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Abstract

The rapid decrease in sequencing cost has enabled genetic studies to discover rare variants

associated with complex diseases and traits. Once this association is identified, the next

step is to understand the genetic mechanism of rare variants on how the variants influence

diseases. Similar to the hypothesis of common variants, rare variants may affect diseases

by regulating gene expression, and recently, several studies have identified the effects of

rare variants on gene expression using heritability and expression outlier analyses. How-

ever, identifying individual genes whose expression is regulated by rare variants has been

challenging due to the relatively small sample size of expression quantitative trait loci stud-

ies and statistical approaches not optimized to detect the effects of rare variants. In this

study, we analyze whole-genome sequencing and RNA-seq data of 681 European individu-

als collected for the Genotype-Tissue Expression (GTEx) project (v8) to identify individual

genes in 49 human tissues whose expression is regulated by rare variants. To improve sta-

tistical power, we develop an approach based on a likelihood ratio test that combines effects

of multiple rare variants in a nonlinear manner and has higher power than previous

approaches. Using GTEx data, we identify many genes regulated by rare variants, and

some of them are only regulated by rare variants and not by common variants. We also find

that genes regulated by rare variants are enriched for expression outliers and disease-caus-

ing genes. These results suggest the regulatory effects of rare variants, which would be

important in interpreting associations of rare variants with complex traits.

Author summary

It has been shown that rare variants may affect many diseases including both rare and

common diseases with the advent of next-generation sequencing technology. An impor-

tant question is how rare variants affect diseases or traits, especially whether or how they

regulate gene expression as they may affect diseases through gene regulation. However, it

is challenging to identify the regulatory effects of rare variants because it often requires

large sample sizes and the existing statistical approaches are not optimized for it. Here, we
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develop a novel method, LRT-q, based on a likelihood ratio test that aggregates the effects

of multiple rare variants nonlinearly to achieve higher statistical power than previous rare

variant association methods. We apply LRT-q to the latest GTEx v8 dataset and identify

regulatory effect of rare variants on individual genes. We also observe that genes regulated

by rare variants are likely to be disease-causing genes. These results demonstrate the func-

tional effects of rare variants, especially on gene expression, which provides important

biological insights in understanding the genetic mechanism of rare variants in complex

traits and diseases.

Introduction

Over the past decade, genome-wide association studies (GWAS) have successfully discovered

numerous associations between common genetic variants and human complex diseases and

traits[1,2]. These studies also found that those common variants typically have small effects

and explain a small fraction of heritability[3,4]. Motivated by this finding, many sequencing

studies have attempted to identify rare variants associated with complex traits[5,6]. It is

hypothesized that rare variants may have larger effect sizes than common variants due to puri-

fying selection and may explain some of the missing heritability[7,8]. Candidate-gene and

large-scale sequencing studies have indeed found associations of rare variants with complex

diseases and traits[9–11].

An important question after finding the associations of rare variants is to understand their

genetic mechanism on how they influence diseases. GWAS have found that common variants

associated with diseases are mostly present in non-coding regions of the genome, suggesting

that they might affect traits by regulating the expression of nearby genes as recent expression

quantitative trait loci (eQTL) studies have identified many common variants with regulatory

effects[12,13]. However, the effect of rare variants on gene expression remains mostly obscure,

although there have been recent developments in this work. For example, Li et al. discovered

that rare variants might result in outlier patterns of over or under expression across multiple

human tissues[14] while Zhao et al. found an excess of rare variants was significantly associ-

ated with extreme gene expression in human peripheral blood[15]. Hernandez et al. also

reported that ultrarare variants make a significant contribution to the heritability of gene

expression[16]. These results hint at the possible functional effect of rare variants.

To discover the functional effect of genetic variants, many eQTL studies are interested in

identifying genes whose expression levels are influenced by genetic variants (called “eGenes”).

The aforementioned studies for rare variants mostly focused on the overall contribution of

rare variants to gene expression but did not find individual genes whose expression is associ-

ated with rare variants. We call these genes “RV eGenes,” and there are two major challenges

in finding RV eGenes. The first is relatively small sample sizes of eQTL studies that collected

whole-genome sequencing (WGS) as well as RNA-seq data. WGS data instead of whole-exome

sequencing data are necessary to discover RV eGenes as many variants regulating gene expres-

sion may be present in non-coding regions of the genome. The second challenge is the statisti-

cal approach to detect eGenes. While there have been several methods developed to identify

common variant eGenes (CV eGenes)[17,18], these methods utilize a single marker test that

tests each SNP, which yields low statistical power for rare variants. To increase power to detect

association of rare variants, many collapsing approaches that combine the effect of multiple

rare variants have been proposed[19,20], but as we will discuss later, they are not optimized to

find RV eGenes.
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In this paper, we develop a powerful approach called LRT-q to detect RV eGenes and apply

this method to WGS and multi-tissue RNA-seq data collected from 681 European individuals

in the Genotype-Tissue Expression (GTEx) project (v8). LRT-q incorporates functional anno-

tations of rare variants, observational genotype data, and quantitative phenotype data to iden-

tify a group of potential causal rare variants influencing the expression of a nearby gene by

aggregating statistics of rare variants in a nonlinear manner. We show using extensive simula-

tions that LRT-q outperforms previous methods for rare variant association testing such as

SKAT-O[21] and variable threshold[22]. We also find that LRT-q detects more RV eGenes

than previous methods in the GTEx data across all tissues. We investigate the characteristics of

those RV eGenes and discover a few important biological insights such as higher tissue speci-

ficity of RV eGenes compared to CV eGenes and enrichment of RV eGenes in disease-associ-

ated genes. We provide an open-source R package implementing the proposed method, LRTq.

Overview of LRT-q

An association test between a single rare variant and expression of a gene is likely to result in

low statistical power because the power decreases as allele frequency of a variant decreases. To

overcome this challenge, many statistical approaches have been developed to aggregate rare

variants in a genetic region, like a gene, and to test their cumulative effects on a phenotype.

The underlying rationale is that a gene can be regulated by multiple rare variants and thus a

larger effect can be observed by grouping them, contributing to increased power. The methods

for rare variant testing include burden tests like variable threshold (VT)[22], variance compo-

nent tests like sequence kernel association test (SKAT)[23], and combined tests like SKAT-O

[21,24].

These methods, however, may not be optimal in detecting the effects of rare variants

because of the following two reasons. First, they do not attempt to prioritize likely causal vari-

ants. As the rare variant methods combine multiple variants, it is important to remove the

effects of non-causal variants. Previous methods mostly rely on functional information of vari-

ants to prioritize variants[20,25] such as minor allele frequency (MAF) and Combined Anno-

tation Dependent Depletion (CADD) scores[26] as it has been hypothesized that rarer variants

may have larger effects than more common variants. However, we may be able to prioritize

potential causal variants more accurately by using both functional information and genotype

data where the latter may provide additional information on the causal statuses of variants.

For example, for gene expression data, individuals with causal rare variants may have signifi-

cantly different expression patterns from other individuals. The other reason why previous

methods may not be optimal is that many of the burden tests combine statistics of multiple

variants linearly (e.g. a weighted sum of z-scores). However, it may be desirable to combine

the statistics in a nonlinear manner to detect more associations as we show in our results.

To overcome these limitations, we propose a likelihood ratio test for quantitative traits

(LRT-q) for detecting rare variants associated with gene expression. This method is an exten-

sion of the original LRT[27] that was designed for identifying associations between rare vari-

ants and disease status (dichotomous traits). There are two underlying models in LRT-q; 1) the

null model that assumes no causal variants among all rare variants, and 2) the alternative

model that assumes at least one causal variant. LRT-q calculates a likelihood ratio statistic

between the two models and also a p-value using a permutation test. LRT-q calculates the sta-

tistic using functional information and observational genotype data that allows LRT-q to pri-

oritize potential causal rare variants. Besides, LRT-q aggregates statistics of multiple rare

variants nonlinearly to boost statistical power (see Materials and Methods). Assuming that

individuals carrying a rare allele of a variant have different gene expression patterns from
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those carrying a different allele, we calculate a statistic measuring this difference for each rare

variant near a gene. We then combine these statistics from multiple rare variants nonlinearly

and generate an aggregated statistic for the gene. LRT-q considers both positive and negative

effect sizes of genetic variants on gene expression, and it is very efficient using an adaptive per-

mutation test.

