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Endocrine disrupting chemicals differentially
alter intranuclear dynamics and transcriptional
activation of estrogen receptor-a

Michael J. Bolt,3,4 Pankaj Singh,3,4 Caroline E. Obkirchner,3,4 Reid T. Powell,4 Maureen G. Mancini,1

Adam T. Szafran,1 Fabio Stossi,1,3 and Michael A. Mancini1,2,3,4,5,*
SUMMARY

Transcription is a highly regulated sequence of stochastic processes utilizing
many regulators, including nuclear receptors (NR) that respond to stimuli. Endo-
crine disrupting chemicals (EDCs) in the environment can compete with natural
ligands for nuclear receptors to alter transcription. As nuclear dynamics can be
tightly linked to transcription, it is important to determine how EDCs affect NR
mobility. We use an EPA-assembled set of 45 estrogen receptor-a (ERa) ligands
and EDCs in our engineered PRL-Array model to characterize their effect upon
transcription using fluorescence in situ hybridization and fluorescence recovery
after photobleaching (FRAP). We identified 36 compounds that target ERa-GFP
to a transcriptionally active, visible locus. Using a novel method for multi-region
FRAP analysis we find a strong negative correlation between ERamobility and in-
verse agonists. Our findings indicate that ERa mobility is not solely tied to tran-
scription but affected highly by the chemical class binding the receptor.
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INTRODUCTION

Estrogen receptor-a (ERa) is a prototypical steroid receptor and member of the nuclear receptor (NR)

superfamily that can act as a transcription factor regulating gene transcription in response to hormones

produced by the endocrine system. ERa is a central transcriptional modulator that plays important patho-

physiological roles in multiple tissues, including mammary gland (Vasquez, 2018), uterus (Horner-Glister

et al., 2005), and bone (Rudnik et al., 2008). The endogenous ligand for ERa is 17b-estradiol (E2), a steroid

synthesized from androgen precursors through the enzyme aromatase (Simpson et al., 1994). Targeted

therapeutics, including 4-hydroxytamoxifen (4HT) and other selective estrogen receptor modulators

(SERMs) and degraders (SERDs), have been used to compete with E2 and turn off activity, or degrade

the receptor, blocking its pro-proliferative program (Powles, 2006). Since the industrial age began, runoff

from commercial processes has introduced numerous chemicals (such as bisphenol A, BPA) into the envi-

ronment that can activate or inactivate ERa; unfortunately, most of these chemicals have not been fully

tested.

Endocrine disrupting chemicals (EDCs) are compounds that can alter hormone-responsive cells and tissues

by frequently binding nuclear receptors (Zoeller et al., 2012). EDCs have been associated in epidemiolog-

ical studies with a wide variety of pathological conditions including cancer, metabolic and developmental

defects (De Coster and van Larebeke, 2012; Rochester, 2013). These compounds are diverse in chemical

structure, produced either naturally through metabolism of exogenous chemicals or through industrial

sources. Such compounds have been tested primarily in biochemical assays to determine which nuclear re-

ceptors or pathways are involved, indicating that estrogen, androgen, and thyroid receptors are the pri-

mary, but not the only target of EDCs. Although high throughput/high content assays have been utilized

in the past to definemechanistic characteristics of EDCs (Stossi et al., 2014; Kornhuber et al., 2021; Stavreva

et al., 2016), their influence on receptor structure and function have not been fully assessed. In response,

the Environmental Protection Agency (EPA) identified a set of 45 ERa positive (agonists and antagonists)

and negative reference (Judson et al., 2015) compounds (EPA45) to facilitate and expand research in

this area. The EPA45 includes well known natural ligands of ERa, and common EDCs such as BPA. The

use of these chemicals in a suite of estrogen response assays provides an excellent starting point for
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many lines of mechanistic EDC research. One aspect missed by all current ToxCast assays is the effect of a

chemical on ERa mobility within nuclei, even though this has been shown to directly affect downstream

mechanistic steps including DNA binding residency time and gene transcription (Stenoien et al., 2001a).

Fluorescence recovery after photo bleaching (FRAP) utilizes time-lapse imaging and a fluorescently tagged

molecule to determine mobility of proteins within a given system. This approach has been widely used to

study protein dynamics in the context of living cells (van Royen et al., 2009) as multiple studies have found a

strong link between transcription factor mobility and transcription factor function (Govindaraj et al., 2019;

Stenoien et al., 2001a). Previous FRAP on ERa (Amita et al., 2010; Damdimopoulos et al., 2008) demon-

strated a rapidly moving receptor within the nucleus under control conditions (no ligand added) and

decreasedmobility upon E2 or 4HT treatment, owing, in part, to the receptor binding to DNA, protein-pro-

tein interactions, and ill-defined nuclear structures (i.e., nucleoskeleton/nuclear matrix). Interestingly, the

selective estrogen receptor degrader, ICI182,780 (ICI, also known clinically as Fulvestrant), caused marked

immobilization of ERa, perhaps linked to ubiquitinylation and proteasome degradation (Stenoien et al.,

2001a). Recently, a second structurally similar ligand (GDC-0927) was found to immobilize and degrade

ERa in a similar fashion to ICI (Guan et al., 2019). Despite the utilization of FRAP to study GFP-ERa during

the last two decades, only a handful of compounds have ever been tested, and generally with only a min-

imal number of replicates and cells/treatment. Here, we define the range and scale of altered nuclear

mobility changes possible for ERa-GFP when exposed to the EPA45 chemical library. In addition, we

sought to determine whether specific classes of compounds are linked to the results of other mechanistic

steps, including chromatin remodeling and gene transcription.

