trials, there are several limitations
to the approach as discussed above. In order to address these limitations, we set out the following desirable properties for
improvements to the method:

Desirable Property 1: The method should judge covariates on a clinically interpretable common scale compatible with
all common types of univariate data. By considering each covariate on a common scale, imbalance would be measured
consistently, minimizing the risk of subtle differences in statistical properties driving unexpected behavior. If this measure
were to be clinically interpretable, it would also improve transparency in the method.

Desirable Property 2: This clinically interpretable common scale should have known, easily manipulable distributional
properties. If the distributional properties of the common imbalance measure were well understood and easily trans-
formed or otherwise mathematically manipulated, it would facilitate improvements to the MSB method that utilize these
properties.

Desirable Property 3: The method should flexibly use covariate imbalance information to control randomization in a
variety of (user-specified) ways.

This desirable property is dependent on Properties 1 and 2 above. While MSB’s majority voting method is a substan-
tial improvement on previous covariate-imbalance control methods, a common measure of imbalance would allow for
weights to be attached to each covariate’s vote proportional to the severity of this imbalance. Such a weighted voting
mechanism would prioritize imbalance correction in covariates which are severely imbalanced over covariates with small
imbalances. It would also allow for user-specified covariate weights to be used in randomization, allowing for certain
covariates to be considered more important than others in terms of covariate balance.

If the measure of imbalance has known and manipulable distributional properties, then instead of relying on either
form of voting mechanism, MSB could consider a pooled imbalance approach to determine whether to intervene in the
randomization process or not. This would allow the method to consider the imbalance in all covariates, rather than just
those which are significantly imbalanced in its decision-making.

Likewise, a common scale would provide greater flexibility in the nature of randomization intervention. In addition to
using a statically biased coin to allocate patients to a favored treatment group based on a constant probability 𝜉 ∈ (0.5, 1],
it would be possible to make the assignment probability a function of the magnitude of imbalance. This would result in
a dynamically biased coin. For example, 𝜉 could be proportional to the observed imbalance (with stronger coin bias when
there is severe imbalance), or a step function could be used to require that imbalance be both significant and substantial
before allocation probability becomes biased.

Taken together, these modifications result in a family of Minimal Sufficient Balance randomization procedures, sum-
marized in Figure 1. Depending on the application and future research, some, or none of these potential modifications
to MSB may be desirable. It is therefore important that an improved version of MSB be capable of accommodating any
randomization process within this family, including MSB as it was originally proposed.

Desirable Property 4: The method should reduce covariate imbalance at least as efficiently as MSB.
MSB uses a thresholding level of significance 𝛼 to determine if covariates are sufficiently imbalanced to warrant inter-

vention. Consequently, MSB provides a trade-off between covariate imbalance and rate of intervention, controlled by
different settings of 𝛼. By selecting this threshold, a trialist reduces a certain level of covariate imbalance at the cost of
a certain rate of biased randomizations. Any improvements to MSB must be as efficient as MSB is, meaning that it must
achieve at least the same level of covariate balance for the same degree of intervention in an otherwise purely random
allocation process.
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F I G U R E 1 A family of minimal sufficient balance methods

Desirable Property 5: The method should not adversely interfere with Type-I error or statistical power any more than
MSB.

The controlling of Type-I error and statistical power is a cornerstone of trial design. Therefore, any improvement to
MSB should not result in any further inflation of Type-I error than occurs under MSB. Likewise, any improvement to
MSB should not result in worse statistical power than under MSB.

3 COMMON SCALE MSB

We propose a novel extension of MSB which addresses these limitations which we name common scale MSB (CS-MSB).
While we implement our method using Wilcoxon-Mann-Whitney odds (WMW odds), any statistical method with known
and manipulable distributional properties that is capable of handling all adjustment covariates on a common scale may
be used instead. The remainder of this section is structured as follows: First, we provide an overview of the WMW odds
statistic and describe the method. We then describe how CS-MSB operates using WMW odds, using a pooled imbalance
approach and a statically biased coin. Finally, we outline how similar variations on CS-MSB may be developed to cover
the whole family of Minimal Sufficient Balance methods described above.

