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Background: Differential diagnosis between benign and malignant breast lesions is of
crucial importance relating to follow-up treatment. Recent development in texture analysis
and machine learning may lead to a new solution to this problem.

Method: This current study enrolled a total number of 265 patients (benign breast lesions:
malignant breast lesions = 71:194) diagnosed in our hospital and received magnetic
resonance imaging between January 2014 and August 2017. Patients were randomly
divided into the training group and validation group (4:1), and two radiologists extracted
their texture features from the contrast-enhanced T1-weighted images. We performed five
different feature selection methods including Distance correlation, Gradient Boosting
Decision Tree (GBDT), least absolute shrinkage and selection operator (LASSO),
random forest (RF), eXtreme gradient boosting (Xgboost) and five independent
classification models were built based on Linear discriminant analysis (LDA) algorithm.

Results: All five models showed promising results to discriminate malignant breast
lesions from benign breast lesions, and the areas under the curve (AUCs) of receiver
operating characteristic (ROC) were all above 0.830 in both training and validation groups.
The model with a better discriminating ability was the combination of LDA + gradient
boosting decision tree (GBDT). The sensitivity, specificity, AUC, and accuracy in the
training group were 0.814, 0.883, 0.922, and 0.868, respectively; LDA + random forest
(RF) also suggests promising results with the AUC of 0.906 in the training group.

Conclusion: The evidence of this study, while preliminary, suggested that a combination
of MRI texture analysis and LDA algorithm could discriminate benign breast lesions from
malignant breast lesions. Further multicenter researches in this field would be of great help
in the validation of the result.
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INTRODUCTION

Breast cancer is increasingly acknowledged as a serious,
worldwide public concern in women (1, 2). Several researchers
have reported the incidence of breast cancer increases with age
(3). This malignant and complex lesion, with a spectrum of its
different subtypes, has resulted in various treatment modality,
followed with heterogeneous responses and clinical outcomes
(4). Early detection, diagnosis, and treatment are of crucial
importance in improving the prognosis of the patients. In
clinical practice, magnetic resonance imaging (MRI) is strongly
suggested as the primary examination method of breast cancer
for its non-ionizing radiation damage, high soft tissue resolution,
and advantages in identifying the location and size of the lesions
(5–8). However, a considerable problem with this kind of
application is that there is hardly any competent method to
separate the MRI patterns of benign breast lesions from the
patterns of malignant breast lesions due to modest specificity,
which usually leads to over- or undertreatment and unnecessary
biopsy (9, 10). Although some studies have demonstrated that a
mass size and non-mass enhancement with segmental or
regional distribution indicate a breast papilloma with
malignant lesions, in most cases, the differences were rather
imperceptible (11). One major reason for this dilemma is the
overlap between morphologic and kinetic characteristics between
benign and malignant lesions (12, 13). Therefore, the importance
has been raised to establish an efficient method to distinguish
malignant breast lesions from benign breast lesions.

Recent development in texture analysis (TA), also known as
radiomics, has led to a renewed solution to this demanding
problem. TA, a mathematical method to quantify the
heterogeneity in images by calculating the voxel intensity, has
been applied to medical imaging (including computed
tomography and MRI) and received satisfying results in the
diagnosis of various lesions (14–16). Since TA can acquire the
additional quantified information from the images that are not
discernible to the human eye, more studies have been long
established in the advantages of TA in facilitating differential
diagnosis (17, 18). However, to date, limited researches have
emerged to apply TA in differential diagnosis between benign
and malignant breast lesions. The aim of this research has
therefore been to adopt and evaluate machine learning
algorithm combined with MRI TA in the discrimination of
benign and malignant breast lesions.
MATERIALS AND METHODS

Patient Selection
We retrospectively searched for patients diagnosed with benign
or malignant breast lesions from January 1, 2014, to August 3,
2017, in the institution’s database. Eligibility criteria required
patients to have 1) histopathological report of biopsy, 2) detailed
electronic medical records, and 3) diagnostic MR scanning
records before chemotherapy or surgical resection. Patients
were excluded from the study if they had 1) existence of
motion artifact on MR images and 2) received certain
Frontiers in Oncology | www.frontiersin.org 2
treatments (including surgical resection, chemotherapy, or
radiotherapy) before MR scanning.