In previous studies, we have utilized an engineered ERa model that is amenable to high throughput, high

content analysis due to a multicopy integration of an ERE-rich modified prolactin (PRL) reporter gene that

forms a ligand-dependent, visible nuclear spot that is easily detectable (�1 micron in size) by fluorescent

microscopy, here called ‘‘arrays’’ (Bolt et al., 2013, 2015; Sharp et al., 2006). Owing to the multiple mecha-

nistic endpoints that are available from fixed or live PRL-HeLa experiments, we chose to perform FRAP

experiments with the EPA45 compound set and a recently modified PRL-array cell line that is now doxycy-

cline-regulated, ERa-GFP:PRL-HeLa (PRL-Array), and analyzed with a new Python-based method to

decrease the time for multiple ROI measurements. We combined these findings with the more classical

metrics of the standard PRL-Array assay, including transcriptional output by mRNA fluorescence in situ hy-

bridization (FISH) and chromatin remodeling (‘‘array size’’). Here, our efforts confirm the high mobility of

nuclear ERa-GFP under untreated conditions, slowed ERa dynamics by E2 treatment, and its immobiliza-

tion by ICI. We also show that across a group of inverse agonist compounds, slower mobility of the receptor

correlates with a marked reduction of transcription output. Finally, we observe differences in ERa mobility

between compounds that are classified by chemical structure. Taken together, we find that ERamobility is

not solely tied to transcription but affected highly by the chemical class that binds the receptor.
RESULTS

Profiling the EPA45 compounds in a new dox-inducible PRL-array cell line

We utilized a modified version of our previously published GFP-ERa:PRL-HeLa (iERa-GFP or PRL-array) cell

line to measure the effects of a set of estrogenic compounds assembled by the EPA. As with the previously

used PRL-HeLa cells (GFP-ERa), the parental HeLa cell line contains �100 copies of a modified prolactin

reporter gene that includes a ‘synergy element’ in the distal enhancer containing a full and half estrogen

response element that was reiterated 52x to create a super enhancer driving expression of dsRed2 (ref).

Unlike the original double-stable GFP-ERa:PRL-HeLa line (Sharp et al., 2006), we used a dox-inducible,

C-terminal fusion of ERa (ERa-GFP) that behaves similarly following hormone stimulation, causing a visible

nuclear spot to appear as ERa-GFP specifically targets the EREs in the multicopy reporter gene locus. We

utilize this new cell line for multiple reasons. The original cell line (GFP-ERa:PRL-HeLa)_was CMV promoter-

regulated, expressing GFP-ERa at levels several-fold higher than MCF-7 cells whereas the new array line

(iERa-GFP:PRL-HeLa) can be tuned to express lower ERa-GFP expression (�50% less expression, Fig-

ure S1A). Also, the original GFP-ERa:PRL-HeLa cells also had to be treated in tamoxifen to avoid reduced

growth while expanding cultures as GFP-ERa expression would cause the cells to stop replicating, even

without E2. The iERa-GFP:PRL-HeLa cells have no such restriction as treatment with doxycycline can bring

the expression to usable levels in just 24 h. This also makes the cell line more sensitive to hormone levels, as

iERa-GFP:PRL-HeLa cells cause array formation with less E2 than GFP-ERa:PRL-HeLa (Figure S1B). Finally,

we see higher levels of reporter gene (dsRed2) mRNA production following hormone induction, in the
2 iScience 24, 103227, November 19, 2021



Table 1. The compounds in the EPA45 compound set

Compound Abbreviation Class Conc. (uM)

17alpha-estradiol 17a Steroid 0.01

17alpha-ethinylestradiol 17EE Steroid 0.01

17beta-estradiol E2 Steroid 0.01

4-Hydroxytamoxifen 4HT Oxifen 0.01

Diethylstilbestrol DES Stilbestrol 0.01

Estrone Est Steroid 0.01

Genistein Gen Isoflavone 0.01

meso-Hexestrol Hex Stilbestrol 0.01

Raloxifene hydrochloride Ral Oxifen 0.01

Tamoxifen Tam Oxifen 0.01

Tamoxifen citrate TamC Oxifen 0.01

4-(1,1,3,3-tetramethylbutyl) phenol 413P Phenol 0.1

4-Cumylphenol 4Cum Diphenyl 0.1

Bisphenol A BPA Diphenyl 0.1

Bisphenol B BPB Diphenyl 0.1

Fenarimol FNM Diphenyl 0.1

Kaempferol KMF Isoflavone 0.1

Phenobarbitol sodium PHB Barbiturate 0.1

17-Methyltestosterone 17ME Steroid 1

5alpha-dihydroxytestosterone DHT Steroid 1

Benzylbutyl phthalate BBP Phthalate 1

Daidzein DDZ Isoflavone 1

Kepone KP Organochlorine 1

Methoxychlor MOC Diphenyl 1

o’p’-DDT DDT Diphenyl 1

4-Nonylphenol 4Non Phenol 10

Apigenin APE Isoflavone 10

Corticosterone Cort Steroid 10

Dibutyl Phthalate DBP Phthalate 10

Dicofol Dic Diphenyl 10

Ethylparaben EPB Phenol 10

Hydroxyflutamide HF Phenylamine 10

Linuron Lin Phenylamine 10

p’p’-DDE DDE Diphenyl 10

Progesterone P4 Steroid 10

Spironolactone Spiro Steroid 10

Atrazine Atz Triazine NA

Chrysin Chr Isoflavone NA

Cyclohexamide CHX Imide NA

Di(2-ethylhexyl) Phthalate DEHP Phthalate NA

Flutamide Flut Phenylamine NA

Haloperidol Hel Phenylacetone NA

Ketoconazole Keto Azole NA

(Continued on next page)
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Table 1. Continued

Compound Abbreviation Class Conc. (uM)

Procymidone Pry Chlorobenzene NA

Reserpine RSP Steroid NA

The compounds include the abbreviations, the compound class used for this manuscript, and the lowest dose that could

induce maximal array formation in the PRL-Array cell line. This dose was used for all experiments. Compounds with N/A

were unable to induce array formation at any concentration tested.
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iERa-GFP array line using RNA FISH (Figure S1C). The more physiological level of ERa-GFP, the increased

sensitivity and more abundant dsRed2 mRNA make iERa-GFP:PRL-HeLa (from here on called PRL-Array) a

better choice for drug screening applications.