3.1 The WMW odds statistic

Wilcoxon-Mann-Whitney odds16 is a modification of Agresti’s generalized odds ratio (GenOR)17 to include information
about tied values. Both WMW odds and GenOR are nonparametric test statistics which calculate the odds that, in a
randomly selected pair of patients, the treatment patient has a higher score on a particular variable than the control
patient. The WMW odds statistic breaks tied pairs of values by splitting them evenly between the two treatment groups.
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GenOR and WMW odds are closely related to the win ratio18 and win odds19 statistics respectively, both of which are
topics of current attention within medical statistical literature.20-25 WMW odds has seen recent applications in stroke
research.26-30

WMW odds is capable of handling ordinal and continuous variables, and with some elementary data preprocessing is
capable of handling nominal variables. It is therefore capable of handling all common types of covariate data on a common
scale. It is log-normally distributed, and therefore meets our requirement of having well-understood and manipulable
distributional properties. This property allows WMW odds to be used as a basis for considering a measure of pooled
imbalance in CS-MSB.

3.2 Common scale MSB using generalized odds ratios

The CS-MSB randomization procedure operates as follows. Let WMW OR denote the WMW odds statistic. First, for each
covariate i, calculate | log(WMW ORi) | and SE(log(WMW ORi)), testing the imbalance of the covariate across treatment
groups. For continuous, ordinal or binary covariates (including two-category categorical covariates), WMW OR can be
calculated directly. To calculate WMW OR for nominal covariates, we use dummy coding for individual categories and
test imbalance on the relevant categorical dummy variable. This has the added advantage of ignoring covariate imbalance
when the prospective randomization cannot be improved by the new patient (eg, the covariate is imbalanced on two
nominal values, but the new patient has a completely different and nominal value and thus cannot render this imbalance
nonsignificant).

Second, for each covariate i, calculate the prospective imbalances | log(WMW OR(A)
i ) | and | log(WMW OR(B)

i ) | if the
new patient were to be assigned to arm A or B respectively. Each covariate’s vote is determined based on the arm which
best reduces the prospective imbalance on that covariate. Under CS-MSB, covariates place a vote on the direction of bias
regardless of their individual level of significance. We next calculate the weighted averaged bias direction BD using the
following formula:

BD = 1∑
i

[
wi

SE(log(WMW ORi))2

]∑
i

[
wi sgn

(| log(WMW OR(A)
i ) | − | log(WMW OR(B)

i ) |) | log(WMW ORi) |
SE(log(WMW ORi))2

]
, (1)

where sgn(⋅) is the sign function, and wi is an optional user-specified covariate importance weight. Likewise, we calculate
the standard error of BD as

SE(BD)2 =

∑
i

[
w2

i

SE(log(WMW ORi))2

]
[∑

i
wi

SE(log(WMW ORi))2

]2 . (2)

If all covariates are treated with equal importance (ie, ∀i,wi = 1), this is mechanically equivalent to performing
inverse-variance weighting, and the standard error for BD can be simplified to

SE(BD)2 = 1∑
i
[
SE(log(WMW ORi))−2

] . (3)

We then determine if on average, the covariates are sufficiently imbalanced by testing if the following statement is true:

Φ
(|||| BD

SE(BD)
||||
)

> 1 − 𝛼∕2, (4)

where Φ(⋅) is the CDF of the standard normal distribution and 𝛼 is a prespecified P-value threshold for CS-MSB inter-
vention. If the covariates are sufficiently imbalanced, we bias randomization in favor of group A if BD < 0 and in favor of
group B if BD > 0. The probability of assignment to the favored group is prespecified at 𝜉 ∈ (0.5, 1], as is the case in MSB.
Likwewise, if the covariates are not sufficiently imbalanced to warrant intervention, then the arm assignment probability
is set to 0.5.
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T A B L E 1 Alternative extensions to MSB using WMW odds, covering the entire family of MSB methods

Statically biased coin Dynamically biased coin

Majority voting Perform MSB, using WMW OR to test imbalance in
each covariate. Determine votes using prospective
imbalance as described in Section 3.2.