Verification and comparison

False positive rate of LRT-q. To measure the performance of LRT-q, we first measure the

false positive rate using simulated data under the null hypothesis of no causal variants (see

Materials and Methods). Each simulation has 1,000 individuals and 33 rare variants on aver-

age, and we test several other rare variant association methods such as CMC[28], WSS[29],

Burden, VT[22], ACAT-V, ACAT-O[20], and SKAT-O[21] in addition to LRT-q. Here,

ACAT-O is an omnibus test constructed by combining p-values of VT, ACAT-V, and

SKAT-O. Results show that all methods have well-controlled false positive rates across differ-

ent significance thresholds such as α = 0.05, 0.01, 0.001, and 0.0001 (Table 1).

Power of LRT-q. Next, we perform power simulation under the alternative hypothesis

that there is at least one causal rare variant using several combinations of effect sizes and causal

ratio where causal ratio defines the percentage of causal variants among all rare variants (see

Materials and Methods). In simulations, half of the causal variants have positive effect sizes,

and the rest of causal variants have negative effect sizes as rare variants might increase or

decrease expression levels. Additionally, as only a few rare variants might be causal, only 3% to

10% of rare variants are causal in the simulation data. Regarding effect sizes, variants with

lower allele frequency have larger effect sizes, which is the assumption often made in simulat-

ing the effect of rare variants, and we simulate several different maximum effect sizes of rare

variants (from 0.99 to 4.95). For each combination of effect size and causal ratio, we generate

10,000 datasets containing 1,000 subjects. Similar to the false positive rate simulation, we test

eight methods, and the power is measured at α = 0.05.

Results show higher power of LRT-q over other methods across a variety of simulation set-

tings (Fig 1). Especially, we observe that as the effect size or the proportion of causal variants

increases, LRT-q becomes more powerful than other approaches. When 10% of rare variants

are causal, LRT-q has the highest statistical power if the maximum effect size is larger than or

equal to 1.98. Its power is 147% to 224% as high as the power of SKAT-O, the second most

powerful method. Furthermore, the power of LRT-q is slightly smaller or as large as the power

of SKAT-O when the effect size of causal rare variants is very small (at most 0.99) (Fig 1A and

1B); in this case, all methods have very low power (<15%). When the effect size is larger, our

method is considerably more powerful than SKAT-O (Fig 1C and 1D) where in these settings,

the power of the proposed method is 141% to 238% as high as that of SKAT-O. These results

demonstrate that prioritizing potential causal variants using the likelihood ratio test boosts sta-

tistical power to detect the effects of rare variants across various values of effect size and causal

ratio.

Table 1. False positive rate of eight rare variant test methods in simulation.

α CMC WSS Burden VT SKAT-O ACAT-V ACAT-O LRT-q

0.05 0.04935 0.04765 0.04904 0.05134 0.05036 0.04971 0.04916 0.04975

0.01 0.00958 0.00929 0.00988 0.01021 0.01055 0.00973 0.01006 0.01015

0.001 1.17×10−3 1.04×10−3 1.11×10−3 0.99×10−3 1.32×10−3 1.00×10−3 1.00×10−3 0.89×10−3

0.0001 1.00×10−4 1.10×10−4 1.20×10−4 1.10×10−4 1.10×10−4 1.20×10−4 0.50×10−4 0.90×10−4

https://doi.org/10.1371/journal.pgen.1009596.t001
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Additionally, we perform simulations that add randomness to the effect sizes of causal rare

variants by adding noises sampled from a normal distribution N(1,1). We also include simula-

tions that contain much fewer rare variants (19.8 rare variants on average), which is about

two-thirds of the number of rare variants in the original simulation (33.1). Note that it is diffi-

cult to further decrease the number of rare variants in the new simulations because the propor-

tion of causal rare variants is assumed to be 3–10% and we need to ensure there is at least one

causal rare variant. We still observe that LRT-q is much more powerful than other methods in

these different settings (S1 Fig). For the convenience of parameter estimation, the LRT-q

model assumes the equal variance of the expression levels of individuals with or without causal

Fig 1. Power comparison between LRT-q and seven existing methods on simulated data. A. for different effect sizes and fixed causal ratio (10%), and for fixed

effect sizes (B.� 0.99, C.� 2.97, D.� 4.95) and various causal ratios. Significance level α = 0.05.

https://doi.org/10.1371/journal.pgen.1009596.g001
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rare variants. To examine its robustness when the assumption is violated, we simulate the sub-

jects that carry causal rare variants to have an explicitly different variance from those who do

not. We find that our method is robust against the violation of this assumption and can still

achieve higher power than other methods (S2 and S3 Figs). Therefore, this assumption simpli-

fies the parameter estimation for the model but does not seem to influence its statistical power

and reliability much.

One of the key reasons for the higher statistical power of LRT-q is its nonlinear decision

boundary to detect significant associations. A decision boundary of an algorithm determines

how it classifies each test (e.g. association test between rare variants and gene expression) into

a significant or non-significant association where methods combining effect of rare variants

linearly such as CMC have a linear decision boundary while LRT-q that applies nonlinear

aggregation of rare variant effects have a nonlinear decision boundary. Using simulations to

visualize decision boundaries of multiple rare variant methods (see Materials and Methods),

we verify LRT-q has a clear nonlinear decision boundary that separates significant and non-

significant associations accurately (S4A Fig). As the nonlinear decision boundary of LRT-q

allows it to emphasize contributions from potential causal variants with large effects to its sta-

tistic more strongly than those from non-causal variants, LRT-q is more sensitive to causal

effects and thus has higher power as demonstrated in the simulation studies above. Decision

boundaries of other methods, however, are not as nonlinear as or as obvious as that of LRT-q

because some of the significant associations detected by other methods overlap with non-sig-

nificant associations (S4B–S4D Fig). In other words, the nonlinear decision boundary of LRT-

q has higher accuracy in segregating rare variants with causal effects and those without causal

effects, which improves statistical power.

Applications

Identification of RV eGenes across 49 tissues in GTEx. To demonstrate the utility of our

method in real eQTL data, we apply LRT-q to whole-genome sequencing (WGS) and RNA-

seq data of 681 individuals with European ancestry from 49 tissues in the GTEx v8 dataset[30]

to identify RV eGenes (see Materials and Methods for quality control and data processing);

those are genes whose expression is regulated by nearby rare variants. We define rare variants

as variants with MAF < 5% among individuals with WGS data, and we combine effects of rare

variants present within 20K bp of a transcription start site (TSS) of each gene in each tissue.

The GTEx study included common variants with MAF� 1% in their eQTL analysis. This

means that there may be some overlaps between rare variants in our analysis and common var-

iants in the GTEx analysis as we used rare variants with MAF < 5%. Hence, we also analyzed

rare variants with MAF < 1% to avoid this overlap. The GTEx study analyzed variants within

1 Mb from TSS while we use the 20 Kb window size. The main reason is that the number of

rare variants within 1 Mb from TSS is considerably greater than that within 20 kb; we observe

50 times more rare variants within 1 Mb (median of 15,482) than 20 Kb (median of 311) as

shown in S5 Fig. Including too many rare variants in a rare variant association test not only

will greatly increase the computational cost but also is likely to decrease the power as more

non-causal variants are included in the association test. Besides, previous studies[14,31] that

analyzed the genetic effects of rare variants on gene expression also considered a smaller win-

dow size such as 10 Kb. In our analysis, we choose the window size that is twice as large as that

of previous studies to include more variants with potential regulatory effects on gene expres-

sion. The sample size varies considerably depending on a tissue type (from 64 to 573) as only

subsets of individuals provide RNA-seq data for certain tissues while we have WGS data for

the 681 European individuals. To improve power to detect RV eGenes using LRT-q, we utilize
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a variety of weighting schemes such as assigning them uniform weights and prioritizing them

by minor allele frequency (MAF), by their distances to TSS, and by their functional scores

such as LINSIGHT[32] and CADD scores[33] as well as different combinations of them (see

Materials and Methods). We then compare the performance of our method with that of other

methods including ACAT-O, SKAT-O, and VT by applying the same weighting schemes to

each method. It is important to note that CMC, Burden, and WSS are not included in this

analysis because they have low power as demonstrated in the simulation study. ACAT-V is not

under consideration because it uses an aggregated Cauchy association test as ACAT-O does

but has lower power than ACAT-O as shown in simulation. We use a false discovery rate

(FDR) of 5% to detect RV eGenes in each tissue.