Our test bed of analytes was a reference set of known estrogenic and non-estrogenic compounds from the

EPA (EPA45 (Judson et al., 2015), Table 1, (compound structures for array-inducing compounds are shown

in Figure S2). The EPA45 compounds were initially tested in our PRL-Array cell model to determine their

ability to induce array formation. All EPA45 compounds were tested using a four-point dose response

(0.01 mM, 0.1 mM, 1 mM, and 10 mM) for 30 min, and we measured the fraction of cells forming a visible

nuclear array (Figure 1A, % arrays), chromatin decondensation/condensation (Figure 1B, array area), and

transcription induction (Figure 1C, dsRed2 FISH Intensity). Nine of the 45 compounds did not induce array

formation above background, at any dose, in agreement with previously published results looking into the

estrogenicity of these compounds (Judson et al., 2015). These compounds were considered inactive in this

assay at these doses and left out of further analysis.

Similar to our previous studies with the original PRL-Array model, 17b-estradiol (E2) was able to induce

large, decondensed arrays at all concentrations tested, and robust mRNA reporter gene (dsRed2) activity.

4-hydroxytamoxifen (4HT) was similar in dose-response, but the arrays were smaller/condensed, and induc-

tion of reporter gene mRNA was suppressed, suggesting a classic ERa inverse agonist class of compounds

(representative images in Figure S3). Interestingly, we observed array formation by Phenobarbital Sodium

(PHB) treatment as low as 0.1mM concentration, which has not been reported in the original ToxCast data-

set (Judson et al., 2015). However, we didmeasure an effect of PHB on endogenous ERa levels in an orthog-

onal MCF-7 assay, and a recent study showed PHB transcriptional activation in an ERE luciferase assay (Xu

et al., 2019). The lowest dose for each compound that induced array formation is listed in Table 1. These

data indicate that our ERa assay is capable of recapitulating known ligand effects, and as a discovery

tool to identify possible novel ligands. One aspect of ERa activity that many studies fail to address is its

intranuclear mobility, which is assessed by fluorescence recovery after photobleaching (FRAP).
Quantitation of multiple FRAP ROIs with FRAPnalysis workflow

To query the effects of the EPA45 compounds on ERa intranuclear mobility, we used FRAP. To improve the

efficiency of the analyses, we first developed and validated a Python-based method for FRAP analysis. This

approach was used to rapidly identify multiple ROIs and normalize for photobleaching during image acqui-

sition at each ROI, a process we termed FRAPnalysis. After collecting a FRAP image series with bleached

ROIs centered on the formed arrays within the PRL-Array cells (Figure 2A, with bleached areas shown by

orange arrows), we utilized image math to subtract the last pre-bleach image from the first post-bleach im-

age (Figure 2B). The resulting image is then threshold to determine the FRAP ROI. Nuclei are then

segmented based on the GFP signal and a random number of regions are chosen in cells that do not

contain a FRAP ROI (Figures S4A and S4B). The random regions are utilized to determine the amount of

photobleaching across the FRAP series. The photobleaching measurements are averaged and the correc-

tion is applied to the FRAP ROIs and plotted (Figure S4C). The pipeline automatically fits the data to a

negative exponential function producing curves for both non-corrected (Figure S4D) and photobleaching

corrected data (Figure S4E). We utilized these measurements to determine FRAP curves with 95% confi-

dence intervals for two well-known ERa ligands with opposite effect on mobility, 17b-estradiol (E2, Fig-

ure 2C) and ICI-182,780 (ICI, Figure 2D). E2 is the endogenous and most-studied ligand for ERa, and ICI

is an ERa degrading ligand known for immobilizing the receptor (Stenoien et al., 2001a, 2001b). Here,

we could easily and quickly perform FRAP experiments and analysis on a larger number of cells as

compared to most published studies, including several biological replicates indicating good
4 iScience 24, 103227, November 19, 2021



Figure 1. Activity of the EPA45 compounds in the PRL-Array cell line

(A–C) Heat maps for the EPA45 compound dose responses in the PRL-Array cells relating to (A) % of cells with a visible

array, (B) array area in pixels, or (C) dsRed2 FISH integrated intensity at the array.
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reproducibility of our method. Ultimately, this data indicates how our workflow allows for a higher

throughput pipeline to produce FRAP metrics with larger numbers of replicates.

