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Most implementations of mass spectrometry-based pro-
teomics involve enzymatic digestion of proteins, expand-
ing the analysis to multiple proteolytic peptides for each
protein. Currently, there is no consensus of how to sum-
marize peptides’ abundances to protein concentrations,
and such efforts are complicated by the fact that error
control normally is applied to the identification process,
and do not directly control errors linking peptide abun-
dance measures to protein concentration. Peptides re-
sulting from suboptimal digestion or being partially mod-
ified are not representative of the protein concentration.
Without a mechanism to remove such unrepresentative
peptides, their abundance adversely impacts the estima-
tion of their protein’s concentration. Here, we present a
relative quantification approach, Diffacto, that applies
factor analysis to extract the covariation of peptides’
abundances. The method enables a weighted geometrical
average summarization and automatic elimination of in-
coherent peptides. We demonstrate, based on a set of
controlled label-free experiments using standard mix-
tures of proteins, that the covariation structure extracted
by the factor analysis accurately reflects protein concen-
trations. In the 1% peptide-spectrum match-level FDR
data set, as many as 11% of the peptides have abundance
differences incoherent with the other peptides attributed
to the same protein. If not controlled, such contradicting
peptide abundance have a severe impact on protein quan-
tifications. When adding the quantities of each protein’s
three most abundant peptides, we note as many as 14%
of the proteins being estimated as having a negative
correlation with their actual concentration differences
between samples. Diffacto reduced the amount of such

obviously incorrectly quantified proteins to 1.6%. Fur-
thermore, by analyzing clinical data sets from two
breast cancer studies, our method revealed the persis-
tent proteomic signatures linked to three subtypes of
breast cancer. We conclude that Diffacto can facilitate
the interpretation and enhance the utility of most types
of proteomics data. Molecular & Cellular Proteomics
16: 10.1074/mcp.O117.067728, 936–948, 2017.

Mass spectrometry-based proteomics is the preferred
technology for quantitative and comprehensive analysis of
proteins in complex biological mixtures (1). Because a typical
experiment involves proteolytic digestion, the actual analytes
measured by liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS)1 are the proteolytic peptides of the analyzed
proteins. Inferring the identity of proteins that were present in
the original mixture before digestion is problematic, especially
when proteins are homologs. This cannot be solved by in-
creasing the mass accuracy of measuring peptide molecules
and fragments ions (2). Currently, there is no consensus con-
cerning how such protein inference should be performed
(3–5).

Further complications arise when estimating relative protein
concentrations from multiple measurements of peptides. A
common assumption is that the peptide abundances are pro-
portional to their source protein’s concentration (6). Thus, it is
common practice to estimate a protein’s concentration by the
average or aggregate of its constituent peptides’ abundances
(7–9). Theoretically, the peptide mixture obtained from an
individual protein is equimolar; however, in reality, the meas-
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ured peptide abundances span several orders of magnitude.
Besides, many factors can violate the assumption of propor-
tionality. For instance, individual peptides might be subject to
insufficient enzymatic cleavage or inefficient ionization; fall
outside the detection range of the instrument; carry unantic-
ipated sequence variants and modifications; share the se-
quence with peptides from other proteins; or might fail to be
measured in some of the experiments (10). Therefore, for
many proteins, the quantitative data on constituent peptides
are incomplete and sometimes incoherent. To remedy this,
some studies propose advanced algorithms employing pow-
erful statistical methods (11–13), or conducting a peptide-
centric analysis to avoid the inference problem (5, 14, 15).

Nonetheless, most traditional methods do not make use of
the covariation of peptide abundances measured under dif-
ferent conditions. By putting more trust in peptides that dem-
onstrate a stronger covariation with the other peptides from
the same protein, one can make better use of the proportion-
ality principle. Utilizing such information about covariation,
other approaches have been shown to improve the validity of
protein inference and signal integration (16–18), or provide a
basis for selecting peptides for quantitative analysis (19, 20).
However, these approaches have drawbacks in terms of de-
pendences toward specific quantification techniques or the
difficulty with handling missing values; and often incorrectly
treat all peptides as independent variables when summarizing
each individual LC-MS/MS experiment.

Encountered in proteomics, the problem with peptide signal
integration has actually an analog in transcriptomics. Partic-
ularly, in gene expression microarrays, the biomolecules of
interest are full transcripts, whereas the technology measures
multiple moieties of the transcripts, i.e. probes (11, 21, 22).
Recent technological advances in LC-MS/MS have brought
proteomics to a state where its proteome coverage is com-
parable to that of microarrays (6, 23, 24). Although the se-
lected sets of probes in a microarray experiment may exhibit
varying affinity and genome-wide specificity (25), the veracity
of the target transcripts is seldom questioned. One might then
ask why proteomics, which also has multiple measurements
for every target protein, requires every reporter peptide to be
attributed to the source protein uniquely and be correctly
identified by MS/MS, preferably in every sample. Such strin-
gent requirements might provide a false sense of security, as
it is easy to believe that correct identifications are well-suited
for quantification. However, the actual relation between pep-
tide identification and quantification may very well be re-
versed: as was found in our previous study (26), well-charac-
terized chromatographic features have a better chance to be
associated with correct peptide identities. In any case, the
rate of false association between peptide identity and peptide
quantity has not been fully investigated, and this issue is often
ignored altogether. With the increasing sample sizes in pro-
teomics studies, the impact of false quantifications may ag-

gregate into a nonnegligible magnitude, which may affect the
outcome of studies.

Fortunately, the problem with quantitatively aggregating
multiple reporters into a single readout has been thoroughly
investigated in microarray analysis for decades, and a set of
well-characterized procedures have been developed (25, 27,
28). We argue that those hard-earned insights from microar-
ray analysis can also be applied in proteomics to improve its
quantification accuracy. In particular, we propose a differential
analysis approach that we dubbed Diffacto. A popular Bayesian
factor analysis algorithm (28, 29) has been implemented in this
approach to handle incoherent reporter behaviors. The factor
analysis extracts differential signals by utilizing the covariation
over multiple experiments of abundances of a group of corre-
lated peptides tentatively linked to a dominant proteoform.