MR Imaging Sequence Selection
For all the patients enrolled in this study, after laying the patient
in a prone position, contrast-enhanced T1-weighted sequence
was available, and the imaging was performed using a 1.5-T MR
scanner with a bilateral, dedicated, 16-channel phased-array
breast coil (Magnetom Aera, Siemens Medical Solutions,
Germany). Dynamic series consisted of seven individual
dynamic images with axial fat-suppressed T1-weighted imaging
(T1WI), and the parameters were as follows: repetition time/
echo time (TR/TE) = 4.62/1.75 ms, slice thickness = 1.5 mm, and
space = 0 mm. Of these dynamic images, one was obtained before
the intravenous injection, and six were obtained after the
intravenous injection. Gadolinium-DTPA (Magnevist, Berlin,
Germany) was injected as the contrast agent (0.15 mmol/kg
bodyweight) at a rate of 2.0 ml/s, followed by a 15-ml saline flush.

Image Processing and Lesion
Segmentation
In this study, after a preliminary assessment on images, we selected
contrast-enhanced T1-weighted (TIC) images for further analysis.
Image series were imported from radiomics platform as Digital
Imaging and Communications in Medicine (DICOM) files. We
performed TA on LIFEx software (version 5.10, FrenchAlternative
Energies and Atomic Energy Commission) (19). We followed the
guidelines of the image biomarker standardization initiative (IBSI)
and manually segmented the two-dimensional region of interest
(ROI) of the benign andmalignant breast lesions depending on the
imaging characteristic differences between the lesions and normal
tissue (20). Two radiologists, blinded to the patients’ electronic
medical record and histopathological diagnosis, used LIFEx
software to draw the ROI with the assistance of a senior
radiologist. For the purpose of higher validity as well as
reproducibility, disagreements were addressed to the senior
radiologist and received further discussion. The process was
performed under the software protocols, and the ROI was
carefully drawn layer by layer on the axial plane along the
boundary of the lesions.

Texture Feature Extraction
No specific preprocessing was conducted in the present study. The
image gray-level intensity was normalized to a scale of 1 to 64 (19).
Image processing steps including interpolation, re-segmentation,
and discretization were automatically performed by the radiomic-
specific LIFEx software. For each patients’ image series, 45 texture
features recommended by the IBSI were extracted from the
delineated ROIs by first order or higher order. We extracted
histogram-based indices as first-order statistics. In the higher-
order statistics, texture features were calculated from six matrices:
gray-level co-occurrence matrix (GLCM), gray-level run length
matrix (GLRLM), gray-level zone length matrix (GLZLM) (also
known as gray-level size zone matrix (GLSZM)), histogram-based
matrix (HISTO), neighborhood gray-level dependence matrix
(NGLDM), and Shape. The main texture features for all the
included patients are recorded in Supplementary Table 1.
October 2021 | Volume 11 | Article 552634
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Texture Feature Selection
In Supplementary Table 2, we listed the definition and
description of every kind of our extracted texture features. In
this study, the capacity of the machine learning algorithm was
limited; therefore, we could not take all the features into the
analysis. Feature selection was conducted to determine the most
related texture features and, additionally, avoid overfitting.
Moreover, in order to find out optimal texture features, five
independent selection methods were adopted, including distance
correlation, gradient boosting decision tree (GBDT), least
absolute shrinkage and selection operator (LASSO), random
forest (RF), and extreme gradient boosting (XGBoost). These
selection methods created five subsets and formed five
different datasets.