FRAP experiments yield two quantitative metrics: T1/2, which measures the speed of half recovery, and

immobile fraction, which measures the scale of recovery. These two measurements allow determination

of the speed at which the ERa-GFP molecules move and how tightly they are bound to DNA, protein com-

plexes, and/or the nuclear matrix. We next sought to determine whether our pipeline could be used to

measure antagonism in a dose dependent manner using the FRAP curves and metrics. To this end, we

treated ERa-GFP:PRL-Array cells with a range of ICI182,780 concentrations (100pM–100nM) while maintain-

ing 1nM E2 treatment constant. E2 treatment leads to more cells with a visible array, a larger array area, and

more dsRed2 FISH signal than ICI (Figures S5A–S5C, respectively) and previous research has shown that ICI

immobilizes ERa (Stenoien et al., 2001b). We observed a successful dose response in the FRAP curves (Fig-

ure S5D), immobile fraction (Figure S5E), and T1/2 (Figure S5F). Interestingly, we see an intermediate immo-

bile fraction response when treated with 1nM ICI and 1nM of E2, with a shift in the T1/2 occurring at 10nM

ICI. The shifting of the E2 curve in response to ICI indicates that our assay is capable of identified dose-

dependent effects on ERa-GFP.
Comparison of T1/2 and immobile fraction using EPA45 compounds

We used the above method to perform a FRAP series using all EPA45 compounds that induced array for-

mation (36 compounds) within the PRL-Array cell model. For each compound we used the lowest dose that

induced significant array induction compared to DMSO (see Table 1, concentration used column). Fig-

ure 3A is a waterfall plot representing the T1/2 for each compound while Figure 3B shows the immobile frac-

tion for each compound. We observed a range of T1/2 from rapid recovery of ERa-GFP (min T1/2: 2.2s for

methoxychlor (MOC)) to very slow moving ERa-GFP (max T1/2: 26.41s for E2). The immobile fractions

(max: raloxifene hydrochloride (Ral), min: kaempferol (KMF)) showed less variation with most values within
iScience 24, 103227, November 19, 2021 5



Figure 2. FRAPnalysis workflow

(A) Representative images from distinct time points along the FRAP imaging experimental axis in the PRL-Array cell line. The Array in each nucleus was the

chosen region for photobleaching (orange arrows).

(B) Image subtraction of the last pre-bleach image and the first post-bleach image allows for quick discovery of FRAP ROIs. (C-D) Recovery curves with a 95%

confidence interval for 17b-estradiol (1nM, n = 46 cells, in 5 biological replicates) and ICI182,780 (n = 25 cells, 3 biological replicates).

ll
OPEN ACCESS

iScience
Article
one standard deviation of E2. The T1/2 of the EPA45 compounds was compared to the immobile fraction

(Figure 3D) and a Pearson’s correlation of 0.589 was observed. To determine which EPA45 compounds

were considered outliers, we utilized an isolation forest model (see STAR Methods). Figure 3C shows

the FRAP curves for an average ERa-GFP ligand, which was created in silico by averaging the 30 com-

pounds that the analysis determined not to be outliers) and six outlier chemicals (E2, 17EE, Ral, MOC,

KMF, and 17ME; all FRAP curves can be viewed in Figures S6A–S6D grouped by chemical class).

We further wanted to determine whether different classes of compounds, based on chemical structure, ex-

hibited altered the mobility of ERa-GFP. The compounds that caused array formation were grouped by
6 iScience 24, 103227, November 19, 2021



Figure 3. FRAP metrics of the EPA45 compounds that cause formation of a visible nuclear spot

(A) Waterfall plot of EPA45 compounds showing T1/2.

(B) Waterfall plot of EPA45 compounds showing immobile fraction.
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Figure 3. Continued

(C) Average FRAP runs for outlier EPA45 compounds (17-Ethinyestradiol, 17b-Estradiol, Raloxifene Hydrochloride,

Methoxychlor, Kaempferol, 17-Methylestosterone) versus the average of non-outlier compounds. Outliers were

determined using isolation forest analysis.

(D) Correlation plot of T1/2 versus Immobile Fraction.

(E and F) T1/2 of four classes of compounds within the EPA45 and their class average.

(G and H) Immobile fraction of four classes of compounds within the EPA45 and their class average. Data are represented

as mean G SD.
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common structure and Tanimoto index, which is based on SMILES compound similarity (Ozturk et al., 2016;

Bajusz et al., 2015). In the EPA45 list there are 4 classes of compounds with at least four compounds each

(diphenyls (8), oxifens (4), isoflavones (4), and steroids (9)). We compared the T1/2 (Figures 3E and 3F) and

immobile fraction (Figures 3G and 3H) of the individuals of these groups, and the average across the group.

We find that the diphenyl compounds (BPA, DDT) on average have a significantly lower T1/2 and immobile

fraction than the steroidal compounds (E2, DHT). These data suggest a range of mobility and DNA binding

effects of the EPA45 compounds on ERa with certain compound classes having greater effect.

T1/2 and immobile fraction negatively correlate with efficacy of inverse agonists

We then explored whether the T1/2 and immobile fraction data correlated with transcriptional output in the

PRL-Array model. Previous reports demonstrated our ability to study transcriptional activation using RNA

FISH probes that hybridize with the dsRed2 reporter gene. The EPA45 compounds (at the dose used in

Table 1) were tested for their ability to induce PRL-Array reporter gene transcription. Utilizing the new

version of PRL-Array cells, we can determine both agonist and inverse agonist activities of the EPA45 com-

pounds compared to the DMSO control (significantly repressed in red box, significantly induced in green

box, Figure 4A). In the original PRL-Array cell line, we showed mRNA production from the array is highly

correlated with the ERa-GFP array area and found this observation also holds true with the EPA45 com-

pounds (Figure 4B) in the PRL-Array cell model. Interestingly, raloxifene hydrochloride induced deconden-

sation of the locus more than the other inverse agonists, but transcriptional activity was markedly

suppressed; interestingly, this is in contrast with the other inverse agonists within the assay and the previ-

ously observed correlation between array area and transcriptional output.