Contrary to the popular principal component analysis, fac-
tor analysis strives to explain the covariance between observ-
ables rather than the variance within the observables, be-
cause the latter is mainly caused by random noise. In this
regard, factor analysis explicitly assumes the presence of
noise, and thus is more elaborate than principle component
analysis. The signal (factor) represents the protein concentra-
tion change that is extracted from the correlations of meas-
urements across multiple conditions. The signal-to-noise ratio
(S/N) is then estimated for every group of peptides attributed
to a single protein, to determine whether this group is inform-
ative, or too contradictory to reliably quantify. The informative
groups of peptides may still contain incoherent peptides
whose signals contradict those of other peptides. Such pep-
tides are eliminated from the group before estimating the
relative difference in protein concentration as a weighted geo-
metric mean of differences in abundance of the peptides. By
eliminating uninformative groups and incoherent peptide
data, Diffacto reduces noise while preserving the quantitative
signal largely intact, thereby allowing one to extract more
useful biological information from the same proteomics data
set. We demonstrate that Diffacto is a robust, sensitive and
flexible method for differential proteome analysis, well suited
for quantification-centered proteomics (26).

EXPERIMENTAL PROCEDURES

Experimental Settings for Label-free LC-MS/MS—An Orbitrap Q-
Exactive Plus mass spectrometer was connected to an ultrahigh
performance LC system (50-cm EASY-Spray column driven by an
EASY-nLC 1000 pump), all instruments produced by Thermo Fisher
Scientific (Bremen, Germany). Each sample was injected three times
and analyzed in single-shot experiments with 80 min LC gradient,
where the primary full-range (m/z 375 to 1400 Th) MS spectra were
acquired with high resolution (140,000). Following every primary MS
spectrum, one secondary MS spectrum (resolution 17,500) was ac-
quired in a constricted m/z range (375–481, 479–601, or 599–1400
Th) for triggering data-dependent acquisition (top-10 DDA, dynamic
exclusion 15 s) of tandem mass spectra (resolution 17,500). This
segmented DDA approach (30) minimized the redundancy of MS/MS
spectra between the three LC-MS/MS runs. To increase peptide
identification efficiency by multiplexing MS/MS spectra of cofrag-
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menting peptides (31), precursor isolation windows in the three runs
were set to 2.0, 4.0 and 6.0 Th, respectively; normalized collision
energy (NCE) for higher-energy collision dissociation (HCD) was set to
29 eV, 30 eV, and 31 eV, respectively. The choices of window widths
and energy were based on empirical knowledge about optimal instru-
ment settings (24), and the consideration about the density of pre-
cursors in the corresponding m/z ranges.

The Standard-mixture Benchmark Data Set and Label-free Data
Processing—Standard digests (purchased from Promega, Madison,
WI) of human cell lysates, yeast cell lysates and bovine serum albumin
(BSA) were mixed at twenty different ratios (supplemental Table S1).
The proportion of human peptides was reduced linearly, whereas the
fraction of BSA peptides increased exponentially, and the share of
yeast peptides increased nonlinearly so that all samples had equal
total amounts of peptides. In each sample, 5.0 �g of peptide mixture
was dissolved to a 30 �l solution, of which 6 �l were injected three
times in a LC-MS/MS experiment (i.e. 1.0 �g peptides per injection).
Raw and converted data were deposed to MassIVE (MSV000079811)
and ProteomeXchange (PXD004308).

Peptide Identification—We identified peptides using the DeMix
workflow (31), in which the MS/MS spectra were de-multiplexed by
matching the isolation windows with the chromatographic feature
maps generated using the full-range (survey) MS spectra by OpenMS
FeatureFinderCentroided (ver. 2.0) (32). MS/MS spectra with the orig-
inal and extended precursor information were searched independently
in a concatenated UniProt (33) reference proteome database (6720
yeast protein sequences of release 2015_12, 91618 human protein
sequences of release 2015_07, and the sequence of BSA UniProt_ID
P02769) using Morpheus search engine (ver. 165) (34). Carbamidom-
ethylation of cysteine was set as a fixed modification, and oxidation of
methionine was considered as a variable modification. The target-decoy
approach was applied and one missed tryptic cleavage was allowed (no
proline rule). Precursor and product mass tolerances were set to 6 ppm
and 18 ppm, respectively. The resulting peptide-spectral matches
(PSMs) were filtered by q-value (�1%) for each individual run.

Peptide Quantification—Peptide-level identification and quantifica-
tion were integrated through the DeMix-Q workflow (26), in which
peptide chromatographic features were peak-picked from the full-
range (primary) MS spectra and tentatively associated with available
PSMs using OpenMS IDMapper (ver. 2.0) (32). Thereafter, the Ma-
pAlignerPoseClustering (ver. 2.0) was applied (with maximum 180 RT
difference and 5 ppm precursor mass difference) to align all feature
maps to the reference run (the run with the largest number of peptide-
like chromatographic features), and calibrate RT to a similar scale.
Subsequently, FeatureLinkerUnlabeledQT (ver. 2.0) was used to link
chromatographic features across different LC-MS/MS runs and gen-
erate a consensus feature map. The consensus map provided the
base for the subsequent identity propagation, where peptide identi-
ties were transferred from runs with PSM information to runs without
the MS/MS information. To further increase the coverage of quanti-
tative information, a more sensitive (extracted ion chromatography,
XIC-based) signal extraction was applied by EICExtractor (ver. 2.0).
Quantities from XIC were propagated to the runs where the features
were not initially covered by the consensus map but precursor mass
peaks at a given retention time and m/z window around the consen-
sus feature (60 s and 5 ppm) were detected. An estimated 5%
feature-level FDR was applied as a quality threshold for this process
(26). If a consensus feature was linked to PSMs with different se-
quences, only the most common sequence was kept. Peptide abun-
dances were reported as a sum of feature abundances from all
charge-state and modifications forms of the respective sequences
and normalized by the average of valid measurements of peptide
abundances for each individual run.

