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ABSTRACT

Deciphering the cellular composition in genome-
wide spatially resolved transcriptomic data is a criti-
cal task to clarify the spatial context of cells in a tis-
sue. In this study, we developed a method, CellDART,
which estimates the spatial distribution of cells de-
fined by single-cell level data using domain adapta-
tion of neural networks and applied it to the spatial
mapping of human lung tissue. The neural network
that predicts the cell proportion in a pseudospot, a
virtual mixture of cells from single-cell data, is trans-
lated to decompose the cell types in each spatial bar-
coded region. First, CellDART was applied to a mouse
brain and a human dorsolateral prefrontal cortex tis-
sue to identify cell types with a layer-specific spatial
distribution. Overall, the proposed approach showed
more stable and higher accuracy with short execu-
tion time compared to other computational methods
to predict the spatial location of excitatory neurons.
CellDART was capable of decomposing cellular pro-
portion in mouse hippocampus Slide-seq data. Fur-
thermore, CellDART elucidated the cell type predom-
inance defined by the human lung cell atlas across
the lung tissue compartments and it corresponded to
the known prevalent cell types. CellDART is expected
to help to elucidate the spatial heterogeneity of cells
and their close interactions in various tissues.

INTRODUCTION

Rapid progress in spatially resolved transcriptomics helped
to comprehensively characterize the spatial interaction of
cells in a tissue (1,2). Breakthrough technologies enabled
capturing genome-wide spatial gene expression at a resolu-
tion of several cells (3) to the single-cell (4–6) and even sub-
cellular levels (7). These methods have been used in various
disease models to decipher spatial maps of genes of interest
and culprit cells (8–12). Furthermore, emerging computa-
tional approaches facilitated the spatiotemporal tracking of
specific cells and elucidated cell-to-cell interactions by pre-
serving the spatial context (12–14). However, there is an in-
herent limitation in the spatial transcriptomic analysis that
each spot or bead covers more than one cell in most cases.
Even with a high-resolution technique, a small portion of
several cells can be contained in the same spatial barcoded
region. In addition, a tissue with a high level of heterogene-
ity, such as cancer, consists of a variety of cells in each small
domain of the tissue (15). Thus, the identification of differ-
ent cell types in each spot is a crucial task to understand the
spatial context of pathophysiology using a spatially resolved
transcriptome.

In this regard, recent computational tools have fo-
cused on integrating different types of transcriptomic data,
particularly spatially resolved transcriptomic and single-
cell RNA-sequencing (scRNA-seq) data (14,16–24). These
tools have utilized the cell type signatures or variable genes
defined by scRNA-seq and transferred the cell labels into
spatial transcriptomic data. The majority of the approaches
applied a statistical model or a matrix decomposition to
infer the cell fraction in each spot (18,20–23). Meanwhile,
calculating the proportion of cell types defined by scRNA-
seq data from spots of spatially resolved transcriptomic
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data can be considered a domain adaptation task (25,26).
A model that predicts cell fractions from the gene expres-
sion profile of a group of cells can be transferred to predict
the spatial cell-type distribution.

In this paper, we suggest a method, CellDART, that im-
plements modified adversarial discriminative domain adap-
tation (ADDA) (27) to infer the cell fraction in spatial tran-
scriptomic data. The randomly selected cells from scRNA-
seq data constitute a pseudospot in which the fraction of
cells is known. The neural network model that extracts the
cell fraction from the gene expression of a pseudospot is
adapted to a different domain where spatial transcriptomic
data are present. Consequently, the joint analysis of spa-
tial and single-cell transcriptomic data elucidates the spatial
cell composition and unveils the spatial heterogeneity of the
cells. We utilized the proposed method to provide a resource
for spatial mapping of the human lung cell atlas using the
spatially resolved transcriptome of human lung tissue.

MATERIALS AND METHODS

Human brain cortex data

A publicly available Visium spatial transcriptomics dataset
obtained from the DLPFC of postmortem neurotypical hu-
mans was downloaded from the data repository provided
by the paper (28) [twelve datasets (151 673, 151 508, 151
676, 151 669, 151 674, 151 507, 151 671, 151 672, 151 670,
151 509, 151 510 and 151 670) in this study included 3639,
4384, 3460, 3661, 3673, 4226, 4110, 4015, 3498, 4789, 4634
and 3592 spots with 33 538 genes in common]. The count
matrix for the tissue and brain layer information for each
spot (cortical layers 1–6, white matter, and unknown) was
added. Single-nucleus transcriptomic data acquired from
the DLPFC of a healthy human control group (n = 17) were
utilized for the joint analysis (29). The count matrix for 35
212 cells and 30 062 genes and the cell type annotation were
included in the analysis.

Mouse brain data

Visium spatial transcriptomics dataset for the mouse brain
was downloaded from the 10X Genomics Data Repository.
The ‘Mouse Brain Serial Section (Sagittal-Anterior)’ slide,
which contains 2695 spots and 32 285 genes, was utilized for
the CellDART analysis. For the joint analysis, scRNA-seq
data obtained from the mouse primary visual cortex and
anterior lateral motor cortex were selected. The count ma-
trix was comprised of 23 178 cells and 45 768 genes. The
layer-specific excitatory neuron types [L2/3 IT (intratelen-
cephalic), L4, L5 IT, L5 PT (pyramidal tract), L6b, L6 CT
(corticothalamic), and L6 IT] were determined based on the
markers discovered in a previous study (30).

Mouse hippocampus Slide-seq data

Slide-seq data for mouse hippocampus was obtained from
the Single Cell Portal repository offered by the paper (6).
The spatial data contains a count matrix for 23 264 genes
across 53 173 beads. To infer the cellular composition in
the Slide-seq data, scRNA-seq data of mouse hippocampus

with 52 846 cells and 27 953 genes was utilized for the in-
tegration. The cell labels were determined based on the cell
sub-clustering results derived from independent component
analysis (31).