Overall, neither T1/2 and immobile fraction of the EPA45 compounds showed strong correlation with tran-

scriptional output (Figures 4C and 4D, respectively); however, the data appeared to show a skewed distri-

bution thatmay represent a combination ofmultiple distributions.We separated the compounds into those

with a dsRed2 FISH intensity significantly lower than DMSO (based on p value of compound vs DMSO, red

dots, Figures 4E and 4F) or significantly greater thanDMSO (based onp value of compound vsDMSO, green

dots, Figures 4E and 4F). When separated in this way, the inverse agonists (red dots) showed a strong

negative correlation with both the T1/2 and immobile fraction data. These data suggest that while T1/2
and immobile fraction results are not related directly to agonism or inverse agonism, the increased T1/2
(slower recovery) and larger immobile fraction (less recovery) can identify potent inverse agonists.

Comparison of PRL-Array and FRAPnalysis metrics and coactivator recruitment

As early coactivator recruitment is a central tenet of nuclear receptor-based transcription, we sought to

determine if the recruitment of the SRC/p160 family of coactivators correlated with the PRL-Array and/or

FRAP metrics. Figure 5A shows a heatmap of the SRC-1 (NCOA1), SRC-2 (NCOA2), and SRC-3 (NCOA3)

loading ratios for the array inducing EPA45 compounds, ordered by mRNA induction. The loading ratio

is defined as the fluorescence intensity of signal in the array mask divided by the fluorescence intensity

of signal in the nucleoplasm mask. Interestingly, Raloxifene, which had the highest suppression of dsRed2

transcription, had an increased level of SRC-1 loading as compared to 4HT and the other inverse agonists.

Although all three SRCs correlate at least moderately with each other, mRNA FISH intensity, and array area

(Pearson’s r > 0.5, Table S1), SRC-1 correlates most-strongly with SRC-2 (Pearson’s r = 0.858, Figure 5B)

and array area (Pearson’s r = 0.870), and SRC-3 most-strongly correlates with mRNA FISH intensity (Pear-

son’s r = 0.798, Figure 5C). None of the SRCs correlate significantly with either the T1/2 (Figures S7A,

S7C, and S7E) or immobile fraction (Figures S7B, S7D, and S7F) results. These data suggest that SRC-1,

SRC-2, and SRC-3 recruitment is not a mitigating factor in determining estrogen receptor mobility; inter-

estingly, when ER is anchored to a lacO array, the receptor-coactivator interactions are also remarkably

dynamic.
8 iScience 24, 103227, November 19, 2021



Figure 4. Correlations between FRAP and activity metrics

(A) Transcriptional activity for each array inducing EPA45 compound as measured by RNA fluorescence in situ

hybridization of the dsRed2 reporter gene mRNA. Compounds that significantly (p < 0.05) repressed transcription are

marked with a red box. Compounds that significantly (p < 0.05) induced transcription are marked in a green box.

(B–F) Array-inducing EPA45 compounds in correlation plots comparing (B) array area versus FISH intensity, (C) FISH versus

T1/2, and (D) FISH intensity versus Immobile Fraction along with Pearson’s (r) correlation. Correlation plots of (E) FISH

intensity versus T1/2 and (F) FISH intensity versus Immobile Fraction with compounds whose FISH induction is significantly

greater than DMSO in green, significantly less than DMSO in red, and no different than DMSO itself in black. Pearson’s

correlation for the subgroups are labeled in their matching color. Data are represented as mean G SD.
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Differential clustering of EPA45 compounds based on PRL-Array metrics

Weperformedhierarchical clusteringwith the open source ToxPi software (Marvel et al., 2018) togroup the array-

inducing compounds using the seven PRL-Arraymetricsmeasured in this study (array area, mRNA FISH intensity,

SRC-1 loading ratio, SRC-2 loading ratio, SRC-3 loading ratio, immobile fraction, and T1/2) (Figure 5D). The clus-

tering revealed five overall groups: Group 1 (blue) consists of strong agonists (i.e., E2, Estrone (Est), and Diethyl-

stillbestrol (DES)) based on FISH intensity and array area with slower recovery time; Group 2 (orange) consists of

agonists (i.e., Bisphenol A (BPA), Bisphenol B (BPB, and Kepone (KP)) faster recovery time (average T1/2 for blue

group is17.48G4.83s, averageT1/2 fororange is7.26G2.9s);Group3 (yellow) consistsofDMSO-like compounds

(i.e., Dicofol (Dic) and MOC) and some antagonistic compounds (i.e., Tamoxifen (Tam) and Tamoxifen Citrate

(TamC)) that induce arrays; Group 4 (purple) is the antagonist/partial group of compounds with a complete

lack of SRC-2 loading (i.e., 4-hydroxytamoxifen (4HT) and progesterone (P4)); and Group 5 (green) includes

only Raloxifene, which due to its high antagonistic properties, coregulator loading, and very high immobile
iScience 24, 103227, November 19, 2021 9



Figure 5. Coregulator recruitment to the PRL array

(A) A heatmap showing the loading ratios for SRC-1, -2, and -3 for each of the EPA45 compounds, with the compounds

arranged by dsRed2 FISH induction.

(B) Correlation plot of SRC1 loading ratio versus SRC2 loading ratio.

(C) Correlation plot of SRC3 loading ratio versus FISH intensity.