We observe that different weighting schemes of rare variants yield very different numbers

of RV eGenes and that our method detects more RV eGenes than other approaches across

most of the weighting schemes. Using the whole blood (N = 546) as an example, LRT-q detects

more RV eGenes than VT across all eight weighting strategies while we find more RV eGenes

than ACAT-O and SKAT-O across four weighting schemes (S1 Table). Regarding the number

of eGenes detected using different weighting schemes, the smallest number of RV eGenes

LRT-q detects is 211 with TSS distance weighting while we observe about four times as many

RV eGenes with a combined weight of MAF and CADD (885). These results show that consis-

tent with the results of our power simulation, our method can detect more RV eGenes in real

eQTL data than previous methods and that different weighting schemes could greatly influ-

ence the sensitivity of RV eGene detection.

Next, we define the union set of RV eGenes identified with the eight different weighting

schemes as the total set of RV eGenes detected by a method for each tissue and compare this

number across different methods and tissues. First of all, as expected, the number of RV

eGenes detected by LRT-q across tissues is positively correlated with sample sizes of tissues

(Pearson’s r = 0.8966) where this phenomenon is not affected by the number of expressed

genes in each tissue (Figs 2A and S6A). When comparing the number of RV eGenes detected

by different methods, we find that LRT-q identifies the largest number of RV eGenes in 35 out

of 41 tissues where there is at least one RV eGene detected by any method (Fig 2B) while LRT-

q detects only one fewer RV eGene than SKAT-O in four tissues (Brain_Putamen_basal_gan-

glia, Muscle_Skeletal, Ovary, and Vagina). In three of these four tissues, including Brain_Puta-

men_basal_ganglia, Ovary, and Vagina, have so small sample sizes that LRT-q and VT failed

to detect any RV eGenes while SKAT-O and ACAT-O identified at most one RV eGene. In

general, LRT-q detects on average 308% more total RV eGenes than SKAT-O (min:1% and

max:2,800%), which identifies the second most total RV eGenes in GTEx tissues. Importantly,

our method identifies a few RV eGenes in tissues with small sample sizes such as brain—

hypothalamus (N = 150) while other methods fail to detect any RV eGenes in these tissues. We

find that our method outperforms other methods even when we lower the MAF threshold to

1% to define rare variants although we detect fewer overall RV eGenes with 1% MAF com-

pared to those with 5% MAF, which is expected (S2 and S3 Tables). Results show that our

method also discovers more novel RV eGenes than other methods in 38 out of 41 tissues,

which are eGenes not reported in the GTEx v8 analysis that only considered the effects of com-

mon variants (MAF� 1%). LRT-q detects only one fewer RV eGene than SKAT-O in the

other three tissues (Brain_Putamen_basal_ganglia, Ovary, and Vagina) (S6B Fig). LRT-q

detects on average 204% more novel RV eGenes than SKAT-O that detects the second most

novel RV eGenes (min:8% and max:1,000%). These results indicate that our method detects

not only more overall RV eGenes but also more novel RV eGenes that have not been discov-

ered using common variants, which may be important in interpreting the functional effects of

rare variants.
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To examine overlaps among RV eGenes detected by different methods, we look at RV

eGenes in four tissues, Muscle_Skeletal, Skin_Sun_Exposed_Lower_leg, Thyroid, and

Whole_Blood where we have a good number of RV eGenes. We look at the overlaps of RV

eGenes detected by four methods, LRT-q, SKAT-O, ACAT-O, and VT. Using the Venn dia-

gram (S7 Fig), we find that many RV eGenes detected by SKAT-O, ACAT-O, and VT are also

detected by LRT-q: on average, LRT-q detects 61.76%, 72.29%, 80.40% of RV eGenes detected

by SKAT-O, ACAT-O, and VT, respectively. This result also shows that a majority of RV

eGenes detected by ACAT-O and VT are shared with other methods as they detect the smallest

Fig 2. RV eGenes detected from 49 tissues in the GTEx v8 dataset. A. The relationship between the number of total RV eGenes detected by LRT-q in

each tissue and the sample size of each tissue. The colors of the data points are randomly assigned. Each tissue has its own color. B. The number of total

RV eGenes detected by each method. In panel B, only tissues with more than one RV eGene detected by any methods are included.

https://doi.org/10.1371/journal.pgen.1009596.g002
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numbers of RV eGenes. ACAT-O shares most of RV eGenes with VT and SKAT-O because it

is a combination method that uses the results from SKAT-O and VT. SKAT-O also has higher

proportions of shared RV eGenes with other methods compared to LRT-q, where it identifies

63.16%, 92.35%, 92.01% of RV eGenes discovered by LRT-q, VT, and ACAT-O, respectively.

This result shows that LRT-q detects many RV eGenes detected by other methods and detects

additional RV eGenes.

Lastly, we detect RV eGenes using independent rare variants after LD-pruning as one of the

assumptions in LRT-q is the independence among variants. We find that LD-pruning increases

the number of total RV eGenes and novel RV eGenes detected by LRT-q for the whole-blood tis-

sue by 34.54% and 32.03%, respectively, using the 5% MAF threshold for rare variants. We also

observe more RV eGenes for other methods (S4 and S5 Tables). This result shows that the inde-

pendence assumption may limit the ability of LRT-q to detect RV eGenes, but does not increase

FPR as we observe fewer RV eGenes when rare variants are not independent. For the rest of the

analysis, we present the results using the 5% MAF threshold and without using LD-pruning

because the number of rare variants changes considerably depending on the level of LD-pruning

we perform, and it is not obvious which LD-pruning procedure yields the best results.

One important factor that may influence detection of RV eGenes is common SNP eQTLs

near rare variants. It is possible that common SNP eQTLs and rare variants may be in weak

LD, and LRT-q may detect the common SNP eQTL signal as a rare variant association. Note

that this phenomenon does not influence our results on novel RV eGenes since they do not

contain common SNP eQTLs. To identify how common SNP eQTLs may affect the detection

of non-novel RV eGenes (RV eGenes that have common eQTLs), we regress out the effect of

the most significant eQTL from gene expression within 20kb, 50kb, and 100kb from the tran-

scription start sites (TSS) of each non-novel RV gene and perform rare variant association

tests with LRT-q to detect RV eGenes in four tissues, including Whole_Blood, Thyroid,

Muscle_Skeletal, and Skin_Sun_Exposed_Lower_leg. We select these distance ranges because

we consider rare variants within 20kb from TSS while common eQTLs may be up to 1mb

from TSS and we only want to regress out common eQTLs that might be in LD with rare vari-

ants. We calculate the differences in p-values of non-novel RV eGenes before and after this

regression across different weights for rare variants.

The results show that p-values of most non-novel RV eGenes do not change after the

regression as the median change in p-value is close to 0.0 (S8 Fig). However, we observe large

changes in p-values for some non-novel RV eGenes, and hence, we decide to look at how the

number of RV eGenes changes after this regression. For this, we use the fixed p-value thresh-

old (1e-4) to identify RV eGenes instead of FDR. The reason is that we have two groups of

genes: 1) genes that have significant eQTLs, and we regress out the effect of these eQTLs from

gene expression, and 2) genes that do not have significant eQTLs, and hence we do not apply

this regression. We find that by combing these two groups of genes, the p-value distribution

changes somewhat significantly, and hence it also changes q-values significantly although the

corresponding p-values have not changed much.

