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Abstract: To investigate the impact of polymer viscoelasticity on microscopic remaining oil produc-
tion, this study used microscopic oil displacement visualisation technology, numerical simulations in
PolyFlow software, and core seepage experiments to study the viscoelasticity of polymers and their
elastic effects in porous media. We analysed the forces affecting the microscopic remaining oil in
different directions, and the influence of polymer viscoelasticity on the displacement efficiency of
microscopic remaining oil. The results demonstrated that the greater the viscosity of the polymer,
the greater the deformation and the higher the elasticity proportion. In addition, during the creep
recovery experiment at low speed, the polymer solution was mainly viscous, while at high speed it
was mainly elastic. When the polymer viscosity reached 125 mPa·s, the core effective permeability
reached 100 × 10−3 µm2, and the equivalent shear rate exceeded 1000 s−1, the polymer exhibited
an elastic effect in the porous medium and the viscosity curve displayed an ‘upward’ phenomenon.
Moreover, the difference in the normal deviatoric stress and horizontal stress acting on the micro-
scopic remaining oil increased exponentially as the viscosity of the polymer increased. The greater
the viscosity of the polymer, the greater the remaining oil deformation. During the microscopic
visualisation flooding experiment, the viscosity of the polymer, the scope of the mainstream line, and
the recovery factor all increased. The scope of spread in the shunt line area significantly increased,
but the recovery factor was significantly lower than that in the mainstream line. The amount of
remaining oil in the unaffected microscopic area also decreased.

Keywords: polymer; viscoelasticity; microscopic remaining oil; force analysis; oil displacement effect

1. Introduction

Polymer flooding can greatly improve the oil recovery from waterflooding develop-
ment oilfields because the higher viscosity of polymer solutions can effectively improve the
oil–water mobility ratio, alleviate the conflicts between layers, improve the fluid absorption
profile, and enhance displacement [1–3]. Moreover, the viscoelastic effect of the polymer
solution can effectively mobilise the remaining oil after waterflooding, improve the oil
displacement efficiency, and significantly increase the oil recovery [4–8]. Presently, the
Daqing oilfield is the world’s largest polymer flooding application block. The annual
polymer flooding oil production accounts for more than 30% of the total oil production.
Polymer flooding has great potential for increasing oil production [9–13].

Although polymer flooding has been utilised for more than 40 years, there is still
controversy regarding the mechanism of the viscoelastic effect of polymers in the process
of percolation [14–18]. The focus of previous studies has been on the impact of polymer
viscoelasticity on the oil displacement effect and the critical conditions under which the
polymer solution can exhibit elastic effects. When the polymer viscosity is low, the vis-
coelastic effect cannot occur, and when the viscosity is too high, the viscoelastic effect is
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also impaired. The injection performance and equivalent shear rate in porous media also
have significant impacts on viscoelastic performance [19–22]. Therefore, the rational use of
the viscoelasticity of a polymer can maximise the oil displacement efficiency at a relatively
low polymer dosage. This is of immense significance for the efficient development of oil
reservoirs [23–25].

To describe the impact of the polymer viscoelastic effect on the microscopic oil dis-
placement effect more accurately, scholars worldwide have used different methods and
theories to study the viscoelasticity of polymers [26–28]. The elastic effect of a compound
solution is mainly investigated through experiments that have attracted substantial atten-
tion. Gogarty and Levy studied the flow of viscoelastic polymer solutions in a porous
medium [29–33]. Several comparison schemes confirmed that the total pressure drop in the
flow is affected by the viscosity and elasticity. Furthermore, the Darcy equation has been
modified to separately calculate the fluid. The viscosity and elastic pressure drop render
this formula suitable for elastic non-Newtonian fluids. Doughty theoretically studied the
four constitutive models of Oldroyd, Pao, Bogue, and BKZ to calculate linear rheological
parameters. By fitting the rheological experimental data and theoretical calculations, the
BKZ constitutive model has been used to analyse the rheology of the polymer solutions, as
described below. Garrouch used artificial glass bead cores and Bailey cores were used for
percolation experiments, which proved that a polymer solution is not only viscous but also
elastic [34–37]. When using the Debra number to describe viscoelastic flow, a dimensional
viscous number has been proposed to describe the viscoelastic flow of a polymer solution,
which has been verified by fitting based on experimental data [38]. The above studies
have conducted innovative research on the theory of polymer seepage in porous media.
However, the analysis of polymer viscoelasticity is inadequate, with only macroscopic
theoretical analysis and little experimental verification. The effect of different viscoelastic
polymers on microscopic remaining oil production is still unclear, and PolyFlow software
has not been used to numerically simulate the force of different viscoelastic polymers on
microscopic remaining oil [39]. It is unfeasible to comprehensively analyse the polymer
from both macroscopic and microscopic aspects to determine the effects of viscoelasticity
on oil displacement.