Let x be the sum of wj | log(WMW ORj) | for all
significant covariates j that won the vote. Let
𝜉 = f (x).

Weighted voting For each covariate i, determine the vote direction and
test if WMW ORi is significant. Weight each
significant vote by wi | log(WMW ORi) | . Sum the
weight of significant votes for each group and
intervene in favor of the group with the most
weight attached.

Let xA be the sum of wj | log(WMW ORj) | for all
significant covariates j which voted for A. Let xB be
the sum of wj | log(WMW ORj) | for all significant
covariates j which voted for B. Let 𝜉 = f ( | xA − xB | ).

Pooled Imbalance As described in Section 3.2 Let 𝜉 = f ( |BD | ).

By determining the contribution of each covariate’s imbalance on the intervention decision based on: a combina-
tion of the size of the imbalance; the precision of the imbalance’s estimate; and an optional weighting based on clinical
importance, our method addresses the limitations of MSB discussed above: Our approach considers the magnitude of the
imbalance in making its decision, preventing situations where two slight imbalances overrule a substantial imbalance.
It also allows for explicit control over the weight placed on covariates based on clinical importance. By using a consis-
tent test for all covariates, our method minimizes the risk that differences in statistical power could result in unexpected,
uncontrolled and undesired weights being placed on each covariate. By delaying the calculation of P-values until the end
of the process, our method is able to consider the imbalance across all covariates, rather than discarding a combination
of nonsignificant imbalances which could together justify intervention in randomization.

3.3 Other variations on common-scale MSB using WMW odds

CS-MSB may be configured to make interventions across the entire family of MSB procedures. Example variations on
CS-MSB which cover the family of MSB procedures are outlined in Table 1. Let f (x) be a user supplied function which
transforms a measure of imbalance x into a biased coin probability 𝜉 ∈ [0.5, 1]. If f (x) = 0.5 then the coin is unbiased for
an imbalance of x regardless of if the imbalance is considered statistically significant. All other symbols refer to the same
properties as they are defined in Section 3.2.

In addition to these variations, CS-MSB may be modified in ways not outlined in Table 1. Given the relationship
between the pooled imbalance approach and meta-analytic methods which are well-understood by clinicians, and its
ability to consider all covariate imbalances rather than only significant ones, we focus on the pooled imbalance approach
for the remainder of this article.

CS-MSB fulfills the first three desirable properties outlined in Section 2.2. Because WMW odds is a common and clin-
ically interpretable scale, it satisfies Desirable Property 1. Because WMW odds is log-normally distributed, it is easily
manipulable and therefore satisfies Desirable Property 2. Finally, as the presented method may be modified to cover the
entire family of potential Minimal Sufficient Balance methods (as indicated by Figure 1 and Table 1), it satisfies Desirable
Property 3. In order to evaluate Desirable Properties 4 and 5, we need to compare the performance of CS-MSB and MSB.

4 SIMULATION STUDIES COMPARING MSB TO CS-MSB

To demonstrate our method and compare it to MSB, we conducted computational experiments using the EXTEND,31

EXTEND-IA32, EXTEND-IA TNK27 (TNK-I) and EXTEND-IA TNK Part 233 (TNK-II) clinical trials, comparing MSB and
CS-MSB. We also use a second version of the TNK-II dataset containing additional covariates (expanded TNK-II). Using
these five datasets, we first seek to address Desirable Property 4 as outlined in Section 2.2 by investigating the comparative
performance of MSB and CS-MSB in terms of guaranteeing covariate balance. We then seek to address Desirable Property
5 by investigating the comparative performance of MSB and CS-MSB in terms of statistical power and Type-I error. We
also seek to explore the differences between CS-MSB when a statically biased coin is used, as well as when a dynamically
biased coin is used.
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4.1 Data

All data sources used in this study concern the use of interventions intended to restore blood flow to the brain after an
ischaemic stroke. EXTEND investigated the effect of expanding the time window for the use of thrombolytics post-stroke.
EXTEND-IA investigated the combined effect of thrombolytics and endovascular clot retrieval after stroke compared to
thrombolytics alone. EXTEND-IA TNK compared the efficacy of tenecteplase (a newer thrombolytic) to standard practice.
EXTEND-IA TNK Part 2 examined the optimal dose of tenecteplase for improving patient outcomes after stroke.