We find that both LRT-q and SKAT-O indeed lose some RV eGenes after regressing out

the common eQTL effect, which is expected. LRT-q loses about 25.16% of RV eGenes on aver-

age where SKAT-O loses a much higher proportion of RV eGenes (36.11% on average) (S6

and S7 Tables). These results suggest that although some of the rare variant associations LRT-q

detects may be due to the effect of common SNP eQTLs, they do not seem to appear very fre-

quently. The results also suggest that for these four tissues, although LRT-q detects fewer RV

eGenes (FDR < 5%) than SKAT-O before the regression except Thyroid, SKAT-O might have

detected more common SNP eQTLs as RV associations as SKAT-O loses a much higher pro-

portion of RV eGenes after the regression.
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Patterns of tissue-shared and tissue-specific RV eGenes in GTEx. We investigate tissue-

sharing patterns of RV eGenes in GTEx to determine whether related tissues share more RV

eGenes and to compare these patterns to those from CV eGenes, which are eGenes detected

from common variants in the previous GTEx analysis. To find a tissue-sharing pattern of RV

eGenes between a pair of tissues, we count the number of RV eGenes shared between the two

tissues and divide it by the number of RV eGenes in the tissue with fewer RV eGenes. It is

important to note that this approach is different from the previous GTEx analysis that used the

correlation of effect sizes of common eQTLs between a pair of tissues. As calculating the com-

bined effect size of rare variants is not obvious, we instead calculate the fraction of RV eGenes

shared between a pair of tissues and apply the same approach to CV eGenes for comparison.

Lastly, as some tissues have very few RV eGenes, we use FDR of 10% to increase the number of

RV eGenes in each tissue.

We observe that tissues with related functions share a high fraction of their RV eGenes and

are clustered together, such as most brain tissues (11 out of 12 brain tissues) and tissues in the

digestion system including stomach, esophagus, colon, and small intestine tissues (Fig 3A).

Also, there are a few related tissues that share a high fraction of RV eGenes (S9 Fig). For exam-

ple, three artery tissues share on average 58.52% of RV eGenes among them, esophagus—

muscularis and esophagus—gastroesophageal junction share 53.32% of RV eGenes, and two

skin tissues share 48.62% of RV eGenes. The overall tissue sharing patterns of RV eGenes are

similar, although attenuated, to patterns of tissue sharing of CV eGenes; we observe stronger

tissue sharing patterns of functionally related tissues for CV eGenes (S10A and S11 Figs).

Interestingly, we observe two separate clusters of brain tissues in the tissue-sharing matrix (Fig

3A), as the patterns of RV eGenes sharing among brain tissues are not strong where the aver-

age fraction of RV eGene sharing is 27.75%, compared to CV eGenes where the average frac-

tion of CV eGene sharing is 58.85%. This may be due to the small numbers of RV eGenes

detected in those tissues, where there are 34.08 RV eGenes on average for each brain tissue

compared to 6870.15 CV eGenes.

Next, we identify a pattern of tissue-sharing across more than two tissues, and for this anal-

ysis, we use 20 tissues that have at least 200 RV eGenes as tissues with only a few RV eGenes

would not share many eGenes with other tissues. Among 7,857 unique RV eGenes in those

20 tissues, we find that 60.26% of them are RV eGenes in only one tissue (“tissue-specific”),

28.74% of them are RV eGenes in 2–4 tissues, and only 11.00% of them are eGenes shared in

more than 4 tissues (Fig 3B). To compare this result with the tissue-sharing pattern of CV

eGenes, we select the top Nt of CV eGenes sorted by FDR q-values from tissue t where Nt is the

number of RV eGenes in tissue t, so that we compare the same number of CV and RV eGenes

from each tissue. This is necessary to make tissue-sharing patterns of CV and RV eGenes com-

parable as there are many more CV eGenes than RV eGenes in general and many CV eGenes

are shared across many tissues without this selection of top CV eGenes. We observe a different

pattern of tissue-sharing of top CV eGenes where CV eGenes are less tissue-specific than RV

eGenes; 51.04% of CV eGenes are tissue-specific compared to 60.26% of RV eGenes, and

21.15% of CV eGenes are shared in more than 4 tissues, which is about twice higher than the

fraction of RV eGenes shared in that number of tissues (Fig 3B). We repeat this experiment

selecting 25 tissues with at least 100 RV eGenes and observe similar results (S10B Fig). These

results demonstrate that the tissue-sharing patterns of RV eGenes reflect the functional rela-

tionship among tissues, and they tend to be more tissue-specific when compared to CV

eGenes.

Enrichment of expression outliers, proximal rare variants, and disease-associated genes

among RV eGenes in GTEx. Previous studies have shown that large-effect regulatory rare

variants may cause abnormal gene expression, causing individuals carrying those variants to
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have significantly higher or lower expression for certain genes[14] In this analysis, we investi-

gate whether RV eGenes we detect from LRT-q are enriched with expression outliers who

have abnormal gene expression compared to other non-RV eGenes. First, similar to Li et al.

[14], we correct gene expression measurements for age, sex, genotyping principal components,

and PEER factors, and then generate standardized Z-scores. We define expression outliers as

individuals with standardized gene expression |Z-score| > 2 and count the number of outliers

in each gene. Because genes may be expressed differently depending on tissues, outliers are

defined specific to genes and tissues. In each tissue, we count the number of outliers for each

RV eGene and non-RV eGene separately, and then we aggregate these counts across all tissues.

We observe that 8,090 unique RV eGenes (FDR < 5%) across all 49 tissues have 19.52 expres-

sion outliers on average, which is significantly greater than 13.28 outliers on average in 30,436

non-RV eGenes (t-test p< 2.2e-16). We also look at whether those expression outliers carry

rare variants within 20K bp of a TSS of each eGene, and we find that across all tissues, on aver-

age, 72.17% of expression outliers carry one or more rare variants (S12 Fig).

Li et al. discovered that expression outliers were enriched for rare variants near the TSS

compared to non-outliers, and we investigate whether this enrichment is stronger for RV

eGenes compared to non-RV eGenes. This enrichment is defined as the ratio between the pro-

portion of outliers with proximal rare variants (those within 20kb of TSS) and the proportion

of non-outliers with the rare variants for each gene, which can be thought of as relative risk of

carrying the rare variants in outliers vs. non-outliers. Using FDR of 5% to detect RV eGenes in

each tissue, our results show that outliers are significantly enriched for proximal rare variants

compared to non-outliers in all tissues except three brain tissues (Brain_Putamen_basal_gan-

glia, Brain_Hypothalamus, and Brain_Cortex) with limited sample sizes (Fig 4A). For non-RV

eGenes, we do not observe this enrichment in all tissues. We observe consistent results when

varying Z-score thresholds to define expression outliers; outliers are significantly enriched for

adjacent rare variants compared to non-outliers regardless of Z-score thresholds and the

enrichment increases as the Z-score thresholds increase (S13 Fig). These results suggest that

rare variants with cis-regulatory effects may be key factors to explain the large changes in gene

expression levels and those rare variants are likely to have significant contributions to RV

eGenes.