The purpose of this study was to apply microscopic visualisation oil displacement
technology combined with numerical simulation technology and an indoor core seepage
experiment to comprehensively analyse the influence of polymer viscoelasticity on the
microscopic oil displacement effect. Therefore, we chose the polymer applied in the Daqing
oilfield as the research object. Through a creep recovery experiment and an evaluation
of rheological properties, the viscosity and elasticity of polymer solutions with different
viscosities were quantitatively characterised. A core experiment was used to describe the
elastic effect of the polymer solution based on changes in the polymer solution’s viscosity
in the porous medium. PolyFlow software was used to calculate the normal deviatoric
stress and horizontal stress difference of the polymer solutions with different viscosities in
simplified micropores. The dynamic images collected by microscopic visualisation of oil
displacement technology illustrated the influence of different viscoelastic polymers on the
microscopic oil displacement effect.

2. Materials and Methods
2.1. Materials

Chemicals: Partially hydrolysed polyacrylamide with a molecular weight of 25 million
and an effective content of 90% was produced by Daqing Refining & Chemical Company
(Daqing, China).

Experimental core: The experimental cores included natural cores with a length of
10 cm, diameter of 2.5 cm, and effective permeability of 50, 100, or 150 × 10−3 µm2.

Microscopic visualisation model of glass etching: Photochemical etching technology
was used to create a photoetched glass model. A real pore structure photo of the cast sheet
was placed on the glass coated with photosensitive material, and the pore outline pattern
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was copied onto the glass after exposure. The exposed glass template was then treated
with hydrofluoric acid to show the impression of the pore structure, and a cover plate was
added and sintered at a high temperature. The model, with a size of 40 mm × 40 mm, was
developed by a professional company.

Oil and water: Simulated formation water: The NaCl content of clean water was
950 mg/L, while that of sewage was 4500 mg/L. All systems used clean water to prepare
the mother liquor and sewage to dilute the target liquid and model saturated water. Sewage
was also used in the displacement experiments. Experimental oil: Simulated oil prepared
at a certain ratio between crude oil and kerosene had a viscosity of 10 mPa·s at 45 ◦C.

2.2. Experimental Methodology
2.2.1. Core Flow Experiment

A HAKERS150 rheometer was used to detect the rheology of the polymer solution,
and the elastic effect of the polymer in the porous medium was characterised based on the
results of the indoor core experiment. Cores with effective permeabilities of 50, 100, and
150× 10−3 µm2 were saturated with simulated formation water. The polymer mother liquor
was prepared with clear water with an NaCl content of 950 mg/L. Simulated formation
water with an NaCl content of 4500 mg/L was used to prepare the target solution, and
polymer solutions with viscosities of 40, 70, 125, and 215 mPa·s were prepared. Flow
experiments were then initiated for cores with different permeabilities at displacement
rates of 8, 16, 32, 64, and 128 mL/h. Utilizing this formula, the displacement rate was
converted into the shear rate of the polymer solution in the porous medium. At the outlet
end, the displacement fluid was used to test its viscosity, and the viscoelastic characteristics
of polymer migration in the porous medium were described according to the change in the
viscosity of the solution.

2.2.2. Analysis of Force and Deformation of Microscopic Remaining Oil

To perform numerical simulation calculations and analyse the flow field, it is necessary
to simplify the microchannels with complex shapes in the core. In this study, the flow
channel and remaining oil model in the two-dimensional flow field after the flow channel
were simplified. The physical model was abstracted and simplified. It was assumed that the
displacement fluid flowed between two infinite parallel plates with only one inlet and one
outlet. It is assumed that the length of the flow channel in Figure 1 is L = 100 µm, the width
of the flow channel is H = 20 µm, and the remaining oil size is set according to the simulation
conditions. The displacement fluid flows under the effect of the pressure difference in the
x-direction; the effect of gravity is neglected, and the boundary layer is ignored. Presuming
that the flow channel is smooth, the interface between the displacement phase and oil is a
moving boundary that changes with time. When calculating the microscopic remaining oil
deformation, one can assume that three-phase contact points A and B are fixed [40–42].
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1. Basic equation.