Clinical Breast Cancer Proteomics Data Sets—Peptide identifica-
tion and quantification results were obtained from the supplemental
Materials of two clinical studies without re-processing mass spec-
trometry data. (1) The CPTAC breast cancer data set was acquired
from the CPTAC study (Mertins et al. 2016) (35). This set was normal-
ized in a similar approach as the original study. Peptide iTRAQ log-
ratios (in relation to the internal reference) of 80 (77 samples and 3
replicate measurements) breast cancer samples (quality control
passed), were normalized by kernel density estimation of two-com-
ponent Gaussian mixture models, and zero-centered by subtracting
the mean log-ratio of the major Gaussian distribution. Peptides quan-
tified in no more than 30 samples were discarded. (2) The MPIB breast
cancer data set was acquired from the original study conducted at the
Max Planck Institute of Biochemistry, Germany (Tyanova et al. 2016)
(36). Peptide ratios of 40 breast cancer samples (light, L), compared
with a spike-in standard of SILAC-labeled mixture of breast cancer
cell cultures (heavy, H), were log-transformed, then normalized and
zero-centered by kernel density estimation of two-component Gauss-
ian mixture models. As the original data contain H/L ratios (i.e. refer-
ence-to-sample ratios), we reversed the order of comparison by
taking the negative values after log-transformation. Hence, the sam-
ple-to-reference comparisons were in accordance with the CPTAC
data. Peptides quantified in less than 12 samples were discarded.

The Linear Model For Relative Protein Quantification—LC-MS/MS
measured ion abundances of a protein’s constituent peptide ions do
not directly scale ratio to the actual amount of the original protein
molecule, because of the limited efficiencies of proteolytic digestion
and electrospray ionization (ESI). However, the abundances of pep-
tides ions should be proportional to the protein concentration, if we
are given fixed ionization efficiencies of the peptides. The linear
dynamic range (in ESI) of peptides’ responses to the difference in
protein concentration, without considering the effect of charge com-
petition in complex samples, was estimated to span over four orders
of magnitude (37). Therefore, within the linear dynamic range and the
limit of detection, a quantitative measurement of a proteolytic peptide
should yield a readout y that is determined by the ionization efficiency
�, the protein concentration z and the error of measurement e.

y � �z � e (Eq. 1)

Conventionally, peptides with highest ionization efficiency are
called “best flyers”, and often used to approximate the protein con-
centration in the samples (38). This estimation would be reasonably
accurate only when � is close to 1.0 and e is independent of the
concentration z for each of (or at least most of) the peptides. But in
reality, the ionization efficiencies of different peptides vary greatly,
and the error of measurement depends on the peptide concentration
in most deep proteomics studies.

Most often, the goal in comparative proteomics is to detect relative
changes in protein concentration between biological conditions. In
such cases, the ratios (instead of the actual protein concentrations)
between samples are of real interests. Hence, the linear model can be
formed as a comparison of two measurements, y and y�.

y
y�

�
�z � e

�z� � e�
�

z
z�

(Eq. 2)

A log-transformation could stabilize the estimation when the error
term e is large but the ionization factor � is relatively small:

log�y� � log�y�� � log��z � e� � log��z� � e��

� log�z� � log�z�� � log��z � e
z �� log��z� � e�

z� �
� log�z� � log�z�� � log�yz�

zy�� (Eq. 3)
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The error term log(y�z/zy�) is assumed to be of a zero-centered
Gaussian distribution that fulfills the assumption for both factor anal-
ysis and ANOVA. Hence, in this study, all peptide abundances (y)
were rescaled by comparing to a common reference (y�). For the LFQ
data, peptide abundances from the extra mixture were used as the
reference; the CPTAC data provided an internal reference (pooled
sample) for scaling; peptide abundances in the MPIB data were
originally recorded in relative scale (i.e. H/L ratios).

Unsupervised Factor Analysis—A widely used Bayesian factor
analysis algorithm, FARMS from Bioconductor (28), was re-imple-
mented as a Python function. The main assumption in the factor
analysis was that the peptide concentrations after digestion were
proportional to the protein concentration in the undigested sample.
Based on the linear model, for a given relative protein concentration
z in log-scale, zero-mean normalized observations of log-ratios of
abundances x � log(y) � log(y�), hereafter referred to as abundances,
from constituent peptides could be described as x � �z � �. Accord-
ing to the definition in FARMS, the vector � describes the contribu-
tions of individual peptide signals, and the vector � stands for the
noise caused by errors of measurements. By assuming that z and �
are independent, factor analysis can be employed, with z as a factor
and � as loadings. Furthermore, the observation x should follow a
Gaussian distribution: x	�(0, ��T � �). Here, ��T stands for the
peptides’ signal covariance matrix, whereas i� represents a diagonal
noise covariance matrix. Our goal is to find the nonnegative maxi-
mum a posteriori estimation of loadings � that best describes the
covariation of abundances x, and to estimate for every protein the
S/N by comparing the signal � and noise � for calling the set of
peptides either informative or noninformative (29). Algorithmic de-
tails can be found in the references Hochreiter et al. (28) and Talloen
et al. (29).

The factor loadings � can be considered as peptides’ responsive-
ness to protein concentration changes and used as weighting factors
as well as quality control indicators in signal integration. Peptides
weighted lower than half of the maximum weight were considered
falsely identified or unreliably quantified, and thus were disqualified
from signal integration. This quality threshold enabled auto-exclusion
of unreliable peptides, which then increased the overall robustness of
protein quantification.

Relative Protein Quantification—Given the labels of samples, the
relative abundance of a protein is calculated as a weighted geometric
mean (i.e. a weighted arithmetic mean in log-scale) of abundances of
constituent peptides (w 
 0.5) for the entire group of experiments
(samples).

log�z/z�� �

�
i�1

n wi�log�yi� � log�yi���

�
i�1

n wi

(Eq. 4)

The weight of each peptide (wi) was given by the factor loading
from the previous unsupervised analysis. This method also addressed
the missing value problem by simply omitting these peptides’ contri-
butions to the geometric mean. However, in some cases missing
values indicated abundances below the detection limit, and could
carry information when frequently observed in a specific sample
group. Hence, for the LFQ data, missing value imputation was applied
when a large fraction (
70%) of peptide measurements from one sam-
ple was missing. In that case, missing values in that sample were filled
with half of the lowest registered abundance for the set of peptides.