Normal human lung data

Two normal lung samples were acquired from lung speci-
mens from one patient who underwent surgical resection for
lung cancer. We acquired samples and embedded them in
optimal cutting temperature (OCT) compounds in the op-
erating room and stored them at 80◦C until cryosectioning.
For cryosectioning, samples were equilibrated to −20◦C
with a cryotome (Thermo Scientific, USA). Sections were
imaged and processed for spatially resolved gene expres-
sion using the Visium Spatial Transcriptomic kit (10× Ge-
nomics, USA). The protocol of this study was reviewed and
approved by the institutional review board of Seoul Na-
tional University (Application number: H-2009–081-1158).
‘Lung 1’ consists of 1591 spots and 36, 601 genes, and ‘Lung
2’ consists of 2683 spots and 36 601 genes. Single-cell data
from the normal lung tissue of three subjects were down-
loaded and utilized for the integrative analysis (32). The
count matrix for 65 662 cells and 26 485 genes was included
in the downstream analysis. The cell types were assigned by
representative marker genes and the anatomical location of
the tissue. In addition, the cell types were classified based
on expression profiles and anatomical locations (airway ep-
ithelial, alveoli epithelial, endothelial, muscle stromal, other
stromal and immune cells) (32).

Preprocessing spatial and single-cell datasets

All of the preprocessing steps were performed with Python
(version 3.7) with the Scanpy toolkit (version 1.5.1) (33).
The count matrices for both spatial and single-cell datasets
were normalized with the ‘scanpy.pp.normalize total’ func-
tion such that gene expression was comparable between
spots or cells. For the single-cell data, the counts were
log-transformed (scanpy.pp.log1p) followed by scaling
(scanpy.pp.scale) and dimensionality reduction by principal
component analysis (scanpy.tl.pca). Finally, the cells were
represented with a t-distributed stochastic neighborhood
embedding (t-SNE) plot (scanpy.tl.tsne and scanpy.pl.tsne)
and were named based on the annotation data from publicly
available datasets.

Meanwhile, the top l highly expressed marker
genes for each cell cluster from brain and lung sam-
ples were extracted with the Wilcoxon rank-sum
test (‘scanpy.tl.rank genes groups’) based on the log-
normalized count. Multiple comparison correction with
the Benjamini–Hochberg method was applied, and genes
were ranked by the corrected P-values. All of the cell
type markers were pooled to form cell signature genes
(Supplementary Figure S1A). The intersection between
the cell signature genes and all provided genes from the
spatial data was obtained. The downstream analysis was
performed only with these intersecting genes.

For the next step, k cells were randomly selected from the
mouse or human brain and lung single-cell datasets. Ran-
dom weights were given to each cell to mimic the cases in
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which only the portion of the cells are contained in a spatial
spot (Supplementary Figure S1A). The virtual mixture of
the cells was defined as a ‘pseudospot’. A total of n pseu-
dospots were generated, and the composite gene expression
values were calculated for each pseudospot. Then, the log-
normalized count matrices for single-cell, pseudospot, and
real spot data were scaled such that the value lies between 0
and 1 in each cell or spot.

CellDART: cell type inference with domain adaptation

The modified ADDA algorithm (27) was applied to develop
a model to predict cell type proportions for each spot (Fig-
ure 1A and Supplementary Figure S1B). The training of
neural networks was implemented based on Keras (version
2.3.1), TensorFlow (version 1.14.0), and scikit-learn (ver-
sion 0.24.1) packages. First, a feature embedder that com-
putes 64-dimensional embedding features from the gene ex-
pression data of either real spatial spots or pseudospots
was defined. Since pseudospots and real spots are pre-
sumed to consist of similar cell types, the feature embed-
der was shared between the source (pseudospots) and tar-
get (real spots) datasets. The feature embedder was com-
prised of two fully connected layers, each of which under-
went batch normalization and activation by the exponential
linear unit (ELU) function. The outputs of the first layer
and second layer have 1024 and 64 dimensions, respectively.
Domain and source classifiers were defined such that they
could predict the cell fraction in each spot and discrimi-
nate pseudospots from spots, respectively. The domain clas-
sifier consisted of two fully connected layers. The first layer
with 32-dimensional output was connected to the embed-
ded features. After batch normalization, ELU activation,
and dropout, another layer to discriminate real spots from
pseudospots was applied. The source classifier is directly
connected to the embedded features of the feature extrac-
tor as a one-layer model connected to the feature embed-
der. Therefore, the feature extractor attached to either of
the classifiers was named a domain or source classification
model.

The loss function of the source classifier that predicts
cell type proportions was defined by Kullback–Leibler di-
vergence (KLD). KLD is decreased when the distribution
of predicted and real cell type proportions is similar. Like-
wise, the loss function of the domain classifier was assigned
as binary cross-entropy, a probability that a certain dataset
is correctly allocated to the assigned domain label (pseu-
dospots or real spots).

Ls = K LD (Ys ||S ( f (Xs))) = −
∑

k

Yk,slog
[

S ( f (Xs) , k)
Yk,s

]

Ladv, 1 = −logD
(

f
(
Xp

)) − log [1 − D ( f (Xr ))]

Ltotal = Ls + αLadv,1

Ladv,2 = −logD ( f (Xr )) − log
[
1 − D

(
f
(
Xp

))]
Xp: gene expression of pseudospots, Xr: gene expression
of real spots, k: index of the cell type, Yk,s: proportion of
kth cell type in the pseudospots, f: feature embedder, S:

source classification model, D: domain classification model,
�: weight of loss between the source and domain classifier.