We selected different types of clinically important covariates from each of these datasets, including numeric, ordi-
nal, nominal, and binary data. Table 2 describes the type of each covariate and provides univariate summaries of each
dataset. Together, these three datasets provide examples of all common types of covariate data. As such, they provide
useful illustrations for comparing the performance of MSB and CS-MSB in a variety of real-world settings.

In each dataset, patient outcomes were reported using the modified Rankin scale (mRS),34 a widely used and clinically
interpretable ordinal measure of functional ability ranging from 0 (no symptoms of stroke) to 6 (death). Each successive
dichotomization on this scale has well-understood clinical meaning.35 For example, an mRS score between 0 and 2 is
interpreted as an ability to live independently, while an mRS score between 0 and 3 is interpreted as ability to walk without
assistance of another person.

4.2 Methods

To address the aims outline above, we performed three simulation experiments. The first two of these compare CS-MSB
with MSB and address Desirable Properties 4 and 5 outlined in Section 2.2. They focus on CS-MSB with a statically biased
coin, as it is analogous to the established MSB method which also uses a statically biased coin. The third simulation
experiment compares the behavior of CS-MSB with a statically biased coin to CS-MSB with a dynamically biased coin.
In each simulation, we used the data from the individual trials described above in their original order to examine the
hypothetical scenarios where the randomization was conducted according to either MSB or CS-MSB.

4.2.1 Comparing MSB with CS-MSB using a statically biased coin

To address Desirable Property 4, we used a full-factorial design to examine the effect of 𝛼 and 𝜉 on the degree of covariate
imbalance and intervention rate using three individual datasets. We described the covariate imbalance at the end of the
trial using both the WMW odds and effect size statistics related to the original MSB’s voting methods (Cohen’s d for
continuous data; Pearson’s 𝜒2 statistic for categorical data), and recorded the P-values associated with each covariate
imbalance. For ordinal data, which was not originally discussed in the context of MSB, we used WMW odds and its
associated P-value to describe covariate imbalance. We also recorded the Intervention Rate (IR, defined as the proportion
of randomizations where a biased coin was used) for both MSB and CS-MSB. For each combination of dataset, 𝜉 and 𝛼,
we performed 5000 simulations.

To address Desirable Property 5, we used Rubin’s counterfactual framework36 and provided each patient with counter-
factual outcome probabilities conditional on: patient assignment to treatment (assuming treatment effect exists); patient
assignment to control (assuming treatment effect exists); and no treatment effect (ie, the null hypothesis is true). Each
of these sets of outcome probabilities were generated using distance-weighted k-nearest neighbors,37 trained using only
patients who were assigned to control (for probability of outcome given assignment to control), then only patients who
were assigned to treatment (for probability of outcome given assignment to treatment), and finally all patients (assuming
no treatment effect).

For computational feasibility, we chose values of 𝛼 to achieve a target intervention rate of 5%, 15%, and 25% based
on the results of the simulations addressing Desirable Property 4, selecting the value of 𝛼 which resulted in a median
intervention rate closest to each target (representing a usual case), a 75th percentile intervention rate closest to each target
(representing setting the intervention rate in a conservative manner), and a 25th percentile intervention rate closest to
each target (representing setting the intervention rate in an anticonservative manner). For each combination of target
intervention rate and quantile, we ran 5000 simulations. At the end of each simulated trial, we tested for a significant
treatment effect using ordinal logistic regression, and logistic regression at each dichotomous cutpoint. We recorded the
proportion of significant outcomes (ie, the empirical power/Type-I error) for each test.
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4.2.2 Comparing the behavior of CS-MSB using statically and dynamically biased coins