Analysis of Variances (ANOVA)— was built on the same assumption
as in the unsupervised factor analysis: linear signals plus Gaussian
noise. Given a protein in I conditions with J experiments and K
constituent peptides qualified by the factor analysis (w 
 0.5), we
denoted the per-group estimated relative abundances x̂i and the

average abundance x� for peptides (all in log-scale). The total sum of
squares (TSS), the residual sum of squares (RSS) and the explained
sum of squares (ESS) can be expressed as

TSS � �
i�1

I �
j�1

J �
k

K

�xijk � x��

RSS � �
i�1

I �
j�1

J �
k�1

K

�xijk � x̂i�

ESS � TSS � RSS (Eq. 5)

ESS has I � 1 degrees of freedom; RSS has, in principle, IJK � I
degrees of freedom. However, missing values should be excluded
from the calculations, which accordingly reduces m (number of miss-
ing values) degrees of freedom in RSS. Hence, the F-statistics can be
formulated as

F �

ESS
I � 1
RSS

IJK � I � m
(Eq. 6)

This expression should, in principle, follow an F-distribution with
(I � 1, IJK � I � m) degrees of freedom. A p value could then be
calculated for testing the null hypothesis (H0: all sample groups hav-
ing the same mean peptide abundance). Unfortunately, although such
a peptide-level statistical approach is extremely sensitive, the distri-
bution of quantification errors might be non-Gaussian because of the
covariation of peptides, which could violate the assumption of
ANOVA. A typical example is having batch effects caused by outlier
samples. In that case, rejecting H0 at the peptide-level might not have
the same meaning at the protein-level (supplemental Discussion). In
order to control the risk of inflating significance at the protein level,
without reintroducing the sample-wise protein quantification, two
types of tests were applied to estimate the significances of differen-
tially expressed proteins: the FDRMC approach (39) and the PECA
approach (15).

Sequential Monte Carlo multiple testing (FDRMC) (39) was applied
when the sample size is large enough to generate hundreds of thou-
sands of permutation sequences. A batch (100 times) of randomized
shuffling of sample labels was generated for each iteration of Monte
Carlo (MC) simulation. The ESS (or the F-statistic) for each informative
protein (S/N 
 �20 dB) was calculated based on the grouping with
the randomized sample labels. Denoting T as the number of simula-
tions that yield equal or greater ESS than that obtained with the true
labels and the estimated per-group abundances x̂i from the weighted
averaging; and N as the total number of MC simulations for the given
protein, MC p values could be calculated as follows:

Pmc �
T � 1
N � 1

(Eq. 7)

After each batch of MC simulations, a set of q-values was esti-
mated based on ascending ordered Pmc values and a conservative
estimation of �0 (proportion of true null hypotheses) (40).

�̂0 � min�1,
2
m�

i�1

m

Pmc
�i� � (Eq. 8)

q�i� � min
i	j	m

�m � �̂0 �
Pmc

� j�

j � (Eq. 9)
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The MC simulation stopped when T 
 200 for a given protein, or
q-values of all remaining proteins are lower than the 0.05 FDR
threshold.

Adaptation of the PECA approach (15), on the other hand, tests the
null hypothesis individually for each of the constituent peptides of a
protein. Based on the notation, set x̂i � x� ik, the F-statistic for the k-th
peptide equals:

Fk �

�I

i�1�
J

j
�xijk � x� ik�

I � 1

�I

i�1�
J

j�1
�xijk � x�k� � �I

i�1�
J

j�1
�xijk � x� ik�

IJ � 1 � mk

(Eq. 10)

The peptide-level p value can be calculated by the cumulative
distribution function for the F-distribution (fcdf).

Pk � 1 � fcdf�Fk, I � 1, IJ � 1 � mk� (Eq. 11)

Under the null hypothesis, the median of uniformed distributed p
values should form the order statistics with a beta distribution (� �
� � (k � 1)/2). Hence, the protein-level significance was determined
by the median of peptide-level p values (Pk

* ) and the cumulative
distribution function of the beta distribution (Bcdf).

P � Bcdf�Pk
*,

K � 1
2

,
K � 1

2 � (Eq. 12)

Similarly, q-values for the PECA approach were estimated using
the same formula as in the FDRMC approach. However, we found the
peptide-level statistics might not be well-calibrated that still tend to
overestimate the significance at the protein level, thus must be ap-
plied with cautions (supplemental Discussions).

Comparison to Traditional Per-Sample Quantification Methods—(a)
The Top-3 approach summarized each protein by taking the arithme-
tic mean abundance of its three most abundant peptides (or all its
peptides when having less than three peptides). This approach is
often applied as the “gold-standard” with the assumption that “best
flyer” peptides give better MS responses (38). (b) The Median ap-
proach used the median values of nonmissing peptide measurements
to make per-experiment estimations of protein abundances, which is
commonly applied in studies with paired samples and using isotopic
labeling quantification. (c) The PQPQ approach was adapted from the
simplified version (20) written by Zhu et al. Peptides abundances were
log-transformed then filled with zeros for missing values. For each
protein, peptides were clustered based on the pattern of correlation
across samples, using the hierarchy linkage function with default
settings for distance calculating method (“complete”), metric (‘corre-
lation’) and threshold (0.4). The largest cluster from PQPQ was cho-
sen as the representative of the protein, and combined by taking the
average abundance. (d) The MaxLFQ algorithm was implemented in
MaxQuant (12, 41), which took the Thermo .raw files as input, pro-
cessed the data with the Andromeda search engine, and propagated
peptide identifications via the option of “match between runs”; 1%
FDR of PSM and 5% FDR of proteins were allowed. Protein abun-
dances for each sample were given by averaging the reported non-
zero abundances from the three LC-MS/MS experiments. Proteins
quantified in less than five samples were discarded.

False Quantification Rate in LFQ—To test the impact of false pep-
tide quantifications aggregated on the protein level, the correlation
between the known concentration and the protein level quantification
was measured. For each protein, the ranks of 190 pairwise abun-
dance ratios (formed from the 20 mixtures) were compared via Spear-
man’s rank correlation between the reference concentrations and the

protein quantification results. Pair ratios involving missing values were
excluded. Proteins with negative correlation (below the threshold r �
0) were considered as false quantifications.