An initialization and two optimization steps were imple-
mented to train the model. The loss functions utilized dur-
ing the training were summarized as the above formulae.
For the initialization of weights of feature embedder and
source classifier, pre-training was performed to predict cell
type proportions from pseudospots. Then the optimization
was performed as an adversarial domain adaptation. First,
the model was trained to minimize Ls as a pre-training pro-
cess. As an adversarial loss, it is typical to train the model
with the standard loss function with inverted labels as in the
above formula. Thus, two optimization processes were ap-
plied (Supplementary Figure S1B). The networks were op-
timized to minimize Ls and Ladv,1 with fixed weights of the
domain classifier. Then, the domain classifier was trained
to minimize Ladv,2 with fixed weights of the feature embed-
der, f, and the source classifier, S. These two processes were
repeated with a training parameter of the number of itera-
tions.

Finally, the trained model, CellDART, predicted the cell
fraction in each spot from the spatial data, and the results
for each cell type were spatially mapped to the tissue by the
‘scanpy.pl.spatial’ function. Additionally, the distribution
of cell type compositions across the brain layer was repre-
sented with the ‘scanpy.pl.stacked violin’ function.

Optimal parameter selection

To search optimal parameters for CellDART, the perfor-
mance of the model was evaluated in different param-
eter settings with DLPFC dataset as a reference. The
DLPFC spatial data contain the brain layer information
(layer 1 to layer 6, white matter, and unknown), and
the single-cell data have ten layer-specific excitatory neu-
ron clusters (Ex 1 L5 6, Ex 2 L5, Ex 3 L4 5, Ex 4 L6,
Ex 5 L5, Ex 6 L4 6, Ex 7 L4 6, Ex 8 L5 6, Ex 9 L5 6,
and Ex 10 L2 4). The layer specificity of excitatory neu-
rons was determined by the cell types identified from the
single-nucleus RNA-seq data (29) with the layer markers
suggested by several studies (34–36). Receiver operating
characteristic (ROC) analysis was performed to determine
whether the spatial cell fraction of excitatory neuron clus-
ters could differentiate the specific cortical layer. For exam-
ple, the spatial composition of Ex 2 L5 was predicted and
the specificity and sensitivity were tested for each threshold
value whether it can assign the spatial spots as belonged to
layer 5.

The performance of CellDART was tested by modulat-
ing the number of pseudospots (n) ranging from 800 to
640 000 (800, 4000, 20 000, 40 000, 80 000, 160 000, 320 000,
640 000). The performance plateaued when n = 20 000
which was approximately five to ten times the number of real
spots in one spatial dataset (Supplementary Figure S2A)
and did not significantly improve when n became larger.
Also, CellDART was implemented for a different number
of markers in each cell cluster (l) ranging from 5 to 160 (5,
10, 20, 40, 80, 160) which corresponds to the total num-
ber of markers from 109 to 1157 (109, 203, 364, 642, 1157,
1402). The performance showed a trend of increase when
l increased (Supplementary Figure S2A). However, the to-
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Figure 1. CellDART analysis in human and mouse brain tissues. (A) Schematic diagram for CellDART analysis. The human dorsolateral prefrontal cortex
(DLPFC) dataset was preprocessed, and the marker genes for each cell cluster were extracted. The shared genes between the pooled cluster markers and
the spatial transcriptomic data were selected for the downstream analysis. Then, 20 000 pseudospots were generated by randomly selecting eight cells from
the single-cell data and giving them random weights. A feature extractor with a source and domain classifier was trained to estimate the cell fraction from
the pseudospot and distinguish the pseudospots from the real spatial spots. First, the weights of the neural network were updated except for the domain
classifier. Next, the data label for the spot and pseudospot was inverted, and only the domain classifier was updated. Finally, the trained CellDART model
was applied to spatial transcriptomics data to estimate the cell proportion in each spot. (B) Spatial mapping of seven layer-specific mouse excitatory neurons
predicted by CellDART. The figure in the top left corner shows the mouse brain tissue slide. Colormaps present the maximum and minimum values for
the corresponding cell fraction.

tal time consumed for calculation gradually increased as
both parameters increased (Supplementary Figure S2B).
The number of cells in a pseudospot was fixed (brain Vi-
sium: k = 8, brain Slide-seq: k = 2 and lung: k = 10) and
other parameters were tuned to obtain an optimal perfor-
mance with an acceptable computation time.

Finally, the number of marker genes for each cell cluster
(l) was set to 20 and 10 for brain and lung tissues, respec-
tively. The number of pseudospots (n) was set to 20 000 and
500 000 for Visium and Slide-seq data. The iteration num-

ber was 3000, the minibatch size was 512, and the learning
rate for the training domain classifier was 0.005. The loss
weights between the source and domain classifiers (�) were
1:0.6 in brain tissues and 1:1 in lung tissues.