Lastly, we hypothesize that RV eGenes are more likely to be associated with diseases or

traits. For this analysis, we calculate enrichment of RV eGenes among five online disease gene

databases (see Materials and Methods) including 6,298 genes from NCBI ClinVar database

[34], 2,569 genes from Genotype-to-Phenotype (G2P) database[35], 20,998 reported GWAS

genes from NHGRI-EBI catalog[1], 26,352 genes from Online Mendelian Inheritance in Man

(OMIM) database[36], and 7,298 genes from OrphaNet database[37]. We choose these data-

bases because they facilitate the development, curation, validation of large-scale datasets for

associations between human genetic variants and complex and rare diseases. We also consider

genes for non-disease traits as positive controls, which are 212 genes related to body mass

index (BMI) and 78 genes related to height that are provided by the GeneRIF database and

downloaded from the Harmonizome database[38]. Note that GeneRIF is a public database for

the functional annotations of genes based on previous literature. We construct a 2x2 contin-

gency table where an outcome is whether a gene is a disease gene for each database and an

Fig 3. Tissue-sharing patterns of RV eGenes in the GTEx v8 dataset. A. Pairwise tissue-sharing matrix of RV eGenes. It shows

the fraction of shared RV eGenes in each pair of tissues. Here we use FDR< 10% to increase the number of RV eGenes. Tissues are

sorted by clustering. Only tissues with more than one RV eGenes are included. B. The proportion of RV eGenes and CV eGenes

shared among different numbers of tissues. Only tissues with more than 200 RV eGenes are selected. It shows the proportion of

eGenes that are only detected in one tissue, in 2–4 tissues, and in more than 4 tissues.

https://doi.org/10.1371/journal.pgen.1009596.g003
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Fig 4. Outlier analysis of RV eGenes detected by LRT-q in GTEx v8. A. Enrichment of proximal rare variants in outliers compared to non-outliers for

RV eGenes in each tissue. Tissues without RV eGenes are excluded. B. Enrichment of RV eGenes in disease-associated genes and genes related to

common traits (BMI and Height) from public databases. The numbers represent p-values. In both panels, we show the mean values as dots and 95%

confidence intervals as error bars.

https://doi.org/10.1371/journal.pgen.1009596.g004
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exposure is whether a gene is an RV eGene or a non-RV eGene. We use 8,090 RV eGenes we

detect from all 49 tissues with FDR of 5%, and p-value is computed with the Fisher’s exact test

where odds ratio (OR) greater than 1 indicates enrichment of RV eGenes in a disease database

while OR less than 1 indicates depletion. Results show that RV eGenes are significantly

enriched in five disease databases with OR ranging from 2.00 to 2.97 (p = 0~9.58e-42, Fig 4B),

and the largest OR is observed in the OMIM database that contains genes involved in Mende-

lian disorders. We also observe an odds ratio of around 1.0 for genes related to BMI and

height, as expected, because they are two common traits and are not related to any certain dis-

eases. These results suggest that RV eGenes are much more likely to be involved with diseases

compared to non-RV eGenes while they are not enriched in non-disease traits.

Analysis of disease-associated RV eGenes. To discover the clinical importance of RV

eGenes we identify, we perform a literature search on RV eGenes using the ClinVar database.

Specifically, we attempt to find whether an RV eGene in a specific tissue is associated with a

certain disease related to that tissue. First, we find that patients with platelet count disorders

carry rare variants in TUBB1[39] where TUBB1 is detected by our method as one of the RV

eGenes in the heart left ventricle and skin tissue. The landmark symptom of platelet count dis-

orders is petechiae on the skin[40]. There is one rare variant (rs41303899) in TUBB1 that was

reported as likely pathogenic for this disorder where the gnomAD frequency for this variant is

1.5E-3 in the European population. Interestingly, one individual in GTEx carries this rare vari-

ant although the disease status of this individual is not available. We find that the adjusted

TUBB1 expression Z-score of this individual carrying this rare variant is 1.15 in skin tissue,

which is relatively high.

Another example of an association between RV eGenes found in a particular tissue and a

tissue-specific disease caused by rare variants in those genes is telomere sheltering gene POT1,

which is one of the RV eGenes found in fibroblasts. Fibroblasts were found to contribute to

the growth and drug resistance of melanoma, a potentially lethal form of skin cancer[41]. Pre-

vious whole-exome sequencing studies found that rare variants in POT1 could increase the

risk for familial cutaneous malignant melanoma, as one of the rare variants, rs587777477, was

discovered to perturb telomere maintenance[42,43]. We also find that IFIH1 is identified as an

RV eGene in skin tissue, and the rare missense variant, rs587777446, in this gene has been

shown to be pathogenic for autosomal dominant inflammatory disorder, Aicardi-Goutieres

syndrome 7 with the phenotype of skin swelling[44,45]. These examples indicate that some RV

eGenes are associated with diseases caused by rare variants in relevant tissues, which demon-

strates the clinical importance of RV eGenes.

Discussion

We have proposed LRT-q as a powerful rare variant association test for identifying the effects of

rare variants on gene expression. Our simulation studies showed that the proposed method had a

well-controlled false positive rate and higher statistical power compared with other methods.

Through the analysis of gene expression data of 49 tissues from the GTEx dataset, we demon-

strated that LRT-q detected more genes whose expression was regulated by nearby rare variants,

which we call RV eGenes, compared to other approaches including SKAT-O. More importantly,

our method discovered the largest number of novel RV eGenes that were not regulated by com-

mon variants reported in GTEx, which might be particular interest to studies analyzing the func-

tional effects of rare noncoding variants. These results show that LRT-q is an effective statistical

method for rare variant association analyses for quantitative traits including gene expression.

RV eGenes discovered from 49 tissues in GTEx provided several important biological

insights about gene regulation of rare variants. First, we found that as expected, a pair of
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functionally related tissues shared a high proportion of RV eGenes because their gene expres-

sion values were correlated. However, the levels of tissue-sharing patterns of RV eGenes were

not as high as those of CV eGenes where one main reason is the limited number of RV eGenes

compared to the number of CV eGenes. We detected far fewer RV eGenes than CV eGenes

with the same sample size, which is also expected as we have lower power to detect the effects

of rare variants than common variants even with the rare variant association methods that

combine effects of multiple rare variants[5,46,47]. This suggests that we need larger sample

sizes to detect more RV eGenes.

Next, when we checked the tissue sharing patterns of RV and CV eGenes across 20 tissues

using the same number of RV and CV eGenes for each tissue, we found that a higher propor-

tion of RV eGenes were detected only in one tissue than CV eGenes where CV eGenes had a

much higher proportion of genes shared across more than four tissues. This suggests that the

effects of rare variants on gene expression may be more tissue-specific than common variants,

which is important in interpreting results of rare variant associations for complex diseases and

traits. However, we anticipate that a higher fraction of RV eGenes will be shared across many

tissues as more RV eGenes are discovered with a larger sample size as we have observed this

phenomenon with CV eGenes[48,49].

Lastly, we explored the characteristics of RV eGenes with a series of enrichment analyses.

We found that all RV eGenes had several outliers whose expression levels deviate significantly

from the rest of the individuals. These outliers had enrichment of rare variants near the TSS of

RV eGenes compared to non-outliers while there was no such enrichment for non-RV eGenes,

suggesting that rare variants carried by outliers may play important roles in causing the abnor-

mal expression levels of the outliers for RV eGenes. Additionally, we discovered that RV

eGenes were significantly enriched for disease-associated genes across all human disease data-

bases, indicating that genes whose expression is influenced by nearby rare variants have a

higher chance of being associated with diseases. Moreover, previous findings provided evi-

dence supporting that rare mutations in our RV eGenes could increase the risk for certain dis-

eases in the same tissues where they were discovered. This further suggests that rare variants

with regulatory effects may help identify genes associated with diseases.

There are four main features of LRT-q that make it a highly powerful test as demonstrated

in simulation and the GTEx data. First, it prioritizes potential causal rare variants with geno-

type data and functional information such as CADD scores. With our formulation of the likeli-

hood ratio test, LRT-q attempts to find the most likely scenario of causal statuses of rare

variants, which increases the power of detecting potential causal variants. Second, it applies

nonlinear aggregation of rare variants, which results in a nonlinear decision boundary in

detecting their effects. Using simulations, we show that the nonlinear decision boundary

enables LRT-q to emphasize the effects of causal variants in its test statistic, leading to a higher

power. Third, as an extension of the original LRT method, LRT-q also computes the likeli-

hoods for all possible scenarios of causal statuses using an efficient decomposition technique,

which reduces the computational complexity and enables LRT-q to be applied to large-scale

datasets. Fourth, LRT-q considers both directions of rare variant effects as LRT-q statistics are

based on the normal distribution that considers the absolute values of effect sizes and not their

directions. This is important because some regulatory variants may increase gene expression

(positive effect) while other variants may decrease it (negative effect). Results from the real

GTEx data appear to suggest that rare variants are likely to have different directions of effect

because VT, a method that assumes the same direction of effects of rare variants, detected

much fewer RV eGenes than LRT-q; if variants had consistent directions of effect, VT would

have detected many more RV eGenes.
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The application of LRT-q can be extended to other quantitative traits, such as height and

BMI. As the likelihood ratio test is the most powerful test for a particular hypothesis test accord-

ing to the Neyman-Pearson lemma[50], one is likely to achieve higher power with LRT-q on

other quantitative traits than other previous methods. Also, LRT-q can be generalized to a gene-

based test or a region-based test as well as analysis of gene sets, pathways, or networks. It is,

however, important to find appropriate weights for rare variants because results may change

considerably depending on those weights as our results showed that different functional annota-

tions of rare variants affected power to detect RV eGenes. To address this issue, we used a

straightforward approach that employs a variety of functional annotations and combines results.