To illustrate the behavior of a dynamically biased coin, we followed the same simulation process described above to
evaluate Desirable Property 4. We used a linearly biased coin that was directly proportional to the strength of the pooled
bias, with biased coin probability 𝜉 given by the function

f (x) = min {0.5 + sx, 1} , (5)

where x = |BD | and s is a positive number giving the strength of the proportionality. In a similar manner to the statically
biased coin case, we performed full-factorial design over 𝛼 and s, where s = 1, 4, 7, … , 13, 16. As the probability associated
with a biased coin may change from one random assignment to the next, we require a measure for the strength of inter-
vention which incorporates not only the rate of intervention, but also the magnitude. We therefore introduce Expected
Bias (EB) as such a measure, defined as the expected deviation of a randomly selected patient’s randomization probability
from 0.5, and is given by

EB = 1
N

N∑
i=1

|Prob(Xi = A) − 0.5| , (6)

where Xi is the arm assigned to observation i and A is one of the treatment arms. For a statically biased coin with bias
strength 𝜉, this value may be derived from the intervention rate IR and is given by

EB = IR × (𝜉 − 0.5). (7)

4.3 Results: Comparing MSB with CS-MSB

Desirable Property 4 requires that any improvement to MSB be at least as efficient as MSB. CS-MSB was more efficient
at controlling covariate imbalance, with less imbalance at the end of the trial for the same rate of intervention. The
magnitude of imbalance at the end of the trial (measured using the WMW odds as set out in Section 3.2, shown in Figure 2.
Equivalent figures for all other datasets are provided in the supplementary material) was consistently lower for CS-MSB.
When measured using conventional univariate statistical tests CS-MSB resulted in consistently higher P-values than MSB
(meaning less significant imbalance) when the intervention rate was low (Figure 3. Equivalent figures for all other datasets
are provided in the supplementary material). For high intervention rates, the NIHSS covariate in the TNK dataset, and the
Age covariate in all datasets saw a reversal in these results. The precise threshold at which this reversal occurred varied
with the dataset and the value of 𝜉. The required intervention rate for MSB to outperform CS-MSB in the Age covariate
was approximately 60% for the EXTEND and TNK-II datasets, and anywhere from 25% to 50% depending on 𝜉 in the TNK
and EXTEND-IA datasets, with low values of 𝜉 requiring a higher intervention rate. The required intervention rate for
MSB to outperform CS-MSB on the NIHSS covariate in TNK-I was approximately 35%. An intervention rate in excess of
90% was required to see this behavior in the expanded TNK-II dataset. Each of these thresholds represents an extremely
high level of intervention, indicating that MSB only outperformed CS-MSB when the imbalance sensitivity 𝛼 is so high
that the primary purpose of MSB (reduce the degree of intervention in an otherwise purely random allocation process) is
not being achieved.

For MSB, we also observed a nonmonotonic relationship between intervention rate and imbalance at the end of the
trial, with high intervention rates (approximately 75% or more ) resulting in a decrease in performance. There are several
possible explanations for this behavior. First, this behavior could be driven by the relationship between 𝛼 and interven-
tion rate for MSB (Figure 5), where extremely high values of 𝛼 result in more tied votes, thus reducing the intervention
rate. This would mean that extremely high intervention rates in MSB may correspond to a lower sensitivity to imbal-
ance, explaining why imbalance appears to worsen at high intervention rates. Second, this behavior could be driven by
larger variability in the MSB method (discussed in Section 4.5). Even for very low values of 𝛼, it was possible for MSB to
achieve intervention rates in excess of 75% meaning that the high intervention rate for MSB contains a greater propor-
tion of extreme instances of low-sensitivity 𝛼. As extreme sample percentiles exhibit higher variability than less extreme
percentiles, this behavior could also be an artifact of the finite number of simulations performed. This explanation is sup-
ported by the fact that the nonmonotonicity becomes more pronounced at extreme percentiles. Regardless of the cause,
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this observed behavior occurs at extremely high intervention rates which, in practice, defeat the purpose of performing
MSB over other covariate-adjustment methods.

Across all five tested datasets, MSB only outperforms CS-MSB on a small number of variables and only achieves this
when the intervention rate is extremely high. At practically desirable intervention rates, CS-MSB consistently provides
better covariate imbalance than MSB for the same level of intervention within a trial.