The continuity equation is an expression of the law of conservation of mass for a
system where a fluid is applied to the control body. Its differential form is as follows:

dρ

dt
+ ρdivu = 0 (1)

where ρ represents the density of the fluid (g/cm3) and u represents the velocity of the fluid
particles (m/s).

As both the continuous phase (displacement fluid) and dispersed phase (oil) are
incompressible fluids, ρ = C. Thus, the continuity equation is deformed as follows:

∇ · u = 0 (2)

As the interface is a moving boundary, the effect of interfacial tension is considered in
the equation of motion. The equation of motion is expressed as follows:

∂(ρu)
∂t

+∇ · (ρu) = ∇ · T +
∫
∂B

dxBκnσδ(x− xB) (3)

where σ represents the interfacial tension between the polymer solution and the oil (mN/m;
considered as a constant value in this study); ∂B represents the remaining oil surface
including point xB; κ represents the curvature of the remaining oil surface; n represents
the external method of the remaining oil surface to the unit vector; δ(x−xB) represents the
second-order δ function; and T represents the stress tensor [43].

In this study, the upper-satellite Maxwell constitutive equation was used to describe
the seepage characteristics of a displacement fluid in simplified pores. The constitutive
equation used was as follows:

τik + λ
∇

τik = η0 Aik (4)

where λ is the relaxation time (s), η0 is the zero-shear viscosity (Pa·s), A is the first-order

Rivlin–Ericksen deformation tensor, and
∇

τik is the upper satellite derivative.
In the constitutive equation:

Aik =
√

gkkgii Aik√
gkkgii

= Aik = vi,j + vj,i =
∂vi
∂xj

+
∂vj

∂xi
(5)

The upper satellite derivative is:

∇
τik =

∂τik

∂t
+ vm ∂τik

∂xm − τmk ∂vi

∂xm − τim ∂vk

∂xm (6)

2. Numerical solution method.

By solving the flow equation, the stress and horizontal stress difference of the remain-
ing oil can be calculated. When describing the deformation of the microscopic remaining oil,
assuming that the remaining oil is in a static state, calculating the flow field of the remaining
oil during its displacement by the polymer solution is a steady problem. However, when the
remaining oil deforms under the continuous displacement of the polymer solution, it is an
unsteady problem, which involves the deformation and reconstruction of the liquid–liquid
interface. The polymer solution has complex rheological properties and flow equations.
Thus, it is necessary to consider both the interfacial tension and time-varying properties.

As the interface between the displacement fluid and the remaining oil changes dynam-
ically during the displacement process, the deformation of the oil–water interface must be
captured by an interface tracking method. In this study, the Lagrange interface-tracking
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method was used to track and reconstruct a two-phase interface. During this method, the
interface position of the closed curve is described by parameters. The dynamic interfacial
deformation of oil and water changes with the movement of the closed curve. Mark points
were set on the closed curve, which were used to track the position change of the interface.
Lagrange multipliers can accurately determine the changes in the moving interface and
prevent the spread of the value [44].

3. Boundary conditions.

Assuming that the remaining oil is stationary, the calculation of the deviatoric stress
and horizontal stress difference acting on the remaining oil is a steady-state problem, and
only boundary conditions need to be considered. The inlet and outlet flows were used in
this study, and the rest were treated as wall surfaces. The deformation of the remaining
oil under the action of a displacement fluid is an unsteady-state problem. At the interface
between the displacement fluid and remaining oil, the interface conditions are satisfied,
and the tangential stress and velocity are continuous. In this study, it was assumed that
the remaining oil and rock contact points A and B do not move. Thus, the remaining
microscopic oil does not initially deform.

2.2.3. Microscopic Visualisation Flooding Experiment

To study the influence of polymer viscosity on the microscopic oil displacement
effect, polymer solutions with different viscosities were prepared to conduct microscopic
visualisation experiments, and a Hacker rheometer was used to test the viscosity. The
viscosity–concentration relationship is shown in Table 1.

Table 1. Viscosity of polymer solutions with different molecular weights and concentrations.