Comparison to other tools

For the DLPFC datasets, the performance of Cell-
DART was compared with six other computational tools:
Scanorama (16), Cell2location (20), RCTD (21), SPOT-
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light (23), Seurat (version 3) (17), and DSTG (24). Briefly,
Scanorama and Seurat align the single-cell and spatial
datasets based on the mutual nearest neighbors (MNNs)
between the two. Meanwhile, Cell2location assumes that
the count matrix from spatial data follows a negative bi-
nomial distribution and can be decomposed into a linear
combination of cell type signatures. RCTD postulates that
count in spatial spots follow a Poisson distribution and ap-
plies the maximum likelihood method to estimate cell pro-
portions. Next, SPOTlight utilizes non-negative matrix fac-
torization regression to obtain cell type-specific gene sig-
natures and applies it to infer the cellular composition of
spots. Finally, DSTG generates a graph between the virtual
mixture of cells and the spatial spots and adopts a graph
convolutional neural network to predict spatial cell fraction
from the graph structure. These six toolkits were applied,
and cell density from Cell2location and cell fraction from
Scanorama, RCTD, SPOTlight, Seurat and DSTG were
spatially mapped to the tissue. For Cell2location analysis,
we set the total number of cells, cell types, and groups of cell
types in each spatial spot as 8, 9 and 5, respectively. Next,
for RCTD, we selected ‘full mode’, which does not restrict
the number of cells in each spot. In the case of SPOTlight,
we randomly selected 100 cells per cell cluster and extracted
the top 3000 highly variable genes for the downstream anal-
ysis. For other tools, the default parameters offered by
the user guide were adopted for the downstream analysis.
The ROC analysis was performed in the DLPFC dataset
across 12 slides for discriminating spatial localizing pat-
terns of layer-specific excitatory neurons. AUC values were
compared between CellDART, Scanorama, Cell2location,
RCTD, SPOTlight, Seurat, and DSTG. In addition, as an-
other measure of performance, the significance of AUC was
assessed based on a null hypothesis that AUC is below or
same with 0.5. Wilcoxon rank-sum test was performed to
evaluate whether the predicted neuron fraction in a spe-
cific layer was significantly larger than that in other lo-
cations. Multiple comparison correction was implemented
based on Bonferroni method and corrected P-value <0.05
was considered significant. Finally, the percentage of signif-
icant AUCs were compared across the computational tools.
The statistical analysis and visualization were implemented
with scikit-learn (version 0.24.1), scipy (version 1.6.0), and
matplotlib (version 3.3.4).

Spatial mapping of lung cells to normal lung tissue data: in-
vestigation of the spatial heterogeneity of the cells

The boundary of the tissue structures in two lung samples
(lung 1 and lung 2) was delineated by a pathologist on H&E
staining images, and the spots were classified into 6 do-
mains: alveolar space, bronchial epithelium, fibrous stroma,
immune cluster, terminal bronchiole, and vessels. The un-
certain region of the tissue was named ‘unknown’ and more
specifically ‘unknown stroma’ if the corresponding region
was stromal tissue. After transferring the single-cell clus-
ter labels to the spatial data, the minimum and maximum
cell fraction values across all spots were scaled to 0 and 1,
respectively. The cell types were divided into six categories
based on where the cells were commonly found (32) (‘airway
epithelium’, ‘alveoli epithelium’, ‘endothelial’, ‘muscle stro-

mal’ and ‘other stromal’). The average scaled cell fraction in
each tissue domain according to cell types was visualized
with a seaborn clustermap function (version 0.11.1), and
the cell type categories were color-coded and presented on
the left side. For the next step, the cell types showing highly
different cell fractions across the histological domains were
selected, and their spatial composition was mapped to the
tissue. Cell type selection was performed with the Wilcoxon
rank-sum test, and Benjamini-Hochberg corrected P-values
were computed. The cell types in each tissue domain were
ranked based on a ratio of the average scaled cell fraction in
a specific tissue domain to the rest of the domains. The cell
types with an average scaled fraction <0.2 were excluded
from further analysis. An adjusted P-value <0.05 was con-
sidered significant.

RESULTS

Decomposition of spatial cell distribution with CellDART in
human and mouse brain data

The performance of CellDART was assessed in publicly
available single-nucleus (also considered single-cell data)
and spatial transcriptomic autopsy samples of the human
dorsolateral prefrontal cortex (DLPFC), each of which
was obtained from two different subject groups with no
neurological disorders. Additionally, single-cell and spatial
datasets acquired from the mouse brain were utilized. First,
both single-cell datasets were preprocessed, and the cells
were named after the annotation data provided by the orig-
inal papers (29,30). The 33 and 29 annotated cell clusters
from the human and mouse brains were visualized by t-
distributed stochastic neighbor embedding (t-SNE) plots
(Supplementary Figure S3A, B), and marker genes for each
cluster were extracted (Supplementary Figure S3C, D and
Supplementary Tables S1 and S2). The cell clusters showed
distinct gene expression patterns represented by cell type-
specific marker genes.

A specific number of cells (k = 8) were randomly sam-
pled from the single-cell data with random weights to gen-
erate pseudospots (number of pseudospots = 20 000). Then,
composite gene expression values were computed based on
marker genes (Figure 1A). A neural network was trained
to accurately decompose the pseudospots, and another net-
work, the domain classifier, was trained to discriminate
spots of real spatially resolved transcriptomes from pseu-
dospots. During the training process, the weights of neural
networks were updated to predict cell fractions and fool the
domain classifier to avoid discriminating spots and pseu-
dospots (Figure 1A). As a result, the neural network, source
classifier, was trained to estimate cell fractions in both the
pseudospots and the real spatial spots as an adversarial do-
main adaptation process.

The layer-specific excitatory neuron fraction in each spot
was predicted by CellDART and spatially mapped to the tis-
sue. In the case of mouse brain tissue, seven excitatory neu-
rons showed spatially restricted patterns in a specific cor-
tical layer (Figure 1B). In addition, the 10 excitatory neu-
ron clusters in the human brain presented layer-specific dis-
tribution patterns across the six cortical layers (layers 1–6)
(Figure 2A and Supplementary Figure S4A). Additionally,
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Figure 2. Implementation of CellDART in a human dorsolateral prefrontal cortex dataset. (A) Spatial mapping of 10 layer-specific excitatory neurons
predicted by CellDART. The figure in the top left corner shows the layer annotation for each spatial spot. The layer consists of cortical layers 1 to 6 and
white matter. ‘Nan’ represents the spot without the layer information. Colormaps present the maximum and minimum values for the corresponding cell
fraction. (B) Receiver operating characteristic (ROC) analysis for predicting the layer-specific distribution of excitatory neurons. The computational tools
CellDART, Scanorama, Cell2location, RCTD, SPOTlight, Seurat (version 3), and DSTG which estimate cell types in the spatial spots, were compared by
means of the area under the curve (AUC). The ROC curves for CellDART, Scanorama, Cell2location, RCTD, SPOTlight, Seurat, and DSTG are color-
coded, and AUC values are presented in the lower right corner of each plot. In Seurat, some cell types showed the cell fraction of 0 in all the spots; thus,
the ROC curve was not visualized in those cases.

the spatial density of human non-neuronal cells was esti-
mated with a neural network (Supplementary Figure S4B).
Astrocytes were mainly located in layer 1 and layer 6, while
oligodendrocyte cluster 3 (Oligos 3), which showed an ∼10–
60 times higher cell fraction than the other two clusters (Oli-
gos 1 and Oligos 2), was predominantly localized in white
matter. Endothelial cells, microglia, and macrophages were
spatially distributed across the six cortical layers with low
cell proportions.