Analysis of ABRF-iPRG-2015 Data Set Using Peptide De Novo
Sequencing—Raw data of the 12 LC-MS/MS experiments from iPRG-
2015 study were downloaded from the FTP server (ftp://iprg_study:
ABRF329@ftp.peptideatlas.org) and processed as described in refer-
ence (26). Instead of performing traditional MS/MS database search,
we used DeNovoGUI (ver. 1.14.5) (42) that contains the de novo
sequencing software Novor (43) to generate full-length peptide se-
quences directly from the MS/MS spectra, with 10 ppm precursor
mass tolerance and 15 ppm fragment mass tolerance. Carbamidom-
ethylation of cysteine was set as a fixed modification, and oxidation of
methionine was considered as a variable modification. The universal
SwissProt database (release 2014_07 containing 546,000 protein se-
quences) (33) was searched for all the de novo peptides using protein
BLAST (ver. 2.2.28, parameter: -task blastp-short). The top 10
BLAST hits were filtered by sequence coverage and identity, using
arbitrary qualification criteria, where at least 7 identical residues cov-
ered at least 80% of the de novo peptide sequence, and the overall
identity was higher than 80%. After quality control, de novo peptides
were considered as MS/MS identifications, and were assigned to the
chromatographic feature maps by the DeMix-Q workflow. Multiple
peptides were allowed to be associated with the same features,
because of the uncertainty of de novo sequences. In addition, each
de novo sequence was allowed to have multiple BLAST matches to
the proteins that are homologs from different organisms. Therefore,
the species identification codes from the SwissProt entry names of
the matched proteins were removed. For instance, OVAL_CHICK and
OVAL_MELGA were considered as the same source protein with the
identification code of OVAL. As a result, the quantification table
contained peptide sequences that mapped to conceptual source
proteins and were quantified in at least 4 of the 12 experiments.
Finally, Diffacto analysis was performed based on the resulting pep-
tide quantifications, with below-threshold FDR calculated based on
500,000 random Monte Carlo permutations.

Code Availability—Source code (Python 3.x) and examples for
Diffacto are freely available at https://github.com/statisticalbiotech-
nology/diffacto under Apache 2.0 license. Package dependences:
scipy, numpy, pandas (http://pandas.pydata.org), networkx, Pyteom-
ics (44), and Scikit-learn (45).

RESULTS

Software Implementation of Diffacto—The aim of Diffacto is
to detect proteins that have different concentrations between
samples and to quantify such differences. By comparing each
sample to a common reference, the input lists of peptide
abundances (x) were firstly transformed to a relative scale (i.e.
log-ratios). The transformation of abundance scale balanced
the contributions of peptides for each protein, despite the
vastly different ion-intensities observed in LC-MS/MS exper-
iments. Therefore, based on the proportionality principle, ev-
ery observed peptide abundance should be a combination of
two parts: the signal responding to the relative change of
protein concentration (z), plus the noise (�) mainly caused by
measurement errors. Given more than one peptide observa-
tions for a protein, each individual peptide could be weighted
by a parameter (�), depending on the covariation between
each other peptides and the estimated noise �. Thus, the
linear model was described as: x � �z � �. Assuming statis-
tical independence between z and �, a factor analysis could
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be employed with z as a factor and � as loadings, the latter
provided means to assess the reliability of each peptide and
maximize the extraction of the signals of protein concentra-
tion changes.

We re-implemented a Bayesian factor analysis method,
FARMS (28), as a Python function. The method was originally
intended for the analysis of gene expression microarrays, but
we redressed the method to determine common components
of abundance variation from a set of peptides that are tenta-
tively linked to one proteoform. The factor analysis dissected
the covariance of measured peptide abundances x, Cov(x,x)
into an assumed response to the protein concentration (i.e.
the signal covariance matrix ��T) and the errors of measure-
ments (i.e. the diagonal noise covariance matrix �), assuming
a Gaussian distribution: x 	 �(0, ��T � �). This approach
rendered a maximum a posteriori estimation of nonnegative
factor loadings � to best describe the covariance of peptide
signals; at the meantime, a S/N was also given for every set of
peptides by comparing the signal to the remaining noise. We
chose a modest S/N threshold of �20 dB (i.e. 1%) to cate-
gorize the sets of peptides into two groups: informative and
noninformative (originally termed I/NI-calls) (29). Noninfor-
mative sets were excluded from the analysis of differential
proteins.

We investigated the factor loadings � for the informative
sets of peptides and observed a bimodal distribution between
0 and 1. Thus, we applied an arbitrary selected loading
threshold of 0.5 for screening individual peptides and re-
moved peptides that are incoherent to the estimated covari-
ance structure. The process was unsupervised and hence did
not require information about sample labels or study design
(e.g. pairwise or multi-group comparisons), a property that
makes it suitable for large-scale studies with complex de-
signs. Thereafter, using � as weights, we calculated the rela-
tive protein abundances for each sample group (instead of
each individual experiment) by the weighted geometric means
of the relative peptide abundances.

Accurate Protein Quantification on Controlled Experi-
ments—To comprehensively investigate the extent of deviat-
ing behaviors of peptides in response to protein concentration
changes, we performed a set of single-dimensional label-free
LC-MS/MS experiments with 20 mixtures of human, yeast
and BSA standard digests combined in different proportions
(supplemental Table S1). We quantified in total 38,794 pep-
tides (supplemental Table S5) that were attributed to 4804
proteins (excluding 2318 proteins identified by single pep-
tides) (supplemental Table S2). Applying peptide identity
propagation in DeMix-Q (26) yielded an overall quantification
rate of 87.9% (i.e. 12.1% missing values). The median CV of
the peptide quantification in three replicate experiments was
12.4%. As a comparison, we also processed the data set
using MaxQuant (MaxLFQ), which yielded 38,738 peptides
and 3650 proteins that passed the threshold of sample cov-
erage (were quantified in at least 15 runs for peptides or 5

samples for proteins). The MaxQuant-derived peptide quan-
tification table contained 36.6% of missing values, which was
more than three times as frequent as in the DeMix-Q output.

We assessed the linear range in the experimental condi-
tions based on the abundances of peptides derived from BSA
that spanned four orders of magnitude in the 20 mixtures
(supplemental Table S1). We observed no obvious upper limit
of quantification (LOQ) even for the highest amount of BSA
spike-in (supplemental Fig. S1, Supplemental Note S1). The
linearity observed from most of the BSA-derived peptides
suggested that the sample overload was not an issue. How-
ever, for half of the samples with low BSA concentration
(relative abundance less than 0.5% of the total amount), we
observed a lower LOQ (supplemental Fig. S1), which deter-
mined that the linear range of the measurements covered at
maximum 30 times the difference in the protein concentrations.

For each protein, we investigated the covariation structure
of its constituent peptides’ abundances and categorized 91%
(4365 out of 4804) of the identified proteins containing inform-
ative sets of peptides (Fig. 1). Reassuringly, the S/Ns of the
summarized proteins showed a strong dependence on the
number of constituent peptides, implying that improved pro-
tein coverage increases the certainty of quantification in the
protein-centric aggregation. Indeed, among the 439 noninfor-
mative proteins, 346 (79%) had only two peptides whereas 70
proteins (16%) had three peptides (supplemental Table S2).