(D) ToxPi hierarchical clustering of EPA45 compounds based on PRL-Array metrics: FISH Intensity, Array Area, T1/2,

Immobile Fraction, SRC1 loading ratio, SRC2 loading ratio, and SRC3 loading ratio.
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fraction clustered by itself. This data suggests that the group of ERa agonists can fall into two classes: (1) com-

pounds that result in a highly mobile receptor; or, (2) compounds that result in a slower receptor, perhaps due

to increased interaction with chromatin.
DISCUSSION

In this work we utilized a new variant of the previously described PRL-Array cell line: a doxycycline-inducible,

C-terminal fusion of ERa that has been shown to be more sensitive than the original N-terminal fusion of ERa

(i.e., ERa-GFPa:PRL-HeLa)We used the new FRAP approach to measure mobility and residency of ERa across

a host of environmentally linked ligands as determinedby the EPA. This is the first dataset that analyzes and com-

pares a large cohort of environmentally relevant ligands (45 chemicals from the EPA) using FRAP and integrating

the results with many other mechanistic endpoints in the ERa pathway (DNA binding, chromatin remodeling,

coregulator recruitment, and gene transcription). We also developed a new image analysis pipeline to analyze

multiple ROIs in FRAP experiments, called FRAPnalysis, that affords the possibility of testing a larger replicate

number of cells/runs compared to typical FRAP experiments (Koulouras et al., 2018).

One interesting finding was the increased T1/2 of ERa in the PRL-Array lines compared with other publica-

tions using similar methodology (26.4s vs 3–15s respectively (Stenoien et al., 2001a; Tanida et al., 2015;

Ochiai et al., 2004; Martinez et al., 2005; Hashimoto et al., 2012)). One key difference to FRAP within the

PRL-Array cell line versus a normal cell line with a GFP-tagged receptor is the presence of a greater number

of ERa binding sites within a smaller nuclear volume compared to a normal nucleus, which responds ideally

to reference agonists/antagonists. Another difference between the studies mentioned above are the mi-

croscopes, magnification, image times, ROI selection or type of analysis used, with any or all reasons poten-

tially leading to different metrics. FRAP experiments with GFP-tagged androgen receptors on the MMTV

array (Nenseth et al., 2014) also showed longer T1/2s than nuclear GFP-AR (Marcelli et al., 2006) (14.9s vs 5s).

Thus, the ERa-GFP:PRL-Array model affords us the ability to determine accurate residence times without

using more complex methods (i.e., single molecule tracking) while still able to provide similar mobility

and residence times from single molecule tracking data (Paakinaho et al., 2017).

We found a correlation between T1/2 and immobile fraction with inverse agonist potency. While the current

theories in transcription activation point to a more dynamic version of its mechanics, our data suggests that

the more potent inverse agonists increase the occupancy time on DNA. This has also been observed for

other nuclear receptors as slowing down the glucocorticoid receptor on the SGK1 gene increases the po-

tency of transcription repression (Clauss et al., 2017). Although we were focused upon ERa mobility, it is

probable that changes in mobility and residency time also intersect with coactivator/corepressor interac-

tions in transcription complexes and/or chromatin accessibility (Stenoien et al., 2001a). We see no correla-

tion between SRC expression/recruitment and mobility, but it is possible that corepressors (i.e., NCoR/

SMRT) may play a role in slowing the receptor for maximal inhibition; unfortunately, the quality tools

needed to examine CoA/CoR by imaging are lacking.

We find a significant difference in mobility between compound classes (steroid vs diphenyl) binding to ERa,

with the diphenyl compounds resulting in a receptor that is much more mobile. One way these compounds

could be affecting mobility is through different distributions of post-translational modifications (PTMs) on

ERa. Multiple kinase pathways have been shown to affect ERa DNA binding ability including AKT and PKA

(Likhite et al., 2006). ERa is a phosphoprotein that can be phosphorylated on many different residues with

effects on DNA Binding (Y219), and dimerization (S104/S106, S118, and S236) (Le Romancer et al., 2011),

either of which could have marked effects on mobility. Changes in PTM on ERa can be induced by EDCs

not only through direct binding of the EDC to ERa inducing a conformational change in the protein but

also through various signaling pathways that EDCs can affect (Shanle and Xu, 2011). ERa can also be

SUMOylated at multiple residues within the hinge region (K266, K268, K303, and K302) which has been

shown to be vital for DNA binding (Sentis et al., 2005). EDC contribution to the SUMO pathways is not

well studied but literature has shown the ability of BPA to change SUMO expression levels (Yarahalli

Jayaram et al., 2020). Through changes to ERa PTMs it is possible for certain classes of EDCs to affect

ERa DNA binding thus affecting mobility. When you further break down the diphenyl group into organo-

chlorines (DDT, DDT, Methoxychlor, Fenarimol, and Dicofol) vs alkylphenols (BPA, BPB, and 4-Cumylphe-

nol) we find no significant difference between the groups in altering ERamobility suggesting that it may be

that the two phenol rings are causing the overall shift in mobility. Although we find no significant difference

between phytoestrogens (isoflavones) and pollutants (diphenyls) we do see within the groups a high level
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of heterogeneous responses. In the isoflavone group, both Genistein and Kaempferol lead to a highly mo-

bile receptor, while Apigenin and Daidzein treated led to a much slower moving receptor. We suggest that

these types of comparisons, plus studies into the changes to ERa PTMs with different EDC treatments, will

be important future studies to further our knowledge of EDC actions.