Polymer Molecular Weight Polymer Concentration
(mg/L) Viscosity (mPa·s)

25 million 870 40
25 million 1500 70
25 million 2000 125
25 million 2500 215

The polymer solution was configured according to Table 1, and the experimental steps
were as follows: (1) The microscopic visualisation model was dried and weighed. Then, a
vacuum pump was used to vacuum the saturated simulated oil, the weight of the model
after saturation with oil was determined, and the pore volume and initial oil saturation
was calculated based on the mass difference before and after the model was saturated with
oil. (2) After saturation with oil, the model was placed in a 45 ◦C thermostat for 48 h. (3)
After removing the model from the thermostat, the water drive was tested first, and the
simulated formation water was used for constant rate displacement (0.03 mL/h). When the
oil was displaced to the outlet end of the model and no oil was produced, the microscopic
visual image analysis system was used to calculate the recovery factor in the model at this
time. (4) After water flooding, flooding was conducted with the polymer with a viscosity
of 40 mPa·s, and no oil was produced after displacement to the outlet. The recovery factor
in the model after polymer flooding was then calculated. The polymer concentration
viscosity was 70 mPa·s and the viscosity was 125 mPa·s. The above steps were repeated
for oil displacement experiment with a polymer viscosity of 215 mPa·s. (5) After polymer
flooding, subsequent water flooding was performed until no oil was produced at the outlet
end. The experimental setup is illustrated in Figure 2.
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3. Results and Discussion
3.1. Analysis of Viscoelasticity of the Polymer Solution
3.1.1. Polymer Creep Recovery Performance

A HAKERS150 rheometer was used to perform dynamic experiments on the creep
recovery performance at 45 ◦C. Changes in the deformation of the polymer solution over
time and the changes in viscoelasticity were studied, and the proportions of elasticity and
viscosity in the polymer solution were analysed, as shown in Figure 3. In the creep recovery
experiment, a constant stress was applied to the sample at t = t0. At t = t1, the stress was
removed, and the strain changed with time during the process. In the creep stage, the
applied stress produces a transient response, the viscoelasticity of each substance has a
combined effect, and their specific contributions cannot be clearly separated [45]. After the
applied stress was released, it entered the recovery state. The advantage of the recovery
phase is that the percentage of the total strain can be decomposed into a permanently
maintained viscous part and recoverable elastic part. The ratio of the strain contributed by
the elastic part and that contributed by the viscous part to the total strain reflect the elasticity
and viscosity of the viscoelastic solution, respectively. In the creep phase, the deformation
increased with time. In the recovery phase, as the time increased, the deformation first
decreased sharply and then stabilised. As the viscosity of the polymer solution increased,
the proportion of the elastic part increased.
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3.1.2. Quantitative Characterisation of Polymer Viscoelasticity