Meanwhile, the impact of domain adaptation on the im-
provement of model performance was assessed. The feature
embedder with the source classifier was trained only with
pseudospots and domain adaptation was not applied. The
model without domain adaptation was named ‘NN wo da’.
The cell fraction predicted by ‘NN wo da’ presented spa-
tially localizing patterns in Ex 2 L5 and Ex 5 L5; however,
other cell types showed uneven spatial distributions (Sup-

plementary Figure S5A). ROC analysis was implemented
and the accuracy of CellDART in spatially localizing layer-
specific excitatory neuron fraction was compared with that
of NN wo da (Supplementary Figure S5B). In general,
the performance of NN wo da was inferior to CellDART,
which proves the necessity of domain adaptation to obtain
an optimal result.

Comparison of CellDART with other integration tools in hu-
man brain tissue

The capability of CellDART to accurately assign cell types
in spatial spots was compared with that of six computa-
tional tools: Scanorama, Cell2location, RCTD, SPOTlight,
Seurat version 3, and DSTG. First, the methods were em-
ployed to decipher the spatial distribution of excitatory neu-
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rons and non-neuronal cells in the DLPFC 151673 dataset
and the results were qualitatively assessed.

Scanorama showed a few excitatory neurons of corti-
cal layer-specific distribution patterns, whereas Ex 2 L5,
Ex 4 L6, Ex 9 L5 6 and Ex 10 L2 4 excitatory neurons
were distributed differently from the known cortical dis-
tribution (Supplementary Figure S6A, B). Astrocytes and
oligodendrocytes did not show consistent cell distribu-
tion patterns across the cell subtypes. Endothelial cells,
microglia, and macrophages were predominantly local-
ized in layer 1, layer 6, and the white matter according
to the Scanorama analysis (Supplementary Figure S6C).
In the case of Cell2location, excitatory neurons showed
layer-specific distribution patterns except for Ex 5 L5 and
Ex 9 L5 6 where the distribution was uneven and not re-
stricted to layer 5 and layers 5–6, respectively. Overall,
non-neuronal cells showed a layer-specific localization pat-
tern; however, Astros 2 and Astros 3 exhibited heteroge-
neous patterns in the same layer (Supplementary Figure
S7). Next, for RCTD, a few excitatory neurons (Ex 2 L5
and Ex 10 L2 4) exhibited a high cell fraction in the cor-
responding cortical layer of a known layer specificity; how-
ever, other excitatory neurons presented heterogeneous pat-
terns of distribution (Supplementary Figure S8A, B). Ad-
ditionally, in the non-neuronal cells, the spatial distribu-
tion was relatively uneven and not layer-specific except
for three oligodendrocyte cell clusters (Supplementary Fig-
ure S8C). SPOTlight exhibited spatially restricted pat-
terns of distribution for some excitatory neurons and non-
neuronal cells. However, Ex 1 L5 6, Ex 2 L5, Ex 3 L4 5,
Ex 6 L4 6, Ex 9 L5 6, Astros 2, Astros 3, and Oligos 3
were not layer-specific or did not show even distribution
in the same layer (Supplementary Figure S9). Seurat ver-
sion 3 was successful in discriminating layer-specific distri-
bution patterns for a few cell types (Ex 5 L5, Oligos 1 and
Oligos 3). In other cell types, the cell fraction was pre-
dicted to be 0 in all the spots or spatial distribution did not
exhibit layer-specific localization patterns (Supplementary
Figure S10). Finally, DSTG could predict spatial patterns
of a few excitatory neuron types (Ex 3 L4 5, Ex 5 L5 and
Ex 10 L2 4). However, the spatial distribution in the rest of
the cell types was not localized to the corresponding layer
and showed uneven patterns (Supplementary Figure S11).

Receiver operating characteristic (ROC) curve analy-
sis was implemented in 151673 tissue to quantitatively
compare the performance of the seven different tools
in predicting the layer-specific distribution of excitatory
neurons (Figure 2B). The spatial spots in the DLPFC
data were classified into a specific layer, layer 1 to layer
6, white matter, or unknown, with manual annotation
data (28) based on the tissue morphology and marker
genes (34). The ROC curves for 10 excitatory neurons re-
vealed that CellDART has overall good prediction accu-
racy, with an area under the curve (AUC) ranging from
0.629 in Ex 7 L4-6 to 0.759 in Ex 4 L6. In the case of
Cell2location and SPOTlight, a few cell types presented
AUC over 0.800 (Cell2location: Ex 7 L4 6, Ex 8 L5 6 and
Ex 10 L2 4; SPOTlight: Ex 10 L2 4) (Supplementary Fig-
ure S12A). However, some of the cell types presented low
accuracy with AUC below 0.600. Scanorama, RCTD, and
DSTG exhibited relatively low discriminative accuracy in

several cell types with AUCs <0.500 and comparable AUCs
with CellDART for a few cell types. Meanwhile, Seurat
could compute the spatial cell fraction in 3 out of 10
cell types, and among those, two of them showed AUC
<0.600. The confidence interval of the AUC was generated
by bootstrapping, and the results were compared among
the seven methods (Supplementary Figure S12B). In gen-
eral, CellDART showed robust performance in predict-
ing layer-specific localization patterns across all excitatory
neurons.