Identifying an ideal set of weights for rare variants for gene expression and an optimal approach

to combine results remains an important research topic. One of the limitations of LRT-q is that

it may be computationally demanding as it needs to perform a permutation test to estimate p-

value for each gene. One approach to improve the efficiency of LRT-q is performing an adaptive

permutation test that stops the permutation test when observing p-values from a small number

of permutations are high (e.g.,> 0.05). Assuming that most genes are not RV eGenes, we would

only need to perform 1,000 or fewer permutations for the majority of genes. For those genes

with small p-values (potentially RV eGenes), we would perform up to 100,000 permutations to

obtain more accurate p-values. We find that the adaptive permutation test yields a similar num-

ber of RV eGenes compared to the permutation test that uses 100,000 permutations (S14 Fig).

For efficient calculation of LRT-q statistic and the corresponding p-value, we assume the inde-

pendence between rare variants as previous studies[28,51] have found that there would be very

low LD among rare variants. In this study, we found by performing LD-pruning that violation of

the assumption of independence between rare variants may reduce the power of LRT-q, but it

does not increase FPR. In our analysis of the GTEx data, we did not perform LD-pruning as the

optimal LD-pruning approach is not currently known for rare variants. Researchers may want to

apply LRT-q to their eQTL data after applying LD-pruning to identify more RV eGenes.

Materials and methods

LRT-q model

Suppose that we have genotype and gene expression data of a population with size N, and per-

form an association test for a gene with k rare variants. For rare variant i (1�i�k), there are mi

individuals not carrying a rare variant (e.g. not carrying a minor allele of a rare variant), whose

expression levels are Xi ¼ fx1
i ; x

2
i ; � � � ; x

mi
i g, and ni subjects carry a rare variant i (e.g. carrying a

minor allele), whose expression levels are Yi ¼ fy1
i ; y

2
i ; � � � ; y

ni
i g. Note that N = mi+ni. There are

two assumptions in our model: 1) independence among rare variants (e.g. no linkage disequilib-

rium (LD) among rare variants) and 2) the normality of gene expression values. Previous studies

have suggested that there would be very low linkage disequilibrium (LD) among rare variants

because of their low frequencies[28,51]. As for the normality assumption, gene expression values

are often quantile normalized in eQTL studies[48,49,52,53], which means that Xi and Yi can be

viewed as random samples from a standard normal distribution. With these two assumptions, Xi

and Yi are independently and normally distributed (Xi � NðmXi
; s2

Xi
Þ;Yi � NðmYi

; s2
Yi
Þ, where

mXi
; mYi

stand for the means of Xi, Yi and sXi
; sYi

represent the standard deviation of Xi, Yi,

respectively). We are interested in testing the effects of rare variants on gene expression, that is,

the difference between Xi and Yi. Thus, we test the following hypotheses

H0 : 81 � i � k; mXi
¼ mYi

versus H1 : 91 � i � k; mXi
6¼ mYi
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The null hypothesis (H0) asserts that no rare variants have regulatory effects, while the

alternative hypothesis (H1) states that there is at least one causal rare variant affecting gene

expression. Here, sXi
and sYi

are both unknown but assumed to be equal to the pooled vari-

ance σi.

To boost the statistical power, we want to infer which rare variants are causal. Here, let vi be

an indicator variable for the causal status of variant i (1�i�k); vi = 1 if variant i is causal and 0

otherwise. Let V = {v1, v2,. . ..,vk} be the causal statuses of k rare variants. Then there are 2k pos-

sible values for V, because each of the k rare variants can have causal effects on gene expression

or not. Among them, let Vq ¼ fv
q
1; v

q
2; � � � ; v

q
kg be the qth vector, representing a specific scenario

of causal status. Using the functional information on rare variants, such as CADD scores, we

can obtain the probability of variant i being causal ci = P(vi = 1). Using the assumption that

rare variants are independent, the probability of each scenario Vq is given by

PðVqÞ ¼
Qk

i¼1
cvq

i
i ð1 � ciÞ

1� vq
i ð1Þ

We calculate the likelihood of the observational data and the inferred causal statuses Vq as

follows

LðX;Y;VqÞ ¼ LðX;YjVqÞPðVqÞ ð2Þ

where X = X1, X2,� � �,Xk, Y = Y1, Y2,� � �,Yk are gene expression levels of individuals without rare

variants and with rare variants, respectively. This equation considers both observational data

(gene expression and genotype data) and causal statuses of rare variants, and therefore can pri-

oritize causal variants by functional information. We then calculate our statistic as the ratio

between the likelihood under the null hypothesis and the likelihood under the alternative

hypothesis and use a permutation test to compute the p-value. More detailed information on

the derivation of likelihood ratio test, its decomposition for efficient calculation of the test sta-

tistic, and parameter estimation is discussed in S1 Text.

Simulation studies

To compare the performance of LRT-q with the widely used existing rare variant association

tests, we measure their type I error rates and statistical power in simulation studies. In this

study, data are simulated with a similar framework described in Wu et al.’s work[23].

Simulation of genotype data. The calibration coalescent model[54] (COSI) is used to

generate 50,000 haplotypes, assuming that they have the LD structure of individuals of Euro-

pean ancestry. Any pairs of haplotypes could be combined into diplotypes. In each replicate, a

5 kb region is randomly selected to simulate the diplotypes for 1,000 individuals, which con-

tains 33.1 rare variants (MAF < 0.05) on average. We also perform the power simulation with

a 3 kb region including 19.8 rare variants on average.

Type I error rate simulation. Under the null hypothesis of no association between rare

variants and gene expression, we simulate the normalized expression levels for individual j
from the model described as follows.

Ej ¼ Aj þ �j

where Aj~N(0,1) represents the covariates and �j~N(0,1) stands for random errors. Each Ej is

assumed to be independent. We simulate 100,000 replicates to test the type I error rate at the

significance level α = 0.05,0.01,0.001,0.0001. When applying rare variant association methods

to the datasets, we use uniform weights for all rare variants (e.g. assuming all rare variants are

likely causal). VT and LRT-q are run with 10,000 permutations to measure p-values.
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Power simulation. Under the alternative hypothesis where there is at least one causal rare

variant influencing gene expression, we use the following model to simulate the gene expres-

sion value for individual j.

Ej ¼ Aj þ b
TGj þ �j

where Aj~N(0,1) represents the covariates of individual j and �j~N(0,1) stands for random

errors. Here, we randomly sample s variants out of the total k rare variants as causal variants.

Gj = (gj1,. . .,gjs) is defined as genotypes of s causal rare variants of individual j where gji = 0,1,2

depending on the number of rare alleles for variant i. Their effect sizes are set to be β = a|log10-

MAF|, where MAF represents the minor allele frequencies of causal rare variants and a is a

constant. In this study, a is set to be a fixed constant 0.3, 0.6, 0.9, 1.2, or 1.5 and we also assume

3%, 5%, 7%, or 10% of rare variants to be causal to simulate different numbers of causal vari-

ants with different effect sizes. Thus, in this simulation study, the maximum effect size of a

causal rare variant would be 0.99, 1.98, 2.97, 3.96, or 4.95 assuming 1,000 individuals and a

MAF cutoff of 5%. Causal rare variants have 50% probability of having negative effect sizes

(e.g. decrease gene expression), and 50% probability of having positive effect sizes (e.g. increase

gene expression). The statistical power is estimated as the proportion of p-values smaller than

α = 0.05 in 10,000 simulated datasets. Similar to the type I error simulations, all rare variants

are weighted equally. Both LRT-q and VT are run with 1,000 permutations to calculate p-val-

ues. We also generate simulations to visualize decision boundaries of LRT-q, SKAT-O, and

CMC approaches, and a detailed description of this simulation is discussed in S1 Text.