As shown from the change curve of the storage modulus (G′) and dissipation modulus
(G”) of polymer solutions with different viscosities with angular velocity, as the angular
velocity increased, the storage modulus and energy dissipation modulus increased. In addi-
tion, as the viscosity of the solution increased, the storage modulus and energy dissipation
modulus increased, the number of molecules per unit volume increased, and the ability
of molecules to attract and entangle with each other increased. This led to an increase in
the strength of viscoelasticity. The storage and dissipation moduli of each viscous polymer
solution exhibited an intersection. The intersection point moved to the left; G” was greater
than G′ before the intersection point, and G′ was greater than G” after the intersection point.
At low angular velocities, the polymer solutions were mainly viscous, whereas at high
angular velocities, they were mainly elastic [46]. As shown in Figure 4.
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Figure 5 shows the storage and energy dissipation moduli of polymer solutions with
viscosities of 40, 70, 125, and 215 mPa·s at shear rates of 0.06283 and 6.283 s−1. According
to the results of the dynamic experiment, when the shear rate was low (0.06283 s−1), the
proportions of the elastic and viscous components remained relatively unchanged at 44.75%
and 54.98%, respectively. Under the formation shear rate (6.283 s−1), the proportion of elas-
ticity far exceeded that of the viscous part, and with an increase in the mass concentration
of the solution, the proportion of the elastic part increased. However, the magnitude of the
increase gradually decreased. This phenomenon indicates that the elasticity of the solution
is not negligible when the polymer solution flows into the porous medium. The greater
the viscosity of the polymer solution, the more significant the elastic effect. The results of
the creep recovery experiment under low stress conditions and the dynamic experiment
under low shear rate conditions were slightly different because the two measurement
methods are based on different principles. In the creep recovery experiment, the elastic
and viscous components were expressed by the relative magnitude of the contribution of
the elastic and viscous properties to the strain. The ratio of the strain contributed by the
elastic properties and that contributed by the viscous properties to the total strain directly
reflects the elasticity and viscosity of the viscoelastic solution. The storage and dissipation
moduli were used to characterise the viscoelasticity of the solution based on the relationship
between the force and corresponding deformation. When the solution viscosity reached
125 mPa·s, the results of the two methods were consistent [47].
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To understand the structure of partially hydrolysed polyacrylamide, the morphology
of the film formed by titrating the above polymer solution onto a glass slide was observed
and analysed using an atomic force microscope. Figure 6 shows the structural morphology
of the polymer solutions with different viscosities; the scanning range was 20 µm × 20 µm.
Although the polymer segments had a certain probability of collision in the solution, they
could not be stably bonded by van der Waals forces owing to the action of the solvent and
thermal movement. After the polymer solution was dropped onto the surface of the glass
slide, the polyacrylamide molecules moved freely to form the most stable distribution. The
distribution of polyacrylamide was fixed until the water evaporated. Polyacrylamide does
not stretch and advance individually during movement, although multiple molecules can
gather into small particles to move. From the atomic force scanning images of polymer
solutions with different viscosities, when the viscosity was 40 mPa·s, the particles were
almost isolated and did not have an orderly distribution, indicating that the viscoelasticity
of the solution was very low. When the viscosity was 70 mPa·s, the distance between
particles decreased and aggregates formed; however, the distribution of the aggregates
was uneven, and the distance between them was still relatively large. Compared to those
in a polymer solution with a viscosity of 40 mPa·s, the number of molecules increased,
and the viscoelasticity increased. When the viscosity increased to 125 mPa·s, an ordered
arrangement of polyacrylamide polymer chains easily formed, and a relatively regular
network structure developed between the particles. The structure of the solution at this
point was ideal and the proportion of elasticity reached a maximum. When the viscosity of
the solution continued to increase to 215 mPa·s, the probability of intermolecular collisions
increased; thus, a self-similar tree structure formed between particles, and the increase in
the number of molecules led to an increase in the overall viscoelasticity of the solution [48].

3.1.3. Elastic Effect of Polymers in Porous Media

When a polymer flows into a pore, it is subjected to shearing and stretching by the
porous medium, and the polymer solution exhibits viscoelasticity when the viscosity and
shear rate reach a certain level. The different displacement rates allow the calculation of the
shear rate of the polymer solution during its formation. The viscosity curves of polymer
solutions with different viscosities after shearing in core samples with different permeabili-
ties are shown in Figure 7. In the core with a permeability of 50 × 10−3 µm2, as the shear
rate increased, the viscosity of the polymer solutions with different viscosities gradually
decreased and did not exhibit viscoelasticity. This is mainly because the permeability and
porosity were low, while the shear rate of the polymer solution in the core was high, which
significantly damaged the polymer molecular structure. Consequently, the viscosity of
the polymer gradually decreased, thus not exhibiting viscoelasticity. In the core with a
permeability of 100 × 10−3 µm2, when the polymer viscosity was 40 and 70 mPa·s, as the
shear rate increased, the viscosity gradually decreased. When the viscosity of the polymer
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solution reached 125 mPa·s and the shear rate exceeded 1000 s−1, the polymer solution after
core shearing exhibited viscoelasticity, and the viscosity curve exhibited an ‘upward’ trend.
In the core with a permeability of 150 × 10−3 µm2, the polymer solution also exhibited
viscoelasticity when the shear rate reached 1000 s−1 and the polymer viscosity exceeded
125 mPa·s, and the slope of the viscosity curve was greater than that of the core with a
permeability of 100 × 10−3 µm2. Based on the above results, under the current polymer-
type conditions, when the polymer viscosity reached 125 mPa·s, the equivalent shear rate
reached 1000 s−1. When the effective permeability of the core reached 100 × 10−3 µm2, the
polymer solution exhibited an elastic effect in the porous medium [48].
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3.2. Force Analysis of Microscopic Remaining Oil
3.2.1. Normal Deviator Stress on Microscopic Remaining Oil