Finally, although our previous work with the PRL-Array has always found a very high correlation (r R 0.9)

between transcription output and array area (Bolt et al., 2015), we have yet-to-find compounds that would

induce chromatin decondensation and also block transcription. Within the EPA45 compounds, we found

that raloxifene hydrochloride induced medium-sized arrays while suppressing mRNA production from

the locus. Interestingly, raloxifene hydrochloride produced the lowest FISH intensity for the reporter

gene mRNA but had the largest array area of any inverse agonist, suggesting it was able to cause a change

in ERa-GFP that promoted chromatin decondensation, yet blocked RNA polymerase II recruitment or acti-

vation. This was also indicative with SRC-1 loading occurring with Raloxifene which also correlates with

array area. With raloxifene belonging to a group of selective estrogen receptor modulators (compounds

whose effect on ERa differ depending on the tissue type) (Patel and Bihani, 2018), our observations may

be due to the HeLa background (cervical cell as opposed to breast cell) of the PRL-array. Raloxifene also

causes the receptor to immobilize (observed previously in (Damdimopoulos et al., 2008)), similar to the ef-

fect of ICI (Stenoien et al., 2001b). However, unlike ICI, Raloxifene does not cause rapid receptor degrada-

tion (Schafer et al., 1999). We also discovered a ligand (Benzylbutyl Phthalate) that can induce large arrays

and mRNA induction, but with FRAP metrics that are closer to the DMSO control, with rapid recovery and

lower residency. These data suggest a different form of transcriptional activation and repression than those

employed by standard ERa agonists/antagonists such as E2 and 4HT as visualized in the PRL-Array system.

These findings showcase the utility of the PRL-Array cell line not only in clustering together large assort-

ments of estrogenic compounds, but also the ability to discern mechanistic differences between those

groups with respect to both transcriptional readout and protein dynamics.
Limitations of study

A limitation of this study is the use of an engineered cell line. The multi-copy transcription locus possesses

many ER binding sites to aid in visualization and quantitation; unfortunately, the dynamics of ER binding to

a native promoter is not possible by imaging, which prompted the PRL-array models that respond as ex-

pected endocrine treatments (e.g., E2, Tam, and ICI). As GFP-tagging is required for live experiments,

we primarily used C-terminal tagging of ER with GFP as it was reproducibly more active than the N-terminal

GFP fusion; both had similar t1/2’s, with an increased immobile fraction for the C-terminal tagged receptor.

Owing to the nature of the fixed vs live experiments, the same cells cannot be examined in all modalities

since static FISH and antibody labeling data cannot be done live while dynamic FRAP data is only available

from live imaging, so the comparisons aren’t made in the same set of cells. A further limitation is with the

FRAPnalysis algorithm which assumesminimal movement of the cells during the FRAP experiment window.

Highly mobile cells will not work with the algorithm.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

SRC-1 Antibody BD Labs 612378; RRID AB_399738

SRC-2 Antibody BD Labs 610895; RRID: AB_398298

SRC-3 Antibody Mancini Lab 528-F12

Goat Anti Mouse Alexa Fluor 647 ThermoFisher A48289

Chemicals, peptides, and recombinant proteins

EPA45 Compound Set Dr. Keith Houck (EPA)

Experimental models: Cell lines

ERa-GFP:PRL-HeLa Mancini Lab

Software and algorithms

Pipeline Pilot Image Analysis software Biovia https://www.3ds.com/products-services/

biovia/products/data-science/pipeline-pilot/

FRAPnalysis algorithm Pankaj Singh https://github.com/pankajmath/FRAPanalysis

ToxPi software Reif et al. (2010) Toxpi.org

Cluster 3.0 de Hoon et al. (2004) http://bonsai.hgc.jp/�mdehoon/software/

cluster/software.htm

Java Tree Viewer Aj. 2005 http://jtreeview.sourceforge.net/

Orange software Demsar et al. (2003) https://orangedatamining.com/

Other

dsRED2 FISH Probe LGC Biosearch Custom
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Michael Mancini (mancini@bcm.edu).
Material availability

This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited at Github and is publicly available as of the date of publication. DOIs

are listed in the Key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed with ERa-GFP:PRL-HeLa (PRL-Array) cells which are similar to those used

in Bolt et al. (2015), but the GFP is now on the C-terminus, and expression is tightly controlled by doxycy-

cline Cells were maintained in phenol red-free Dulbecco’s modified Eagle’s medium containing 10% fetal

bovine serum (FBS), 200 mg/ml Hygromycin, and 100 mg/ml G418. Cells were plated for 48 h in 5% charcoal-

stripped FBS, phenol red free Dulbecco’s modified Eagle’s medium before treatment on Greiner 384-well
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optical bottom plates, or 8-well chamber slides. To initiate ERa-GFP expression, cells were treated with

doxycycline (1 mg/ml) 24 hours before experimental treatment.

METHOD DETAILS

Fluorescence in situ hybridization

Cells in a 384-well plate were fixed in EM-grade 4% paraformaldehyde in RNAse-free phosphate-buffered

saline for 20 min and then permeabilized with 70% ethanol in RNAse-free water at 4�C overnight. Cells were

washed in wash buffer (WB, 2X SSC and 10% formamide) followed by hybridization in hybridization buffer

(0.1 g dextran sulfate, 1ml of 20X SSC buffer, 1ml of formamide and 8ml of nuclease-free water) with a

dsRED2 RNA probe (LGC Biosearch Technologies, diluted 1:500) overnight at 37�C. Following probe hy-

bridization, cells were washed with WB for 30 minutes, followed by 2X SSC buffer containing DAPI for

30 min. Cells were left in 2X SSC for imaging.

Antibody labeling

Cells were fixed in 4% formaldehyde (EM-grade) in phosphate-buffered saline containing magnesium and

calcium for 20 min at room temperature, quenched with 100 nM ammonium chloride for 10 min, and then

permeabilized with 0.5% Triton X-100 for 15 min. Cells were incubated in 5%milk in PBS for 1 hour, followed

by overnight incubation with primary antibody (SRC-1 [BD labs 612378] 0.5 mg/ml, SRC-2 [BD labs 610895]

0.5 mg/ml, SRC-3 [in house generated 528-F12] 1:500) diluted in blocking buffer. Cells were washed with

blocking buffer and then incubated with secondary antibody (Anti-Mouse 647, 1 mg/ml, ThermoFischer)

for 1 hour in diluted in TBST, followed by another formaldehyde fix and quench step as mentioned above

to stabilize antigen localizations. Lastly, cells were incubated with DAPI (1 mg/ml) for 5 minutes. Cells were

left in PBS for imaging.