To examine the robustness of the LRT-q model, we generate simulations using different set-

tings. First, we sample a from N(1,1) to add random noises to effect sizes of rare variants. Sec-

ond, we perform the power simulation with fewer rare variants in a gene. Third, we simulate

Xi (gene expression levels of individuals not carrying the rare variant i) and Yi (gene expression

levels of individuals carrying the rare variant i) to have different variances, which violates the

assumption of LRT-q model in parameter estimation. Here, we let Xj = Aj+�j, where Aj~N(0,1)

represents the covariates and �j~N(0,1) stands for random errors. Let Yj = Bj+β
TGj+�j, where

Bj~N(0,2) represents the covariates, �j~N(0,1), and βTGj stands for the effects of causal rare var-

iants. Hence, X and Y have different variances.

Analysis of multi-tissue GTEx v8 WGS and RNA-seq data

We download the GTEx dbGaP release v8 RNA-seq data from the GTEx portal and the whole-

genome sequencing (WGS) data from dbGaP accession number phs000424.v8.p2. Genotype

data and transcriptome data from all 49 GTEx tissues are used in this study. There are 838 sub-

jects with both WGS and RNA-seq data.

Quality control. We identify 681 individuals of European ancestry using EIGENSTRAT

[55]. We consider only Europeans because they are the largest homogenous population in

GTEx. We then extract only European samples from each tissue, creating 49 separate genotype

datasets for the 49 tissues. We restrict our analysis to autosomal variants. For these 49 genotype

datasets, we extract rare single nucleotide variants (SNVs), which are defined as variants with

minor allele frequency (MAF) < 5%; we also test a case when rare variants have MAF < 1%.

Alleles with genotyping quality (GQ) less than 20 are marked missing. We remove variant sites

that have a missing rate larger than 5% or failed variant quality score calibration (VQSR)[56].

Then missing genotypes are imputed as two reference alleles because of the low frequency of

rare variants.

RV eGene discovery in the GTEx dataset. SNVs are functionally annotated with CADD

[26] and LINSIGHT[32]. Next, we group variants in a gene and those located within 20kb

PLOS GENETICS Rare variants regulate expression of nearby genes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009596 June 1, 2021 18 / 26

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424
https://doi.org/10.1371/journal.pgen.1009596


upstream or downstream of transcription start site (TSS) of a gene. The summary statistics of

sample size, the number of genes and rare variants for each tissue after preprocessing is in S8

Table. Covariates of each sample provided by GTEx, which are top 5 genotyping principal

components, PEER factors[57] (15 factors for tissues with fewer than 150 samples, 30 factors

for those with 150–250 samples, 45 factors for those with 250–350 samples, and 60 factors for

those with more than 350 samples), sequencing platform, and sex are used to regress out

unwanted confounding effects in gene expression levels for each tissue using a linear model.

Then the transformed gene expression levels are normalized with rank-based inverse normal

transformation using “RankNorm” in the “RNOmni” R package. When applying rare variant

association methods to the GTEx data, different weighting strategies of rare variants are used,

including LINSIGHT scores, CADD scores, MAF, distance to TSS, and uniform weights (all

rare variants have the same weight). Note that weighting by MAF or TSS distance is to use

weights inversely proportional to the values of MAF or TSS distance, so variants with lower

frequency or closer to TSS are assigned higher weights while for other weightings, higher

scores (e.g. CADD or LINSIGHT scores) mean higher weights for variants. We also combine

multiple weights by multiplying two or three weights together for each variant; we create three

combined weights, 1) MAF × TSS distance, 2) MAF × CADD scores, and 3) MAF × CADD

scores × TSS distance. All weights mentioned above are employed to discover RV eGenes in 49

GTEx tissues. FDR < 5% is applied for multiple testing correction.

Patterns of tissue sharing in RV and CV eGenes. We first assess tissue-sharing patterns

of RV eGenes in a pair of GTEx tissues. We use FDR< 10% to identify RV eGenes in each tis-

sue to increase the RV eGenes. Next, for each pair of tissues, we calculate the fraction of shared

RV eGenes as

of shared RV eGenes between tissues 1 and 2

minðof RV eGenes in tissue 1; of RV eGenes in tissue 2Þ

Similarly, to calculate pairwise tissue-sharing patterns of CV eGenes, we select CV eGenes

with FDR< 5% based on the summary statistics in the GTEx v8 dataset and calculate the frac-

tion of shared CV eGenes using the same equation. To assess tissue-sharing patterns of RV

eGenes in more than two tissues, we choose 20 tissues with at least 200 RV eGenes

(FDR< 5%) and calculate the proportion of RV eGenes shared across different numbers of tis-

sues (i.e. # of RV eGenes present in only one tissue, in 2–4 tissues, or in more than 4 tissues).

To find tissue-sharing patterns of CV eGenes in more than two tissues among the same 20 tis-

sues, we choose top Nt CV eGenes from tissue t where Nt is the number of RV eGenes in tissue

t. We then calculate the proportion of CV eGenes shared across different numbers of tissues.

We also repeat this analysis with another group of 25 tissues that have more than 100 RV

eGenes (FDR < 5%).

Single-tissue gene expression outlier discovery. For each individual, we log-transform

gene expression value as log2(TPM+1) for each gene and each tissue, where TPM is the number

of transcripts per million RNA molecules. We then standardize gene expression value for each

gene in each tissue into Z-score to avoid the shrinkage of outlier gene expression caused by

rank-based quantile normalization, using the following equation:

Zt
gj ¼

xt
gj � m

t
g

st
g

where xt
gj and Zt

gj represent unstandardized log-transformed gene expression value and the

standardized Z-score of individual j for gene g in tissue t, respectively. mt
g and st

g are the mean

and standard deviation of the unstandardized values across all individuals (xt
gj), for gene g in
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tissue t, respectively. Next, for each gene in each tissue, we regress out the covariates, including

top 5 genotyping principal components, PEER factors, sequencing platform, and sex from the

transformed and standardized gene expression values using a linear model. The resulting

regression residuals are standardized again using the equation above and the resulting Z-scores

are used to determine outliers.

Single-tissue gene expression outliers in a gene are defined as the individuals with extreme

gene expression levels who have |Z-score| > 2, while the remaining individuals are defined as

non-outlier for this gene. Other Z-score thresholds are also tested, including 1, 3, 4, 5, 6, 7, 8, 9,

and 10. Under this definition, an outlier is specific to a gene in a certain tissue. Therefore, each

gene may have different sets of outliers across tissues, and an individual may be an outlier for

multiple genes in one or more tissues. We analyze all outliers in non-RV eGenes and RV

eGenes identified by LRT-q in 41 out of all 49 tissues with at least one RV eGene (FDR< 5%).

Enrichment analysis of RV eGenes. To calculate enrichment of proximal rare variants

near RV eGenes in gene expression outliers compared to non-outliers, we consider rare vari-

ants (MAF� 5%) within 20 kb of the TSS of a gene. Similar to the analysis conducted by Li

et al.[14], enrichment is defined as the ratio of the proportion of outliers carrying rare variants

to the corresponding proportion of non-outliers. It is equivalent to the relative risk of having

proximal rare SNVs as an outlier. The 95% Wald confidence intervals are calculated with the

asymptotic distribution of the log relative risk. We also assess this enrichment by varying Z-

score thresholds to define expression outliers (from 1 to 10). Enrichment is similarly calculated

for non-RV eGenes.