Classification
Linear discriminant analysis (LDA) is a supervised pattern
recognition technique that can separate groups by searching for
one or several linear combination or discriminant of predictors that
maximize the ratioofbetween-class variance andminimize the ratio
of within-class variance. Related packages were downloaded from
the scikit-learn, and the models were constructed by default (21).
This case study established five independent classification models
on the basis of LDA algorithm: distance correlation + LDA, RF +
LDA, LASSO + LDA, XGBoost + LDA, and GBDT + LDA. We
randomlydivided the texture features ofbothbenignandmalignant
breast lesions into the training groups and validation groups
(training group:validation group = 4:1). The ratio of benign and
malignant breast lesions in both groups was proportional to the
ratio of total benign and malignant breast lesions enrolled in our
study. After training, the models were later applied with the data
from the validation group, and the performance was evaluated. For
eachmodel, the randomizedprocedurewas repeated over 100 times
to appraise the robustness of the machine learning algorithm. The
sensitivity, specificity, areas under the curve (AUCs), and accuracy,
which represented the ability of the model to distinguish the two
lesions, were later calculated in both groups. The comparison
between the five different models (distance correlation + LDA, RF
+ LDA, LASSO + LDA, XGBoost + LDA, and GBDT + LDA) was
conducted to choose a relatively suitable model with the optimal
discriminative ability of benign and malignant breast lesions. The
flowchart of the MRI classification of benign and malignant breast
lesions in different datasets is summarized in Figure 1.

Ethics Approval
Studies involving human participants were reviewed and
approved by the medical ethics committee of Daping Hospital.
The patients/participants’ legal guardian provided written
informed consent to participate in this study.
RESULTS

Patient Characteristics
A total number of 314 patients were primarily selected from the
database of the institution after a retrospective review of their
Frontiers in Oncology | www.frontiersin.org 3
MR images and electronic medical record. Among them, 51
patients were excluded according to the exclusion criteria. In the
remaining patients, 71 were histopathology-proven benign
breast lesions, while 194 were histopathology-proven
malignant breast lesions. Table 1 displays the overview of
baseline characteristics of the included patients. The median
age and the age range for benign and malignant breast lesion
groups were 31.9 (19–45) and 51.9 years (27–83), with a standard
deviation of 6.0 and 10.3 years. In the benign lesion group, the
majority comprised plasma cell mastitis (90.1%), while seven
(9.9%) other patients were diagnosed with granulomatous
mastitis. The numbers of malignant lesions for non-invasive
carcinoma, invasive carcinoma, and others were 11 (5.7%), 194
(92.2%), and 4 (2.1%), respectively. All the patients underwent
diagnostic MRI examination between January 2014 and August
2017. Figure 2 illustrates the contrast-enhanced T1-weighted
MR images of two examples (A: malignant breast lesions; B:
benign breast lesions).

Benign Versus Malignant Breast Lesions
In the present study, we conducted five different texture feature
selection methods on the statistics, including distance
correlation, GBDT, LASSO, RF, and XGBoost. All the selected
texture features are recorded and summarized in Supplementary
Table 3. We constructed five different models based on the LDA
algorithm and five different datasets of texture features. All these
models had achieved high discriminant performance, and all the
AUCs in these training groups are above 0.850. The detailed
performance of these models (sensitivity, specificity, AUC,
and accuracy) is listed in Table 2. The result suggested that the
GBDT + LDA model achieved a statistically higher discriminative
ability among the others and received the highest AUC in the
training groups as well as validation groups. The sensitivity,
specificity, AUC, and accuracy of the training groups’ model
were 0.814, 0.779, 0.922, and 0.868, respectively; as for the
validation group, the results were 0.883, 0.892, 0.911, and 0.868,
respectively. The RF + LDA model also showed optimal
discriminant ability with the AUC > 0.9 in the training group.

Figure 3 directly illustrates the discriminative function of the
GBDT + LDA models. Note that there was little overlap between
the distribution of benign breast lesion groups (triangles) and
malignant breast lesion groups (circles) and the distribution of
group centroids (squares). The promising results indicated that
GBDT + LDA models provided a qualitative separation between
benign and malignant breast lesions. Figure 4 reveals an example
of 100 independent training cycles in the GBDT + LDA models,
in which the findings are shown in the distribution of the direct
LDA function (A: benign breast lesions; B: malignant
breast lesions).
DISCUSSION