Next, the performance of CellDART was further val-
idated across 12 Visium datasets acquired from human
DLPFC. The AUC values were evaluated for each layer-
specific excitatory neuron type (Figure 3A) and all cell
types (Figure 3B). CellDART showed significantly supe-
rior performance to other computational methods except
for Cell2location in which median AUC values were simi-
lar (CellDART: 0.674 and Cell2location: 0.679). Additional
comparison was performed to evaluate how stably the layer
specificity can be predicted for each cell type. The percent-
age of significant AUC of ROC curves was calculated with
a null hypothesis of the AUC ≤0.5. CellDART (106/120)
presented a higher number of the significant AUC of ROC
than Cell2location (100/120) as well as other methods (Fig-
ure 3C). Meanwhile, the total running time per slide (slide
151673) was compared between the tools and CellDART
was ∼20 times faster than Cell2location (CellDART: 212 s
and Cell2location: 4479 s). The running time of CellDART
was the shortest among the methods (Figure 3D). In sum-
mary, CellDART exhibited the most stable performance on
predicting layer specificity of cell types with the shortest
computational time for predicting distribution patterns of
brain cells.

Application of CellDART in Slide-seq data

The capability of CellDART was evaluated in Slide-seq data
to decompose cellular proportion in each spatial bead. Cell-
DART could precisely localize the cells, especially for CA1,
CA2, CA3 and dentate principal cells, and entorhinal cor-
tex, which are known to be restricted in specific anatomical
locations (Figure 4) (37). Also, astrocytes are found to have
high density in stratum oriens and stratum radiatum and
oligodendrocytes in corpus callosum as previously reported
(38–40). Although the entorhinal cortex is not included in
the view, the corresponding cell type showed a high propor-
tion in the cortical layers of the slide. It is partly explained
by the overlap of transcriptional signatures across cortical
neurons in different regions (41). In short, CellDART can be
applied to spatial transcriptome with different spatial reso-
lutions.

Discovery of spatial heterogeneity of human lung tissue with
CellDART

CellDART was further applied to normal lung spatial tran-
scriptomic data. Human lung tissue was obtained from one
patient who underwent lobectomy for surgical resection of
lung cancer. The two normal lung tissues were dissected far
from the tumor and pathologically confirmed to have no
tumor cells (Supplementary Figure S13). The demographic
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Figure 3. Validation of CellDART across 12 tissue slides of DLPFC. (A, B) Boxplots for comparison of performance in seven computational tools. The
cellular composition of 10 layer-specific excitatory neuron types was predicted by seven different approaches. Then, the layer classifying accuracy measured
using AUC was compared between the methods. (A) The boxplot for each cell type shows the AUC values across the 12 tissue slides of DLPFC. In Seurat,
some cell types showed the cell fraction of 0 in all the spots and AUC values were not plotted in those cases. (B) The AUC values for the 10 neuron types
across the 12 slides were pooled and their distribution in seven toolkits was visualized with violinplots combined with boxplots. Wilcoxon signed-rank
test was performed between AUC values from CellDART and those from other computational tools. Statistical significance was visualized on top of the
violinplots (ns: not significant, ****P-value < 10–4). (C) The percentage of significant AUC values of ROC curves (statistical testing for AUC > 0.5) were
compared across the seven tools and visualized with a barplot. (D) The total running time per tissue slide (Slide 151673) was calculated for the seven tools
and visualized with a barplot. The number on top of each barplot represents the computing time (second) of each tool.

features of the patient are summarized in Supplementary
Table S3. The publicly available human lung cell atlas data
were used for spatial mapping of lung cell types using Cell-
DART. They consisted of scRNA-seq from three human
normal lung tissues (32). The single-cell data were embed-
ded in low-dimensional space by a t-SNE plot, and 57 cell
clusters showed discrete gene expression patterns (Supple-
mentary Figure S14A). The marker genes selected in each
cell cluster were pooled and utilized in the downstream

analysis (Supplementary Figure S14B and Supplementary
Table S4). After the generation of pseudospots, CellDART
was trained to assign the proportion of cells in the real spa-
tial spots. The tissue slides from two spatial datasets (lung
1 and lung 2) were manually segmented, and each spot was
classified into seven categories: alveolar space, bronchial ep-
ithelium, fibrous stroma, immune cluster, terminal bronchi-
ole, vessels, and unknown region (Figure 5A, B). In addi-
tion, the cell types were classified into five categories based
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Figure 4. Application of CellDART in mouse hippocampus Slide-seq data. Spatial mapping of 9 hippocampal cell fractions on the Slide-seq data. The figure
in the top left corner shows the log-transformed total count in each bead. Colormaps present the maximum and minimum values for the corresponding
log-transformed count or cell fraction.

on a previous study (32). An average scaled cell proportion
of spots in the same tissue domain was calculated, and the
values were expressed with heatmaps.

In both the lung 1 and lung 2 datasets, each cell type
showed different distribution patterns across the segmented
tissue domains (Figure 5C, D). Among the ‘airway epithe-
lial’ cells (blue color on the left side of the heatmaps), prox-
imal ciliated, ciliated, mucous, and club were mainly lo-
calized in the bronchial epithelium or terminal bronchiole.
‘Alveoli epithelial’ cells (orange color) were localized in the
alveolar space of lung 2 data. ‘Muscle stromal’ cells (red
color) were mainly distributed in the unknown stroma in the
lung 1 data and terminal bronchioles or vessels in the lung
2 data. ‘Immune’ cells (brown color), particularly B-cells,
monocytes, and dendritic cells, were predominantly located
in the immune cluster tissue domain. Finally, ‘endothelial’
and ‘other stromal’ cells did not present spatially localized
patterns of distribution.