In the informative sets of peptides, the covariation struc-
tures extracted by the factor analysis served as the quality
control, which disqualified 11% of the identified peptides for
the quantitative summarization because of their incoherent
signals (Fig. 2). The quantification schema in Diffacto, i.e.
weighted geometric means, addressed the missing value
problem in label-free quantification (LFQ) by only integrating
valid measurements. Unlike arithmetic means, geometric
means are less affected by outlier values and are, therefore,
more robust against quantification errors. As a result, we
obtained linear correlations between the estimated abun-

FIG. 1. The distribution of signal-to-noise ratios. Estimated by
the Bayesian factor analysis, the higher S/N values reflect the stron-
ger covariations of abundances for the sets of quantified peptides.
Proteins (as sets of peptides) with contradicting peptide responses
(mostly with only two or three constituent peptides) were deemed
noninformative (S/N � �20 dB).
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dances of the informative proteins in 20 mixtures and the
known actual concentrations of human or yeast cell lysates
(Fig. 3 and supplemental Table S2). However, for samples
where a large proportion of the peptides’ concentration fell
below the level of detection, ignoring the hidden signals from
missing values might enlarge the proportion of quantification
errors (supplemental Fig. S3). For such cases, it remained
necessary to impute the missing values. This was done by
arbitrarily assigning half of the lowest abundance observed to
the missing measurements in a given group of samples if the
fraction of missing values exceeded 70%, a fraction set to be
more than five times larger than the overall missing value rate
for that group of samples. When using MaxLFQ derived pep-
tide abundances, the threshold for this imputation was in-
creased to 95%, to better accommodate the large fraction of
missing values in the MaxQuant-derived output. Even under
these conditions, Diffacto inferred 3955 informative proteins,
and again recovered the linearity between the summarized
abundances and the actual concentration, despite the more
than tripled rate of missing values.

Because the human proteome and the yeast proteome
were two independent components in the 20 mixtures, the

two background proteomes provided a base for us to inves-
tigate the false quantification rate (FQR). We defined FQR as
the fraction of protein quantifications correlating negatively
with the actual concentrations (Methods and supplemental
Note S2). The result turned out to be devastating for so-called
one-hit wonders, i.e. proteins identified by only one peptide.
For such proteins, the FQR was estimated at the level of 29%,
not much better than the random noise that would give on
average a 50% FQR. For proteins quantified by two peptides,
the FQR was 19% but dropped to below 6% after the S/N
filtering (i.e. excluding noninformative proteins). For the “gold
standard” proteins with three peptides, we found the FQR to
be 6% before S/N filtering and 3% after filtering. We com-
pared the overall performance of Diffacto against other quan-
tification approaches (Fig. 4): MaxLFQ; averaging of Top-3
most abundant (or so-called best flyer) peptides; Median of all
quantified peptides; and PQPQ (19), a method that utilizes
peptide correlation for clustering and quality thresholding.

MaxLFQ quantifies proteins based on linear regressions of
their peptides’ pairwise log-ratios, a metric that to some ex-
tent is robust in respect to quantification errors. As a result, for
the 3650 proteins MaxLFQ showed an impressive overall FQR
of 0.68%. However, using the same set of peptide abun-
dances, Diffacto not only summarized 300 more proteins, but
also achieved five times less FQR (0.13%), fewer missing
values, and better precision (Fig. 4). On the other hand, with
DeMix-Q peptide abundances, PQPQ clustered peptides into
subgroups by an arbitrary threshold of linear correlation (i.e. a
threshold not determined by the estimation error of measure-
ment errors), which reduced the FQR compared with Top-3
and Median, especially when having a large number of cor-
relating peptides. However, an acceptable FQR � 5% was
achieved only for proteins with more than six peptides, which
encompassed only one-third of the quantified proteome. In
sharp contrast (supplemental Fig. S2b and S2c), Diffacto re-
moved the major source of false quantifications (i.e. proteins
having low coverage) by the S/N filtering. The quantified 4361
informative proteins showed an overall FQR of 1.6%. This
result confirmed the vital importance of measuring multiple
peptide abundances per protein.

Proteomic Portraits of Three Subtypes of Breast Can-
cer—To demonstrate the performance of Diffacto in large-
scale comparative proteomics, we re-analyzed two bench-
mark data sets from clinical breast cancer studies, one
conducted by the Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC, Mertins et al.) (35) and another one by the Max
Planck Institute of Biochemistry (MPIB, Tyanova et al.) (36).
The CPTAC study could be seen as a near-ideal case of
comparative proteomics, which has an internal reference (a
pooled sample), reasonably large sample size (77 clinical
samples) and excellent sequence coverage (24 peptides per
protein, on average). The MPIB study, on the other hand,
represented a less ideal case in proteomics, where 40 tissue
samples were compared against a standard mixture of sta-

FIG. 2. Protein summarization based on peptide abundances
(an example). Five peptides matched to the protein CLCB_HUMAN
(UniPort ID) showed varying ionization efficiencies, but the majority of
the peptides responded to the actual protein concentration, which is
assumed to be proportional to the fraction of human protein contents
in the analyzed mixture. Concentration unit: ng per 6 �l. The peptide
with the overall highest abundance (red dashed line) showed anticor-
relation with other peptides. The deviating behavior could be a result
of errors in the peptide identification process or the ion-chromatog-
raphy extraction. Diffacto assigned a weight of zero to this particular
peptide and excluded it from the signal integration. The weighted
geometric mean that given by Diffacto (green band) also appeared to
be more stable compared with the Top3 averaging (red band), in the
presence of outliers (two spikes of the purple line).
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ble-isotope labeled breast cancer cell lines using the super-
SILAC approach. For consistency, we followed the same
approach as in Tyanova et al. to categorize the samples
into three groups: estrogen or progesterone receptor posi-
tive (ERPR�), epidermal growth factor receptor positive
(HER2�) and ER/PR/HER2 triple-negative (TN). We also
grouped the quantified peptides by source genes instead of
protein sequences.