To analyse the microscopic forces acting on various polymers passing through the re-
maining oil, PolyFlow software (ANSYS, Inc., Canonsburg, PA, USA) was used to calculate
the pressure gradient in microchannels of 0.02 MPa/m, Newtonian fluid (oil) with a viscos-
ity of 10 mPa·s, and polymers with different viscosities. The stress field was calculated for
the flow of the elastic fluid through the remaining oil, as shown in Figure 8. In this study,
the normal stress was positive and negative, the pressure was positive, and the tension
was negative. The tangential stress was positive along the flow direction and negative
against the flow direction. Horizontal and vertical stress was positive in the coordinate axis
direction, and negative in the opposite direction. As the viscosity of the displacement fluid
increased, the stress acting on the remaining oil also increased. When the viscosity doubled,
the stress on the remaining oil almost doubled. Normal stress is the force perpendicular to
the surface of the remaining oil [49]. This force causes the remaining oil to bulge or sag in
the normal direction, which increases its local deformation. The remaining upstream oil is
compressed, and the remaining downstream oil is stretched. Tangential deviator stress is
the force along the tangential direction of the residual oil. The greater the force, the greater
the angular deformation. Tangential stress is the greatest in the middle of the remaining
oil, illustrating an inverted parabolic distribution law. The horizontal stress describes the
changing law of stress along the direction of flow. The horizontal stress experienced by
the remaining oil is positive, and thus, it deforms along the direction of flow. Upstream of
the remaining oil, the vertical stress is downward, and the downstream vertical stress is
upward, also reflecting the deformation process of the remaining oil after it is stressed.
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3.2.2. Horizontal Stress Differences on Microscopic Remaining Oil

The above calculation results for different types of stress only present the difference in
the stress distribution of the remaining oil under different viscosities and cannot intuitively
provide the difference in the displacement force acting on the remaining oil. The force
that truly reflects the displacement effect of the displacement fluid on the remaining oil is
the difference in the horizontal stress acting on the same horizontal line of the remaining
oil interface, that is, the horizontal stress difference, as shown in Figure 9. This figure
presents the change in the horizontal stress experienced by the remaining oil under the
action of displacement fluids with different viscosities. The horizontal stress difference
reflects the magnitude of stress of the displacement fluid acting on the remaining oil at
different positions along the flow direction. When the viscosity of the displacement fluid
increased, the horizontal stress difference also increased. When the viscosity doubled,
the horizontal stress difference also doubled. When displacement fluids with different
viscosities flowed through the remaining oil, shearing and stretching forces were generated,
such that the distribution of remaining oil changed, and the wetting angle also changed
accordingly, resulting in wetting hysteresis. Along the flow direction, the rear part of the
remaining oil was pushed downstream towards the wall, producing a negative curvature,
while the front part of the remaining oil tended to roll along the wall. If the interfacial
tension between the rock and remaining oil was high, the remaining oil would eventually
break, with part of it separating from the mother liquid droplet, and part of it continuing to
adhere to the wall [50,51].
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3.3. Microscopic Visualization of Oil Displacement
3.3.1. Influence of Polymer Viscosity on the Microscopic Oil Displacement Effect

The arrows in the microscopic visualisation model in Figure 10 represent the dis-
placement direction. Polymer solutions with different viscosities were prepared for the
micro-displacement experiments. After water flooding, the total amount of residual oil
significantly decreased. However, a large amount of residual oil remained in the model.
After waterflooding, polymer flooding was performed using polymers with different vis-
cosities, and the large-area clusters retained after waterflooding were divided into multiple
small-area clusters of the remaining oil. As the viscosity of the polymer solution increased,
the recovery factor of the model continued to increase. When the viscosity of the polymer
reached 215 mPa·s, the recovery factor in the microscopic visualisation model was high,
but a large amount of microscopic oil was still retained.
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A microscopic visual image analysis system was used to calculate the recovery factor
during different displacement stages, and the results are listed in Table 2. As the viscosity
of the polymer increased, its viscoelasticity became more obvious, and its contribution
to the oil displacement efficiency increased significantly. The microscopic remaining oil
production in the model increased and the recovery factor increased. When the polymer
viscosity was 215 mPa·s, the final recovery factor was 71.682%, which was 40.61% higher
than that during waterflooding, and 28.318% of the remaining oil in the model could not
be removed.

Table 2. Recovery efficiency from flooding with polymer with different viscosities.