Prior studies had stressed the importance of distinguishing
benign breast lesions from malignant breast lesions in view of
redundant invasive examination and the significant differences in
October 2021 | Volume 11 | Article 552634
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their treatment strategies and prognostic results (22).
Traditionally, MR scanning was recommended as a sensitive
modality to detect and diagnose breast lesions, together with
mammography, ultrasound, and image-guided needle biopsy.
However, many uncertainties still existed about the accuracy of
this modality for the characteristics of benign and malignant
breast lesions resemblance on the conventional MR images (12).
In the current study, we examined the discriminative ability of
MRI-based TA by combining five different extracted MRI-based
Frontiers in Oncology | www.frontiersin.org 4
texture feature datasets with a supervised pattern recognition
technique to establish five LDA-based models. The results
indicated that all these models presented good discriminant
ability. Moreover, a combination of GBDT selection method
for TA and LDA algorithm for classification exhibited a better
performance by statistics among the others. These findings
highlight the potential usefulness of machine learning to
complete the separation of benign and malignant breast lesions
in clinical practice.
FIGURE 1 | Flowchart of the MRI classification process by different selection methods. ROI, region of interest; GLCM, gray-level co-occurrence matrix; GLRLM, gray-
level run length matrix; GLZLM, gray-level zone length matrix; NGLDM, neighborhood gray-level dependence matrix; LASSO, least absolute shrinkage and selection
operator; GBDT, gradient boosting decision tree; RF, random forest; LDA, linear discriminant analysis; AUC, area under the receiver operating characteristic curve.
October 2021 | Volume 11 | Article 552634
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TA was a statistical method focused on the analytic techniques
and the description of image texture, whichwas formerly defined as
the repeating patterns of local variations in gray-level intensities
(23). Advances in TA had enabled recent researches to visualize
spatial histologic heterogeneity, capturing image patterns that were
unrecognizable to human eyes. A considerable amount of literature
has been published applying TA to discriminate breast lesions. A
previous study had tried to adopt a combination of texture features
(GLCM entropy, GLCM Sum Average, and GLCMHomogeneity)
andmorphology features to diagnose benign andmalignant lesions
froma2Dslice of 3D images (24).This ideawas further extendedby
researchers, and a study was conducted to investigate the utility of
3D breast lesion characterization (GLCM) by Student’s t-test in
distinguishing benign and malignant lesions (25). Compared with
these studies, we enrolled a larger group of texture features
generated from different matrixes. Moreover, we combined
machine learning to select significant texture features, and the
results of our models showed a reasonably high sensitivity,
specificity, AUC, and accuracy. In recent years, other studies had
tried to relate breast lesions TAof contrast-enhancedMR images to
the underlying lesion subtypes and received satisfying results (26).

The past decade had seen the rapid development of machine
learning applied to MR images in different fields (27–29). After
evaluation of the performance of the selection methods and
Frontiers in Oncology | www.frontiersin.org 5
classification algorithms, predictive models were created for
tumor grading, diagnosis of interest, and clinical outcome. The
association between molecular expression (Ki67 and HER2) and
contrast-enhanced MRI features were also observed in some
studies (30, 31). Other researchers investigated machine learning
in different radiological techniques such as mammograms and
ultrasound (32, 33). Previous research had indicated that
integration of 10-fold cross-validation method and machine
learning into the interpretation of MR images can help to
make decisive rules to manage suspicious breast lesions (34).
Another study also achieved promising diagnostic results in
discriminating breast lesions with deep learning method using
ResNet50 (35). In our study, we built five different classification
models based on LDA algorithm, and a relatively optimal
machine learning model with a combination of LDA + GBDT
demonstrated a non-inferior accuracy of 0.868 and 0.892 in the
training and validation groups, respectively. The current findings
to evaluate the performance of five different feature selection
methods combined with LDA algorithms add to a growing body
of literature on computer-aided diagnosis of breast lesions.

Many studies in the medical image field of machine learning
algorithm had noticed the influence on the diagnostic performance
causedby the adoptionof different texture features. Recently, the IBSI
had standardized the extraction of image biomarkers from imaging
TABLE 1 | Baseline characteristics of the 93 patients included in the analysis.