We classified in total 7879 (92%) proteins in the CPTAC
data as informative with the S/N cutoff at �20 dB, and esti-
mated that 1470 protein concentrations (19% of the inform-
ative proteome) were significantly different (FDR�0.05) be-
tween the cancer subtypes (Fig. 5 and supplemental Table
S3). This number was marginally (2%) smaller than the 1506
proteins estimated by ANOVA using median ratios, indicating
that the FDR control by Monte Carlo random permutations
was conservative. In the list, we found 25 proteins of the
PAM50 marker genes (46), which validated their roles as
protein markers. This can be compared with the 3889 (67%)
informative proteins we found in the MPIB data (supplemental
Table S4). Among these, only 115 proteins (3% of the inform-
ative proteome) had significantly different concentrations
(q � 0.05, Fig. 5 and supplemental Table S4), despite the
fundamental differences between the subtypes of cancer as
observed in the CPTAC data. Nevertheless, at the same level
of 5% FDR, Diffacto detected 85% more significantly differ-
ential proteins than the 62 proteins originally reported by
Tyanova et al.; which was also more than twice as many as
the 47 proteins detected by the conventional approach of

FIG. 3. Protein LFQ by weighted geometric means of peptide abundances. The inter-quantile ranges (boxes) and 90% percentile range
(whiskers) of relative quantifications of 2800 informative human proteins (left panel) and 1564 yeast proteins (right panel) in 20 mixtures.
Concentration unit: ng per 6 �l. Relative quantification using weighted geometric mean showed tight linear relation to the actual protein
concentration in the mixtures. Human proteins appeared to have smaller quantification errors compared with those of the yeast proteins,
because of an on average larger number of constituent peptides per protein. Results of three other summarizing approaches are presented in
supplemental Fig. S3.

FIG. 4. Evaluation of the precision of protein quantification
results. Dashed lines: quantification based on MaxQuant (M) pep-
tide abundances. Solid lines: quantification based on DeMix-Q (D)
peptide abundances. Abundances of informative proteins summa-
rized by different techniques were correlated to the actual protein
concentrations. The proportions of quantified proteins (y axis) at the
correlation threshold (r � 0) were used to estimate false quantifi-
cation rates: 14.3%, 9.6%, 4.3%, 1.6%, 0.68%, and 0.13%, re-
spectively in Top3 (D), Median (D), PQPQ (D), Diffacto (D), MaxLFQ
(M) and Diffacto (M) results. Both Diffacto and PQPQ reduced
false quantifications by the elimination of contradicting peptides.
However, the weighted geometric means summarized by Diffacto
provided overall higher precision than other methods. Because
of the presence of contradicting peptides, Top3 appeared to be
the most vulnerable approach, which performed worse than sum-
marizing protein concentrations by their peptides with median
abundances.
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applying an ANOVA to the median-summarized protein con-
centration ratios. Interestingly, we found that Diffacto re-
ported a very different set of proteins than that in the original
report: only 24 of the 62 original proteins were recalled as
differentially expressed. We investigated this discrepancy and
found among the proteins in the Tyanova study that were not
reported by Diffacto, one protein that was rejected because of

too many missing values, 6 proteins (including one of the
markers selected by Tyanova et al.) were deemed noninfor-
mative, and 31 proteins were estimated not significantly dif-
ferent as estimated by the potentially stricter error control by
Diffacto.

To demonstrate the Diffacto’s improved quantification, we
investigated the consistency of the summarized protein abun-

FIG. 5. Three-way comparisons of breast cancer subtypes from CPTAC and MPIB proteomics data. Diffacto summarized differential
proteins from CPTAC (blue) and MPIB (red) data sets. The differentially expressed proteins were more comprehensive and subtype-specific
in the former data set, because of its larger the sample size and higher sequence coverage. Particularly, for the triple-negative subtype, which
has been characterized by the high abundances of basal-like cytokeratins (56), SMOC1, S100B, GSTA1, SFRP1, S100A1, PTX3, SOX10,
ANGPT2, COCH, as well as many other known markers such as SYNM1 (57), MFI2 (58), NDRG2 (59), CRYAB (60), and PLA2G4A (61) were
found on top of the list of differential regulated proteins in the CPTAC data (supplemental Table S3). Markers are located on the scatter plot
based on the fold changes relative to the three subtypes (axes) in log-scale. Marker radius is proportional to the q value (FDRMC) in negative
logarithm scale.
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dances between the CPTAC and MPIB sets. By comparing
the lists of differential proteins reported by Diffacto, we found
46 proteins in common (Fig. 6), and among these, 22 were
exclusively detected by Diffacto. A strong linear correlation of
protein ratios (0.88) was observed between the CPTAC and
MPIB data sets (supplemental Fig. S5). In contrast, for the 12
proteins that were exclusive to the original MPIB report, the
correlation of median protein ratios was only 0.7 between the
data sets. Importantly, the Diffacto-exclusive proteins were
biologically relevant. We found among them three known
markers, NAT1 (46), PPP1R1B (35) and ITGB4 (47), respec-
tively associated with the ERPR�, HER2� and TN subtypes;
and the rest clearly characterized the TN subtype by the
specific upregulations of CD3EAP, FSCN1, ICAM1, MCM4,
MCM7, PDIA6, and SLC2A1 (also known as GLUT1) (Fig. 6,
Supplemental Note S3).

Analysis of iPRG-2015 Data Using Peptide De Novo Se-
quencing—To demonstrate that reliable protein quantification
can be obtained even with a spectacularly suboptimal identi-
fication procedure, we took the data from the iPRG-2015

study (48) for illustration. In the iPRG study, six marker pro-
teins were spiked with different concentrations into four sam-
ples with 200 ng yeast proteins, and were subsequently
measured by triplicate LC-MS/MS experiments. We made no
assumptions regarding either the spiked proteins or the back-
ground proteome. Instead, we used de novo peptide se-
quencing followed by protein BLAST against the universal
SwissProt database. This protocol associated each of the
15,927 chromatographic features with multiple de novo se-
quences, and grouped the latter into 1852 abstract source
proteins (supplemental Table S6). Even using such an unin-
formed identification process, Diffacto detected and properly
quantified all six spike-in proteins (Table I). Only two pairs of low
concentration differences (65:55 fmol and 11:10 fmol) were not
correctly quantified in the relative scale, but comparisons of the
theoretical protein ratios and quantification results showed a
high degree of linear correlation (supplemental Table S6). The
distinctive signal-to-noise ratios of the six marker proteins con-
firmed the usefulness of the quantification approach based on
underlying covariations of the peptide signals.