Desirable Property5 requires that any improvement to MSB not adversely impact either statistical power or Type-I error.
Overall, there was almost perfect agreement between MSB and CS-MSB in terms of statistical power and Type-I error,
with Lin’s concordance correlation coefficient exceeding 0.995 on all outcomes. Reduced major axis regression analysis
demonstrated no substantial fixed or proportional bias in the results, with all intercepts and slopes either not significantly
different, or negligibly deviating from values of 0 and 1 respectively. The largest significant deviation from an intercept
of 0 was −0.0011, and the largest significant deviation from a slope of 1 was a slope of 1.007. The absolute size of the
disagreement between MSB and CS-MSB was small, with most having a difference in power less than 0.01, or a difference
in Type-1 error less than 0.005. Neither method had values which were consistently higher than the other, resulting in
differences which were centered around 0. (Figure 4).

In all cases the magnitude of difference in empirical power was negligible, and there was no evidence to suggest
that one method had consistently higher power or Type-I error than the other. In all five investigated datasets, CS-MSB
therefore controls Type-I error just as well as MSB, and achieves equivalent statistical power.

4.4 Results: Comparing statically and dynamically biased coins

There was no definitive improvement in efficiency when comparing CS-MSB with a statically biased coin to CS-MSB with
a linearly biased coin as given in Equation 5. In the expanded TNK-II dataset, a linearly biased coin appeared to perform
marginally better than a dynamically biased coin at extreme worst-case percentiles, though this pattern was reversed in
the EXTEND dataset. Figures showing these results are available in the supplementary material. In all cases, differences
in efficiency were small, were most noticeable in estimates for extreme worst-case scenarios, and varied in direction across
datasets.

There are several potential explanations for the inconsistency in relative performance for these measures. First, it is
possible that the relative performance of a linearly and statically biased coins varies with either the sample size or the
number or type of covariates. It could also be the case that these results are a statistical artifact driven by the finite number
of simulations performed.

4.5 Additional results concerning parameter selection for MSB and CS-MSB with a
statically biased coin

Upon further analysis of the results of our simulation studies, we discovered that our simulation for examining Desirable
Property 4 also revealed an unexpected pattern in the relationship between 𝛼 and the resulting intervention rate. The
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across three datasets. Bands around median intervention rate show the middle 50% (interquartile range), middle 80% and middle 90% of
intervention rates for a given setting and dataset. The red bordered boxplots illustrate the differences in calibration curves across different
datasets

relationship between 𝛼 and the intervention rate was nonlinear for both MSB and CS-MSB, and depended on both 𝜉 and
the trial dataset the method was being applied to. This relationship was also qualitatively different between MSB and
CS-MSB.

In general, CS-MSB required 𝛼 to be set at a higher value to achieve the same intervention rate as MSB. CS-MSB was
substantially more consistent in its rate of intervention, with less variability in intervention rates for a prespecified value
of 𝛼 (Figure 5).

The requirement of a higher value of 𝛼 in CS-MSB is likely due to the fact that the method uses a pooled imbalance
approach to determine if intervention should occur. CS-MSB effectively “averages” imbalances across covariates, which
naturally inclines BD to tend toward zero as a result of summing positive and negative values to indicate vote direction.
This therefore requires a higher value of 𝛼 to achieve the same sensitivity to imbalance. It is not immediately clear why
CS-MSB has more consistent performance than MSB.