High Throughput imaging & analysis

PRL-Array cells were imaged on an ImageXpress Micro (Molecular Devices) high throughput confocal mi-

croscope with an 20X/0.75 NA with 7 z-stacks at 1mm intervals in the GFP and FISH channels, or GFP and

SRC antibody labeling without image binning. Image analysis was performed using a custom workflow

developed with the imaging collection within the Pipeline Pilot enterprise scale GUI-based programming

platform (PLP, BIOVIA) as described previously (Bolt et al., 2013). In brief, images and metadata data are

first read into PLP and then background corrected. Next, the ERa-GFP and FISH z-stacked images are pro-

jected using the ‘‘stack focuser’’ plug-in integrated into PLP. The DAPI signal is then used to define nuclear

regions that are subsequently expanded by 8 mm to include analysis of the perinuclear spaces. Array

segmentation is done using a local subtraction (per nuclear area) peak-finding algorithm followed by

user-defined filtering to minimize false-positives. Count, morphometric and intensity-based features are

subsequently measured for each channel and mask combination. The Loading Ratio, for any antibody la-

beling, is equal to the average fluorescence intensity at the array divided by the average fluorescence in-

tensity in the nucleoplasm.

Fluorescence recovery after photo bleaching

FRAP experiments were performed on a Leica SP-8 confocal microscope combined with a Tokai Hit STX

series stage top incubator system. During imaging cells were kept at 37�C with 5% CO2. Imaging was per-

formed with a white light laser set to 484 nm (2% power) using a 63X/1.40 NA oil objective on a 2X zoom.

Three pre-bleach images were taken. ROIs were then bleached with the 405 nm laser (50% power) with a

one second burst. The cells were then imaged every 2.21 seconds for 2 minutes. ROIs were selected

over the transcriptional array in cells that were not touching the edge of the field. For each compound,

a total of 30 cells were photobleached (3 random fields containing 5 cells each, done in two biological

replicates).

QUANTIFICATION AND STATISTICAL ANALYSIS

FRAPnalysis methodology

To automatically find the FRAP’ed regions, we took advantage of the fact that the last pre-bleached (PreB)

image and the first post-bleached (PB) image would be the same except for the bleached regions (FRAP

regions). First, we used Gaussian filtering to blur the images and subtracted the blurred PB image from

the blurred PreB image. To obtain the FRAP regions, we segmented the subtracted image using Otsu

method (Otsu N, 1979), filled the holes, and removed small debris. For each estimated FRAP region, we
16 iScience 24, 103227, November 19, 2021
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found the pixel with the maximum value in the subtracted image and used that pixel as the center to draw a

circle of fixed radius. These circular regions become our FRAP regions of interest (ROI) in the image. Once

we identified these FRAP regions, we calculated the mean intensity value in the ROIs for each time point

and normalized it to the mean intensity in the first pre-bleached image. Next, we corrected for photo-

bleaching. We segmented all the cells in the last pre-bleached image and for each cell that does not

contain any FRAP regions, we selected the intersection of the segmented cell and a square region with

centroid of the cell being its center, defining the ROI. We computed the mean intensity value at all the

time points for all regions of interest. Next, we normalized these mean intensities to the initial mean inten-

sity for each and obtained the median of these normalized intensities for each time point, followed by

modeling the photobleaching rate if the bleach follows a single negative exponential decay given by:

IðtÞ = Ið0Þ e�at , where IðtÞ is the median of the normalized intensities at time t, Ið0Þ = 1; and a is the rate of

photobleaching. Thus, the image intensities can be corrected by corrected image intensityðtÞ =
image intensityðtÞeat .

For each FRAP region, we corrected the normalized mean intensities for photobleaching that may have

occurred during acquisition not due to the bleaching laser but caused by the imaging laser. Assuming

the FRAP recovery curve follows RðtÞ = b e�dt + c, we obtained the optimal values of b; c; and d for

each region. The mobile fraction is given by a = RðTÞ; where T is the last time point. Thus, the immobile

fraction is 1� RðTÞ and half-time to recovery is calculated by t1 =

2
= � 1

d ln
�
a�c
b

�
+ s; where s is the time taken

to bleach the FRAP region.
Isolation forest outlier discovery

Outlier discovery using the isolation forest model was used as previously described (Liu and Zhou, 2008).

Isolation forest is an unsupervised learning algorithm that takes advantage of the fact that outliers belong

to a small group of data points, and they have very different feature values compared to those of normal

instances. It explicitly isolates anomalies instead of profiling and constructing normal points and regions by

assigning a score to each data point.
Graphics and statistical analysis

All graphics were made using Microsoft Excel unless otherwise stated. The heat map in Figure 1 was made

in data analysis software Orange (Demsar et al., 2013). The heat map in Figure 5 was made using open

source software Cluster 3.0 with Java Tree Viewer (Saldanha, 2004; de Hoon et al., 2004). Figure 5C was

created using the ToxPi software (toxpi.org (Marvel et al., 2018; Reif et al., 2010)). p value was determined

using student’s t-test for single comparisons or one-way ANOVA for independent samples and a Tukey

HSD post-hoc test for comparisons across multiple samples.
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