DISCUSSION

High-resolution mass spectrometry has transformed pro-
teomics by providing a greater number of identifications and
more reliable quantitative measurements of proteolytic pep-
tides, compared with earlier generations of equipment. Cur-
rently, it might seem like protein quantification being limited
by the identification process of mass spectrometry data, and
consequently that the best way to improve quantitative accu-
racy is to improve the identification process. However, this
might not be the best way forward as we increase the sample
sizes in LC-MS/MS experiments. Expansions in number of
samples do not necessarily benefit the traditional identifica-
tion process (49); but surely accumulate more quantitative
information. Furthermore, identification-based quantification
approaches, such as MS/MS spectral counting (SpC), have a
certain limit to their accuracy because of the stochastic nature
of DDA and the low average number of peptide counts. Al-
though we would not argue against the usefulness of such
methods in general, we do not recommend using Diffacto with
SpC data. The application of the segmented DDA strategy in
the current study rendered the traditional identification-based
approaches impractical, unlike the XIC-based approaches.

As we have demonstrated in this study, the peptide abun-
dances provide means to improve identification. The covaria-
tions of peptides’ abundances captured by the factor analysis
method implemented in Diffacto provided not only a quality
control but also a weighted summarizing schema. Other
methods for peptide weighting (18, 50) that use different
aspects of peptide properties might also be applied together
in this schema for improving protein quantification accuracy.
This schema comes with a feature of robustness that makes
the grouping of peptides more flexible, and thus reduces the
burden of protein inference. An interesting extension would be

FIG. 6. Relative abundances of 46 differential proteins common
for CPTAC and MPIB data. Protein fold-changes estimated by
Diffacto (weighted geometric means) showed good agreements not
only in the directions of regulation, but also in the magnitudes of
changes between (supplemental Fig. S5). Such protein expression
patterns clearly clustered into three groups that represent the most
persistent proteomic signatures of the three subtypes of breast
cancer.
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to adapt Diffacto to summarize protein concentration changes
based on arbitrary rules that assume covariations of peptides,
such as source genes (as we applied in the breast cancer
analysis), protein complexes, organelles, interactions, regula-
tions, and pathways. We made a bold attempt, in light of our
previous study (51), to test the feasibility of using de novo
peptide sequencing and sequence homology search to ana-
lyze the iPRG-2015 spike-in type of data set. Although the
data set is insufficiently large to draw a comprehensive con-
clusion, we obtained both high specificity and quantitative
accuracy for all the spiked marker proteins (Table I and sup-
plemental Table S6). In the current approach, the statistical
significance of the protein abundance differences is derived
from ANOVA, which might likely be determined by the sample
with the most distinctive quantities. In this context, the statistical
significance of pairwise comparisons was not given. Regardless
of such limitation, this result provides an alternative way of data
analysis for situations in proteomics and proteogenomics where
the “reference genome/proteome” is absent.

It is not that uncommon to report lists of differential proteins
in proteomics studies controlled by p values from pairwise
t-tests. Uncorrected p values may lead to many false positive
results in a proteome-wide analysis (52) (supplemental Dis-
cussions). Instead, FDR or q values have become the default
in reporting identification results by MS/MS (4, 49, 53). Many
studies in proteomics are limited in sample size, and hence
lack statistical power to overcome the burden of multiple
testing corrections (54), which frequently results in studies
reporting p values rather than FDRs. We took a clinical data
set of bladder cancer (55) as an example: many signature
proteins of the muscle-invasive bladder cancer could be con-
sistently detected by Diffacto from both LFQ and iTRAQ data
(supplemental Note S4 and supplemental Fig. S6). However,
because of the relatively small sample size (4 � 4), we could
not calculate robust FDRMC metrics. This raises a question of

how many experiments are needed in order to perform a
reasonable Diffacto analysis with a proper FDR control. In
theory, three experiments are the minimum requirement in
order to measure covariation; six samples (3 � 3) are needed
for t-tests; and 10 samples (5 � 5) are the minimum for a
reasonable MC random permutation test. Although the in-
creasing sample sizes in proteomics, we will soon approach
the point when p values should be replaced by FDRs in
reporting quantification results. Perhaps it is time to recognize
that we should spend more time thinking about how to cor-
rectly quantify the proteomes instead of continuing empha-
sizing the false identifications of peptides and proteins. Ad-
vanced protein quantification methods, such as the one
suggested in this study, could well address the issue with
both FDR and FQR by better utilizing the wealth of multi-
dimensional information in shotgun proteomics.
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TABLE I
The 10 most differential proteins in the iPRG-2015 data. For protein identification, we used peptide de novo sequencing followed by protein
BLAST search against the full SwissProt database. Despite such a relatively uninformed identification procedure, Diffacto managed to filter out

wrongly identified sequences and obtained representative protein concentration estimations

Protein No. peps w
0.5 S/N (dB) aPECA FDRMC
bS1 S2 S3 S4 cREF1 REF2 REF3 REF4

OVAL 2 2 18.14 0 0.03 64.46 57.38 10.54 2.62 65 55 15 2
BGAL 33 17 14.37 0 0.03 0.44 73.96 54.84 7.76 2 65 55 15
PYGM 32 15 12.67 0 0.03 12.68 0.21 64.04 60.07 15 2 65 55
CAH2 15 8 6.23 0 0.03 13.80 495.87 11.39 0.53 10 500 11 0.6
MYG 4 3 24.58 28.8 0.03 71.54 8.47 0.002 56.98 55 15 2 65
PPID 8 6 -3.6 158.06 0.03 1.87 1.75 1.65 0.19 - - - -
ALBU 35 19 12.92 0 0.13 4.82 0.02 4.64 512.12 11 0.6 10 500
TRM6 2 2 -8.49 134.66 0.23 1.10 1.19 0.76 1.02 - - - -
ATG27 3 2 -16.04 184.92 0.23 0.99 0.99 1.18 0.87 - - - -
SKI2 5 2 -2.51 10.03 0.26 1.18 1.17 0.97 0.75 - - - -

a family-wise error rate (Bonferroni correction of PECA p values).
b Diffacto summarized relative protein abundances, rescaled by the average reference spike-in abundances for marker proteins, or by the

median peptide abundances for background proteins.
c Reference amounts (fmol) of proteins spiked in the samples, Proteins not deliberatively spiked in the samples are indicated by a null

reference concentration “-”.
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