5 DISCUSSION

In this article, we proposed a family of common scale minimal sufficient balance randomization procedures (CS-MSB),
systematically examining one which used a pooled imbalance and statically biased coin approach, and illustrating one with
a pooled imbalance and dynamically biased coin approach. We then used simulation studies to demonstrate that CS-MSB
more efficiently reduces covariate imbalance than MSB, and does not adversely impact either statistical power or Type-I
error. We did not observe any further improvements in our illustration of a dynamically biased coin. We also demonstrated
that CS-MSB is more consistent in the rate at which it intervenes in a trial when compared to MSB.
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There are several potential explanations for observed efficiency improvement. First, by dichotomizing nominal vari-
ables at each randomization to make them compatible with WMW odds, CS-MSB does not intervene in significant
imbalance on nominal variables when there is no chance of intervention improving randomization. This would likely
lead to improved efficiency in CS-MSB even if the method used MSB’s simple voting mechanism. However, this would
only explain the improvements observed in the TNK-I trial dataset. Second, both CS-MSB and MSB implicitly assume
that covariates are not correlated, an assumption which is rarely accurate on real datasets and is not accurate in EXTEND,
TNK-I or TNK-II. This may result in counterintuitive properties, such as where balancing one covariate may unbalance
another, or conversely may rebalance several covariates. By considering all covariates at once, CS-MSB may become more
efficient in the presence of correlated covariates. Finally, the pooled imbalance approach allows CS-MSB to intervene
when multiple covariates agree on bias coin direction, but have not yet become significantly imbalanced. This may allow
CS-MSB to make more efficient interventions, as the method will be more likely to intervene when a single intervention
would correct multiple imbalances.

Our simulation examining the comparative efficiency of MSB and CS-MSB also demonstrated that for both ran-
domization methods, the relationship between 𝛼 and the intervention rate depends on the population used in the
trial. This finding has important implications from a trial design perspective, as it suggests that setting the imbalance
significance threshold 𝛼 based on anticipated behaviors of univariate summary statistics may be unreliable. Instead,
we recommend that the imbalance significance threshold 𝛼 should be set through simulation study. In practice, this
would mean setting 𝛼 to achieve some target intervention rate with a certain probability. For example, setting 𝛼 to
achieve a particular 80th percentile intervention rate would mean accepting a 1-in-5 chance of intervening more often
than the specified rate. This would both eliminate the risk of wrongly considering 𝛼 to be an intuitive proxy for the
intervention rate, and would more accurately represent the inherent stochasticity of the MSB family of randomization
methods.

While we have demonstrated that CS-MSB outperforms MSB, there are several areas where further improvements
could be made. First, neither MSB or CS-MSB provide any sort of guarantee regarding the balance of sample sizes within
treatment arms, meaning that one treatment arm may be randomly allocated more patients than the other. Improvements
to the method which counteract this (eg, providing a burn-in period or combining adaptive randomization with alloca-
tion based on a random, concealed table) would be clinically important. Second, both MSB and CS-MSB assume that
all covariates are uncorrelated, which may be unrealistic in practice. Further improvements may be made by modifying
either MSB or CS-MSB to incorporate information about correlation among covariates. Third, both MSB and CS-MSB are
defined for two-group RCT designs, and cannot be readily applied to multiarm designs. Modifications to the method to
handle multiarm RCT designs would further improve the utility of the randomization procedure. Similarly, extensions
which allow for unequal treatment allocation ratios across treatment arms would also increase the utility of both MSB
and CS-MSB.

Additionally, in this article, we considered CS-MSB using a pooled imbalance approach. While this approach improved
performance when compared to MSB, further research is needed to determine if additional improvements could be
made by applying a different randomization procedure in the MSB family. Likewise, while we performed a head-to-head
comparison between MSB and CS-MSB, we did not compare CS-MSB to other covariate-adjusted randomization proce-
dures. We also did not explore sensitivity analyses using rerandomization tests as is often required by regulatory bodies
for trials which utilize adaptive randomization procedures.1 Further research is also needed to address both of these
points.

Furthermore, the use of a dynamically biased coin is an area which requires a substantial amount of further explo-
ration. While a linearly biased coin did not show consistent improvements over a statically biased coin, there are many
possible functions which could have been applied instead where further improvement may have been observed. Likewise,
the expected bias metric applied in this article assumes an equal weight between the intervention rate and the strength
of the biased coin. Had some other metric been used that differently captured the multifaceted nature of a dynamically
biased coin, the results presented in Section 4.3 may have been different. Both of these present opportunities for future
research.

In summary, in this article, we developed an improvement to the minimal sufficient balance randomization, which
requires less intervention in a trial to maintain the same level of covariate imbalance. Our improved method is also more
consistent than MSB, and does not adversely impact either power or Type-I error.
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