We also examine the enrichment of RV eGenes for disease- or trait-associated genes in five

public databases, including 6,298 genes from NCBI ClinVar database[34], 2,569 genes from

Genotype-to-Phenotype (G2P) database[35], 20,998 reported GWAS genes from NHGRI-EBI

catalog[1], 26,352 genes from Online Mendelian Inheritance in Man (OMIM) database[36],

and 7,298 genes from OrphaNet database[37], We also consider genes related to two non-dis-

ease traits, 212 genes related to BMI and 78 genes related to height that are provided by the

GeneRIF database and downloaded from the Harmonizome database[38]. We construct a 2x2

contingency table where an outcome is whether a gene is a disease gene for each database and

an exposure is whether a gene is an RV eGene or a non-RV eGene. Odds ratios and 95% confi-

dence intervals are computed by applying Fisher’s exact test to compare non-RV eGenes and

RV eGenes to each of the five lists of disease- or trait-associated genes.

Analysis of disease-associated RV eGenes. To find evidence supporting the clinical

importance of the identified RV eGenes, we do literature research in the ClinVar database. We

search the database for the information about known relationships between rare variants in

RV eGenes and observed health status. The information includes diseases, tissues, clinical sig-

nificance, variants and their frequencies, and supporting literature.

Supporting information

S1 Text. Supplemental methods. It describes the mathematical model of the likelihood ratio

test used in LRT-q, the derivations of the equations for parameter estimation in the model,

and the decision boundary simulation framework.

(DOCX)

S1 Fig. Power comparison among different methods on simulated data with different set-

tings, under the significance level α = 0.05. We sample a from a normal distribution N(1,1)

and simulate genotypes with (A) 19.8 rare variants on average and (B) 33.1 rare variants on

average. We also simulate X and Y to have explicitly different variances with a sampled from a

normal distribution N(1,1), and then perform association tests on the simulated genotypes
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with (C) 19.8 rare variants on average and (D) 33.1 rare variants on average.

(TIF)

S2 Fig. Power simulation with 19.8 rare variants on average, assuming different variances

of X and Y. A. for different effect sizes and fixed causal ratio (10%), and for fixed effect sizes

(B.� 0.99, C.� 2.97, D.� 4.95) and various causal ratios. Significance level α = 0.05.

(TIF)

S3 Fig. Power simulation with 33.1 rare variants on average, assuming different variance

of X and Y. A. for different effect sizes and fixed causal ratio (10%), and for fixed effect sizes

(B.� 0.99, C.� 2.97, D.� 4.95) and various causal ratios. Significance level α = 0.05.

(TIF)

S4 Fig. Decision boundaries of four methods, under the significance level α = 0.05. It shows

the decision boundary of A. LRT-q, B. SKAT-O, C. VT, D. CMC at ci = 0.5. ci represents the

probability of a rare variant being causal. Each data point is labeled as significant if a significant

association is identified, or not significant otherwise. "CE = 0": there are no effects of causal

variants in the dataset because there are no causal variants. "CE > 0": there are effects of causal

variants in the dataset because there are at least one causal variants. We randomly sample

2,500 data points to show to avoid overplotting.

(TIF)

S5 Fig. The number of rare variants within 1 Mb and 20 Kb from a transcription start site

(TSS) of each gene. It shows the distribution of the number of rare variants in a window of 1

Mb (median: 15,482) and 20 Kb (median: 311) around TSS across all genes in the GTEx v8

dataset.

(TIF)

S6 Fig. RV eGenes detected from 49 tissues in the GTEx v8 dataset. A. The relationship

between the number of eGenes detected by LRT-q per expressed gene and the sample size of

each tissue. B. The number of novel RV eGenes (not detected from CV eGenes analysis of

GTEx) identified by each method. In panel B, only tissues with more than one RV eGene

detected by any methods are included.

(TIF)

S7 Fig. The overlaps of RV eGenes detected by four methods in four GTEx tissues. It

includes the RV eGene overlap among LRT-q, SKAT-O, ACAT-O, and VT in (A) Muscle_Ske-

letal, (B) Skin_Sun_Exposed_Lower_leg, (C) Thyroid, and (D) Whole_Blood.

(TIF)

S8 Fig. Changes in p-values of non-novel RV eGenes detected by LRT-q after regressing

out effect of common eQTLs from gene expression. We show the changes in p-values in all

eight different weighting schemes after regressing out effect of common eQTLs from gene

expression within (A) 20kb from TSS in Muscle_Skeletal, (B) 50kb from TSS in Muscle_Skele-

tal, (C) 100kb from TSS in Muscle_Skeletal, (D) 20kb from TSS in Skin_Sun_Exposed_Lo-

wer_leg, (E) 50kb from TSS in Skin_Sun_Exposed_Lower_leg, (F) 100kb from TSS in

Skin_Sun_Exposed_Lower_leg, (G) 20kb from TSS in Thyroid, (H) 50kb from TSS in Thyroid,

(I) 100kb from TSS in Thyroid, (J) 20kb from TSS in Whole_Blood, (K) 50kb from TSS in

Whole_Blood, and (L) 100kb from TSS in Whole_Blood.

(TIF)

S9 Fig. Pairwise tissue-sharing matrix of RV eGenes (FDR < 10%) with clustering. It shows

the fraction of shared RV eGenes in each pair of tissues. Here we use FDR<10% to increase
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the number of RV eGenes. Tissues are sorted in an alphabetical order. Only tissues with more

than one RV eGenes are included.

(TIF)

S10 Fig. Tissue-sharing patterns of RV eGenes and CV eGenes in the GTEx v8 dataset. A.

Pairwise tissue-sharing matrix of CV eGenes (FDR< 5%). It shows the fraction of shared CV

eGenes in each pair of tissues. Tissues are sorted in alphabetical order. B. The proportion of

RV eGenes and CV eGenes shared among different numbers of tissues. Only tissues with at

least 100 RV eGenes are considered. Panel B shows the proportion of tissue- specific eGenes

that are only detected in one tissue, in 2–4 tissues, and in more than 4 tissues.

(TIF)

S11 Fig. Pairwise tissue-sharing matrix of CV eGenes (FDR < 5%) with clustering. It shows

the fraction of shared CV eGenes in each pair of tissues. Tissues are sorted by clustering.

(TIF)

S12 Fig. The proportion of outliers with rare variants in all outliers. It shows the proportion

of outliers carrying rare variants near the corresponding genes in each tissue. We show the

mean values as dots and 95% confidence intervals as error bars.

(TIF)

S13 Fig. Enrichment of nearby rare variants in outliers defined with different Z-score

thresholds. Eight Z-score cutoff values are compared. The text above the data points repre-

sents the number of outliers. We show the mean values as dots and 95% confidence intervals

as error bars.

(TIF)

S14 Fig. Venn diagram showing the differences of LRT-q with fixed 100k permutations

and adaptive permutations. It shows the numbers of RV eGenes detected in GTEx Whole

Blood with LRT-q using adaptive permutations and fixed 100k permutations, as well as their

overlaps.

(TIF)

S1 Table. Number of RV eGenes (FDR < 5%) in whole blood detected by four methods

using different weights.

(XLSX)

S2 Table. Number of total RV eGenes (FDR< 5%) detected by four methods in five tissues.

(XLSX)

S3 Table. Number of novel RV eGenes (FDR < 5%) detected by four methods in five tis-

sues.

(XLSX)

S4 Table. Number of total RV eGenes (FDR < 5%) detected in whole blood by four meth-

ods using different sets of rare variants.

(XLSX)

S5 Table. Number of novel RV eGenes (FDR < 5%) detected in whole blood by four meth-

ods using different sets of rare variants.

(XLSX)
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S6 Table. RV eGenes and genes with p-values < 1e-4 from LRT-q before and after regress-

ing out common eQTLs.

(XLSX)

S7 Table. RV eGenes and genes with p-values < 1e-4 from SKAT-O before and after

regressing out common eQTLs.

(XLSX)

S8 Table. Summary statistics of 49 GTEx tissues.

(XLSX)
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