Viscosity (mPa·s) Polymer Flooding
Recovery Factor (%)

Ultimate Recovery
(%)

Enhanced Value of
Polymer Flooding

Recovery Factor (%)

Water drive 31.072 31.072 -
40 58.503 58.503 27.431
70 59.675 65.563 34.491

125 58.663 66.996 35.924
215 60.353 71.682 40.610

3.3.2. Microscopic Remaining Oil Production at Different Locations

To specifically analyse the utilisation of polymers with different viscosities on the
microscopic remaining oil at different locations, the visualisation model was divided into
nine regions, and the nine regions were further divided into three types: main flow lines,
diversion lines, and microscopic unaffected areas. The main flow line included Areas 3, 5,
and 7, and the diversion line included Areas 2, 4, 6, and 8. The microscopically unaffected
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areas included Areas 1 and 9. The oil recovery factor for different area types was then
calculated, as shown in Figure 11.
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1. Mainstream area.

A comparative analysis of the production of microscopic residual oil in the main
flow line during flooding with polymers with different viscosities is shown in Figure 12.
Area 7 represents the injection end. When the displacement phase viscosity was low, the
displacement pressure difference was small, the fluidity control ability was weak, and
the driving force was less than the seepage resistance. The injected water protruded
toward the production end along the dominant seepage channel and advanced forward
in a non-piston form in the model. Fingering and circumvention pose serious problems;
in this area, many clusters of residual oil formed because of circumvention and other
reasons. As the viscosity of the displacement phase increased gradually, the viscoelasticity
increased, resistance increased during the seepage process, the displacement pressure
difference increased, and the spread range expanded. The partially retained clusters of the
remaining oil changed from large clusters to scattered small clusters. When the polymer
viscosity reached 215 mPa·s, the remaining oil volume in the microscopic visualisation
model significantly decreased. However, as the seepage distance increased, the polymer
fluidity control ability weakened, and bypass and fingering still occurred. The remaining
oil volume in the main flow line from the injection end to the production end gradually
increased.

A microscopic visualisation oil displacement image analysis system was used to
calculate the remaining oil area in different areas on the mainstream line, and the recovery
factor at different stages was calculated through the changes in the microscopic remaining
oil in the field of view. The results are presented in Table 3. In the main flow line area,
under the same viscosity conditions, as the seepage distance increased, the increase in oil
recovery gradually decreased from the injection end to the production end. In the same
area, as the viscosity of the polymer increased, the viscoelastic effect enhanced and the
recovery factor gradually improved.
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Table 3. Changes in recovery factors in different areas of the mainstream line.

Position
Recovery Efficiency of Polymer Flooding at Different Viscosities (%)

40 mPa·s 70 mPa·s 125 mPa·s 215 mPa·s
Area 7 51.25 59.64 68.26 72.23
Area 5 44.20 58.04 64.05 70.19
Area 3 37.02 50.78 59.65 63.84

2. Diversion line area.

After flooding with polymers with different viscosities, the remaining oil in the model
had a significant difference in the displacement effect on the mainstream line, and the
distribution characteristics of the microscopic remaining oil on the diversion line were
also significantly different. The remaining oil production at the injection end, Areas 8 and
4, and at the production end, Areas 6 and 2, were compared and analysed, as shown in
Figure 13. When the polymer viscosity was 40 mPa·s, owing to the low viscosity of the
displacement phase and the small driving force, the solution migrated along large pores
with little resistance against forming a dominant seepage channel. As the injection volume
increased, the remaining oil in the diversion line area no longer changed. As the viscosity
of the displacement phase increased, the range of spread increased, effectively suppressing
the fingering phenomenon. Not only did the remaining oil production on the mainstream
line increase but the remaining oil on the diversion line also significantly decreased. After
polymer flooding, oil still remained in the diversion line area, and the potential to tap this
microscopic remaining oil was still relatively high.
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A microscopic visual oil displacement image analysis system was used to calculate
changes in the recovery factor in different areas of the shunt line. The results are presented
in Table 4. As Areas 8 and 4 were closer to the injection end, the recovery factor was higher.
However, owing to the differences in the range of polymer spread, the recovery factor in
the shunt line area was significantly lower than that in the mainstream area.

Table 4. Changes in the recovery factor in different areas of the diversion line.