For the next step, cell types that showed highly differ-
ent cell fractions across the tissue domains were selected
(Supplementary Table S5). The top 7 cell types were ranked
by the ratio of the scaled cell fraction in the specific tissue
domain compared to the other domains and were mapped
to the tissue (Figure 6A, B). The cell types with an aver-
age scaled cell fraction in the domain <0.2 were excluded.
For lung 1 tissue, ‘proximal basal’ and ‘proximal ciliated’
cells, which were previously described as ‘airway epithe-
lial’ cells (blue color), were predominantly distributed in the
bronchial epithelium or terminal bronchiole tissue domain
(Figure 6A). Most ‘immune’ cell types (brown color) were
localized in the immune cluster domain except for ‘classi-
cal monocytes’, which are commonly found in the bronchial
epithelium. In lung 2 tissue, ‘ciliated’, ‘proximal ciliated’,
‘club’, and ‘mucous’ cells, which are included in ‘airway ep-
ithelial’ (blue color) cells, were mainly located in the termi-
nal bronchiole domain (Figure 6B). ‘Capillary intermediate
2’ included in the ‘endothelial’ cell type (green color) was
localized in the alveolar space domain, while another en-

dothelial cell type, ‘artery’, was mainly located in the fibrous
stroma and vessels. Additionally, ‘alveolar epithelial type 2’
in the ‘alveoli epithelial’ (orange color) was predominantly
distributed in the alveolar space domain. In summary, Cell-
DART could precisely localize the spatial distribution of
heterogeneous cell types in normal lung tissue.

DISCUSSION

CellDART, which adapts the domain of single-cell and spa-
tial transcriptomic data, could be flexibly applied to brain
and lung tissues to decompose the spatial distribution of
various cell types. The suggested approach was capable of
accurately predicting the layer-specific localization of exci-
tatory neurons and non-neuronal cells in the brain. Addi-
tionally, CellDART was superior to other computational
tools, Scanorama, Cell2location, RCTD, SPOTlight, Seu-
rat and DSTG in spatially localizing multiple excitatory
neuron subtypes. Compared to Cell2location which showed
similar performance in terms of AUC, CellDART was 20
times shorter in calculation time and it showed stable per-
formance considering the number of significant AUCs over
0.5 to predict layer-specific neurons. However, no method
showed a totally higher performance across all cell types,
though the overall performance was higher in CellDART or
Cell2location. In this regard, evaluation of various tools is
required to assure the predicted location results, especially
in the spatial datasets with no ground truth. Notably, the
short running time of CellDART will serve as an advantage
in the case where the multiple tools have to be tested as well
as analyses to be performed in multiple spatial transcrip-
tomic data. Besides, CellDART could be applied to Slide-
seq data to estimate spatial cell compositions. Finally, our
domain adaptation method deciphered the spatial distribu-
tion patterns of various lung cells across the different tissue
compartments.

Since tissues consist of variable cells, spatial mapping of
various cell types is crucial to understanding functions and
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Figure 5. Application of CellDART in human lung data to decipher the tissue microenvironment. (A, B) Segmentation of the histological structures in
normal lung tissue (A) 1 and (B) 2. The tissue was divided into six domains: alveolar space (capillary pneumocyte), bronchial epithelium, fibrous stroma,
immune cluster, terminal bronchiole, and vessels. Uncertain stromal tissue was defined as ‘unknown stroma’, and the other unspecified areas were defined
as ‘unknown’. (C, D) Heatmaps for the average scaled cell fraction in each histological domain of (C) lung 1 and (D) 2 tissues. The cell types were classified
into six categories (‘alveolar epithelial’, ‘alveoli epithelial’, ‘endothelial’, ‘muscle stromal’, ‘other stromal’ and ‘immune’) based on the original paper of
the human lung cell atlas (32) and color-coded on the left side of the heatmaps. Additionally, hierarchical clustering was performed based on cell fraction
profiles across the tissue compartment to visualize the similarity between the cell types.

pathophysiology. As examples of brain and lung tissues in
our results, deciphering layer-specific cell types and tissue
compartments associated with specific cell types could be
a resource to understand the underlying biology. Further-
more, although a simple approach using a priori cell type
markers of specific cells could be used to understand brief
patterns of cell types, tissues with complex and heteroge-
neous cell types such as the lung require spatial mapping of
precisely defined cell types based on single-cell level studies.

CellDART could be adopted for spatial transcriptomic
data to portray the cellular landscape of the tissue by pre-
serving the spatial context. In the brain, many cell types

have their own regional identities, and the heterogeneous
cells in each location shape distinct functional character-
istics (42–44). Therefore, it is crucial to precisely decom-
pose brain cell types in spatial transcriptomic data to com-
prehensively analyze the spatial crosstalk among cells. In
the mouse brain tissue, layer-specific excitatory neurons re-
vealed localized patterns of distribution across the cortical
layers (Figure 1B). Also, when applied to Slide-seq data,
CellDART was successful in mapping various hippocam-
pal cell types into anatomically relevant positions (Fig-
ure 4). Additionally, in the validation study with human
DLPFC tissue, not only layer-specific excitatory neurons
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Figure 6. Spatial compositions of tissue compartment-specific cell types in the human lung. (A, B) Spatial mapping of the lung cell fraction for the top 7
cell types predominant in a specific tissue compartment of the (A) lung 1 and (B) 2 datasets. The cell types were ranked based on the average scaled cell
fraction in a specific tissue domain compared to the other domains. The figure in the top left corner shows the classification of the tissue domain for each
spatial spot. Colormaps present the maximum and minimum values for the corresponding cell fraction.