Characteristics Benign lesions Malignant lesions
n = 71 (%) n = 194 (%)

Mean age (years; SD) 31.9 ± 6 51.9 ± 10.3
Location
Left 23 (32.4%) 89 (45.9%)
Right 43 (60.6%) 105 (54.1%)
Bilateral 5 (7.0%) 0 (0.0%)

Pathology
PCM 64 (90.1%)
GM 7 (9.9%)
Non-invasive carcinoma 11 (5.7%)
Invasive carcinoma 194 (92.2%)
Others† 4 (2.1%)
October 2021 | Volume
PCM, plasma cell mastitis; GM, granulomatous mastitis.
†
“Others” refers to carcinoma with medullary features, tubular carcinoma, invasive cribriform carcinoma, and invasive papillary carcinoma each in the present study.
FIGURE 2 | Two examples of the axial plane of contrast-enhanced T1-weighted MR images. (A) Malignant breast lesions. (B) Benign breast lesions.
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to present a high-throughput quantitative image analysis. All the
texture features included in this studywere recommended in the IBSI
feature reference values and added to the quality of our research (20).
Previous researches haddiscussed various kinds of selectionmethods
including Student’s t-test, Mann–Whitney U test, ReliefF algorithm
(36, 37). Based on the results, the interference of the selectionmethod
cannot be ruled out. Compared with previous studies, we extracted a
relatively large number of parameters from different matrices, which
increased the possibility to select the optimal features. Moreover, in
order to establish the optimal classifier, we chosefive different feature
selection methods (distance correlation, RF, LASSO, XGBoost, and
GBDT) with which the performances were later evaluated. Overall,
the result of this study indicates that all the models showed good
performance and that the GBDT + LDA model achieved a better
performance forbenignbreast lesions frommalignantbreast lesions
with the highest AUC of 0.922 in the training group. GBDT was
proposed as a tree-based algorithm based on a greedy strategy
Frontiers in Oncology | www.frontiersin.org 6
(called gradient boosting) that evaluates the importance of a texture
feature through the time it used as branching point for the tree.
However, the results of this study must be interpreted with caution
because no significant differences were observed between the
performance of all the models, and the variance in AUC may
result from the statistical group. Therefore, the results can only be
suggested as a hypothesis generation and required verification from
future, larger studies.

Several limitations to this pilot study need to be acknowledged.
First, this study is single-centered. The selection bias for patients is
unavoidable and may have influenced the analysis. Second, the
sample size was relatively small, and a greater size of the sample is
expected for further study to validate the results. Third, the results
obtained in this study did not receive external validation in other
datasets, and the diagnostic ability of this model may be influenced
due to different MR scanners and image processing procedure.
Fourth, only texture features from contrast-enhanced T1-weighted
TABLE 2 | The performance of five different models.

Training Validation

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Distance Correlation 0.655 0.801 0.777 0.859 0.635 0.811 0.787 0.835
RF 0.753 0.863 0.839 0.906 0.675 0.865 0.825 0.881
LASSO 0.733 0.839 0.818 0.863 0.745 0.856 0.836 0.869
XGBoost 0.702 0.813 0.795 0.899 0.701 0.837 0.815 0.899
GBDT 0.814 0.883 0.868 0.922 0.779 0.892 0.868 0.911
October 2021 | Vo
lume 11 | Article 5
LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree; RF, random forest; LDA, linear discriminant analysis; AUC, area under the receiver
operating characteristic curve.
We highlighted a relatively better performed model in bold values.
FIGURE 3 | Discriminative function of the GBDT + LDA models. Distribution of the benign and malignant breast lesions that originated from multiple dimensions
were reduced and reflected to a two-dimension plane. Little overlap was observed between the distribution of benign breast lesion groups (triangles) and malignant
breast lesion groups (circles) and the distribution of group centroids (squares). It suggests a qualitative separation between benign and malignant breast lesions.
GBDT, gradient boosting decision tree; LDA, linear discriminant analysis.
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(TIC) images were introduced in this study. Further studies are
required to explore the classifier adapted with texture features from
other sequences.
CONCLUSION

The study was undertaken to design optimal classification model
using texture features combined with machine learning
algorithm and evaluate its sensitivity, specificity, AUC, and
accuracy. We used five selection methods and established five
discriminative models, and their performances were evaluated.
In general, therefore, it seems that texture features have potential
to be utilized in discriminating benign breast lesions from
malignant breast lesions. More broadly, future multicenter
researches with more patients in this field would be of great
help to validate this preliminary result.
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