Position
Recovery Efficiency of Polymer Flooding with Different Viscosities (%)

40 mPa·s 70 mPa·s 125 mPa·s 215 mPa·s
Area 8 23.17 25.95 35.16 41.19
Area 6 15.73 25.40 34.52 45.28
Area 4 22.35 24.50 29.42 37.50
Area 2 11.57 16.58 20.73 25.87

3. Microscopic unaffected area.

In the microscopic visualisation model area division, Areas 1 and 9 are at the edges of
the model, and the remaining oil in these areas is difficult to produce, as shown in Figure 14.
When the viscosity was low, the displacement fluid had a lower degree of production
for the remaining oil in these two areas, mainly as these two areas were perpendicular
to the displacement direction, and the displacement force in the seepage direction could
not effectively spread to these areas. As a result, the remaining oil in Areas 1 and 9 near
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the edges of the model was not extracted, and only a small amount of the remaining oil
was carried away near the edge of the diversion line area. As the viscosity of the polymer
gradually increased, the amount of oil remaining in the microscopically unaffected area
significantly decreased. The main reason for this is that, as the viscosity of the displacement
phase increases, the resistance increases during the seepage process, the displacement
pressure difference increases, and the scope of the polymer solution significantly expands
during the displacement process. The viscoelastic effect of the polymer solution can increase
its seepage capacity in the porous medium and the production of remaining oil from these
two areas. The residual oil in the unaffected microscopic area at the edge of the model thus
significantly decreased.
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A microscopic visual oil displacement image analysis system was used to calculate
the recovery factor for different viscosities in the unaffected microscopic area. The results
are presented in Table 5. The proportion of remaining oil in the microscopically unaffected
area after flooding with polymers with different viscosities decreased. When the polymer
viscosity was 215 mPa·s, the recovery factors were only 21.05% and 20.31%, indicating that
the remaining oil in the microscopic unaffected area was relatively low and that there was
still a large amount of retained oil.

Table 5. Variations in recovery in the microscopic unaffected area.

Position
Recovery Efficiency of Polymer Flooding with Different Viscosities (%)

40 mPa·s 70 mPa·s 125 mPa·s 215 mPa·s
Area 1 25.66 24.12 23.75 21.05
Area 9 24.03 23.09 22.70 20.31

4. Conclusions

(1) As per the creep recovery experiment, the greater the viscosity of the polymer solution,
the greater the proportion of elasticity. Atomic force microscope images demonstrated
that when the polymer concentration was low, the particles were almost isolated and
did not form an ordered distribution, resulting in a low viscoelasticity of the solution.
As the polymer concentration increased, the distance between particles decreased
and aggregates formed. Nevertheless, the distribution of aggregates was not uniform,
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and the distance between them was relatively large. When the viscosity increased
to 125 mPa·s, an orderly arrangement of polymer chain segments formed, and a
relatively regular network structure formed between particles. The structure of the
solution was ideal at this point, and the proportion of elasticity reached its maximum.

(2) When the polymer viscosity reached 125 mPa·s, the equivalent shear rate reached
1000 s−1, the core effective permeability reached 100×10−3 µm2, the polymer solution
exhibited viscoelasticity in the porous medium, and the viscosity curve exhibited an
‘upward’ phenomenon.

(3) Based on the calculations from the numerical simulations using PolyFlow software, as
the viscosity of the polymer increased, the stress acting on the remaining oil increased.
When the viscosity doubled, the stress on the oil film also doubled. As displacement
fluids of different viscosities flowed through the remaining oil, differences occurred
in the normal and horizontal stresses, which deformed the remaining oil and changed
the wetting angle accordingly.

(4) In the microscopic visualisation flooding experiment, as the viscosity of the polymer
increased, the degree of production of the remaining oil in the model gradually
increased. Under the same viscosity conditions on the main flow line, as the seepage
distance increased, the recovery factor gradually decreased from the injection to
the production end. In the same area, as the viscosity of the polymer increased,
the recovery factor gradually increased. Increasing the viscosity of the polymer
significantly increased the sweep range in the shunt line area, but the recovery factor
was significantly lower than that of the mainstream line. Increasing the viscosity of the
polymer also affected the remaining oil in the microscopic unaffected area. When the
polymer viscosity was 215 mPa·s, the recovery factors were only 21.05% and 20.31%,
indicating that the remaining oil in the microscopic unaffected area after polymer
flooding was relatively low, with a substantial amount of oil still being retained.
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