but also glial cells such as astrocytes and oligodendrocytes
showed spatially restricted patterns (Figure 2 and Supple-
mentary Figure S4B). Three astrocyte subtypes, Astros 1,
Astros 2, and Astros 3, were predominantly located in L1
and L6. It has been reported that astrocytes form cortical
layer-specific morphological and gene expression features
(42,45,46); however, the abundance of excitatory neurons
in the mid cortical layers may have masked the presence of
diverse astrocyte populations. Meanwhile, one of the oligo-
dendrocyte subtypes, Oligos 3, which presented a higher ab-
solute cell fraction than the other subtypes, was localized
in the white matter. This finding is in line with a previous
study showing that oligodendrocytes are highly restricted

in white matter compared to gray matter (39). On the other
hand, the spatial distribution of glial cells did not match
the known localization patterns or presented heterogeneous
distribution in Scanorama, Cell2location, and DSTG (Sup-
plementary Figures S6, S7 and S11). In the case of RCTD,
SPOTlight, and Seurat, oligodendrocytes showed strong lo-
calization patterns in white matter; however, other glial cells
did not present a layer-specific distribution (Supplementary
Figures S8-S10).

Our suggested method, CellDART, was further applied
to human lung tissues where a mixture of various cells was
present across the tissue compartments (32). The cell types
that exhibited a high proportion in a specific tissue domain
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corresponded with a previous paper presenting the cell type
predominance in the lung compartments (Figures 5 and 6).
Notably, cell types that are included in the same category as
divided by airway and alveoli epithelial, endothelial, muscle
stromal, other stromal, and immune cells presented similar
spatial localization patterns (Figure 5C, D). Next, the spa-
tial overlap between cell types from different categories was
investigated. The two alveolar epithelial cell types (‘alveo-
lar epithelial type 1, 2’) presented similar spatial correlation
patterns with ‘capillary’ and ‘capillary aerocyte’ included
in endothelial cell types (Supplementary Figure S15). It is
in line with the previous finding that those cell types are
co-localized at the alveoli structure (32). On the contrary,
‘macrophage’ which is the major immune cell population in
the normal lung, showed distinct spatial distribution com-
pared with alveolar epithelial cells or endothelial cells (Sup-
plementary Figure S15). Different patterns of correlation
of immune cells in two different tissues were possibly due
to immune cells not having compartmentalized patterns of
distribution and showing low cellular proportion in the nor-
mal lung tissue (47).

Meanwhile, when the top 7 highly localized cell types in
each tissue compartment were listed, the selected cell types
were shared between the lung 1 and lung 2 tissues (Sup-
plementary Table S5). More specifically, for the alveolar
space tissue domain, three alveolar epithelial cells (‘alve-
olar epithelial type 1, 2’ and ‘signaling alveolar epithelial
type 2’) and two capillary cells (‘capillary intermediate 2
and ‘capillary aerocyte’) overlapped in both tissues. The
cell types were also shared in the fibrous stroma (‘fibromy-
ocyte’, ‘mesothelial’ and ‘myofibroblast’), immune cluster
(‘B’, ‘OLR1 + classical monocyte’, ‘EREG + dendritic’, and
‘plasmacytoid dendritic’), and terminal bronchiole (‘prox-
imal basal’, ’proximal ciliated’, ‘differentiating basal’ and
‘ciliated’) tissue domains. In short, CellDART can accu-
rately assign prevalent cell types in the tissue compartments
and is reproducible across replicates of the tissue. Consid-
ering the heterogeneous cell types in the lung, our resource
of spatially resolved cell types derived from human lung tis-
sue data provides the spatial distribution of cell types and
may be used as controls to analyze pathologic patterns of
various lung diseases.

There are several important issues to consider before ap-
plying CellDART to transfer cell labels. First, the density
of cells may vary in the different regions of the tissue. In
our method, the sampled number of cells in a pseudospot
is fixed during the training; however, the domain adapta-
tion process aligns the pseudospot to the spatial data, and
the impact of spatial cell density variance on the result may
be attenuated. In addition, the small population of cells
in the spatial data may be neglected during the prediction
of the cell proportion. The proportion of those cell types
can be masked due to other predominant cell types in the
spatial spots. In that case, CellDART can be implemented
for the corresponding subpopulation of cells by extract-
ing the marker genes for the subclusters. Lastly, CellDART
adopts a shared feature embedder between pseudospots and
real spots in the adversarial domain adaptation. There have
been several deep learning-based domain adaptation ap-
proaches that have differences in feature embedders as well

as training methods (48). Notably, our approach used the
shared feature embedder considering the similar features
representing cell types between pseudospots and real spots.
Though CellDART showed robust performance with stable
training results, there could be room for improvement by
finding optimized domain adaptation methods among var-
ious recently developed approaches.

In conclusion, CellDART is capable of estimating the
spatial cell compositions in complex tissues with high levels
of heterogeneity by aligning the domain of single-cell and
spatial transcriptomics data. The suggested method may
help elucidate the spatial interaction of various cells in close
proximity and track the cell-level transcriptomic changes
while preserving the spatial context.
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Seven publicly available datasets were utilized in this
study. First, mouse brain spatial data was acquired
from https://support.10xgenomics.com/spatial-gene-
expression/datasets and single-cell data from https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115746.
Second, human DLPFC spatial data was down-
loaded from http://research.libd.org/spatialLIBD/ and
single-cell data from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE144136. Third, mouse hip-
pocampus Slide-seq data was downloaded from https:
//singlecell.broadinstitute.org/single cell/study/SCP815
and single-cell data from http://dropviz.org/. Lastly,
human normal lung single-cell data was obtained from
https://www.synapse.org/#!Synapse:syn21041850.

The human lung spatial data was acquired from the nor-
mal lung tissue of a lung cancer patient in Seoul National
University Hospital with informed consent. The data was
uploaded in Gene Expression Omnibus (GSE172416).

Python source code and R wrapper function for Cell-
DART are uploaded on https://github.com/mexchy1000/
CellDART.
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