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Abstract: The distinguishable subregions that compose the hippocampus are differently involved
in functions associated with Alzheimer’s disease (AD). Thus, the identification of hippocampal
subregions and genes that classify AD and healthy control (HC) groups with high accuracy is
meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method
to construct fusion features and a classification method based on the random forest for identifying
the important features. Specifically, we construct the fusion features using the gene sequence and
subregions correlation to reduce the diversity in same group. Moreover, samples and features are
selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are
used to amplify the difference in initial decision trees and evolve the trees. The features in resulting
decision trees that reach the peak classification are the important “subregion gene pairs”. The findings
verify that our method outperforms well in classification performance and generalization. Particularly,
we identified some significant subregions and genes, such as hippocampus amygdala transition area
(HATA), fimbria, parasubiculum and genes included RYR3 and PRKCE. These discoveries provide
some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and
genes to AD.

Keywords: hippocampus; random forest; subregion; genetic algorithm; clustering evolution

1. Introduction

With recent technological advances of imaging genomics studies, a large amount
of imaging data and genetic data have been collected on the human brain. These data
provide an unprecedented opportunity to examine the effects of genetic variation on
the brain. Based on these data, research on neuroimaging makes it possible to detect
brain changes in AD patients. The genome-wide association study (GWAS) [1] is used to
analyze the association between single nucleotide polymorphism (SNP) and pathological
phenotypes. Therefore, the fusion of imaging and genetic data may provide a new insight
for AD research.

Hippocampus is a combination of subregions with different functions [2–5], and the
study of subregions furthers the understanding of the hippocampal mechanism. For ex-
ample, the volumes of cornu ammonis (CA) 3 region and CA4 were decreased in major
depression patients [6] and shrinking of the molecular layer of the dentate gyrus (DG-ML)
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volumes were related to delayed memory [7]. The parasubiculum involved in the connec-
tion between the hippocampus and the cortex subcortical areas, and was responsible for
memory [8,9]. Thus, subregions selected as phenotypes were worthy for further research.

In the past decade, structural magnetic resonance imaging (MRI) and functional MRI
have been used in mild cognitive impairment (MCI) research. For example, a decrease in
the volume of gray matter in the middle temporal lobe was detected in MCI subjects [10].
Another functional brain network study showed that the shortest path length of MCI
subjects was greater than that of HC group [11]. The combination of single indicator
integrated the different information between them, which was superior to the classification
performance of single one. For example, Wee et al. constructed a brain network based on
structural MRI and functional MRI data and extracted local clustering coefficients from the
brain network to perform MCI recognition [12]. The MCI participants were divided into
two groups (early MCI and late MCI) according to the severity of amnestic impairment in
ANDI. Among these participants, the early MCI (EMCI) group met the following criteria:
1 standard deviation ≤ memory test performance - standardized norms ≤ 1.5 standard
deviation. The late MCI (LMCI) group met the following criteria: memory test performance
- standardized norms ≥ 1.5 standard deviation. In the research of Tripathi et al., the voxel-
based features and imaging structure were applied to classify the EMCI and LMCI [13]. In
recent research, an interesting method to construct the fusion feature using imaging data
and gene sequences was described in [14]. In addition, the correlations such as heritability
and p-value between AD group and HC group are quite different. This may bring a new
sight for indicator combination.

However, the classic analysis methods did not perform well in classifying fusion
features [15–17]. In a recent research, Zheng et al. proposed a selection method based on
sparse linear regression [18]. Another method that combined clustering and bee colony
algorithm was used to solve the problem of multidimensional data [19]. A clustering
evolutionary random forest described in [14] was applied to predict the group of samples
and discovered the important “brain region-gene pairs”. However, it is still challenging to
detect the fusion features constructed by the correlations and genes.

Drawing on the correlations and the ideas of the above research, we proposed a novel
link between hippocampal subregions and genetic data using the correlations and genes
to reduce the diversity in same group. To classify the sample labels and find important
features, we proposed the genetic clustering random forest method based on the genetic
algorithm. We firstly calculated the fusion features using correlations and genes to amplify
the difference between AD and HC group. Then we used the genetic clustering random
forest method based on genetic algorithm for model construction and model training.
Subsequently, we applied the best parameter combinations to extract the important features
from the test set and calculate the classification accuracies. Finally, we used EMCI and
LMCI datasets to evaluate the generalization of our method. The experiment results
demonstrate that the identified abnormal subregions and pathogenic genes will further
our understanding of the underlying mechanisms of AD.

2. Materials and Methods
2.1. Imaging and Genotype Data

In total, we downloaded 387 samples with imaging and genotype data from ADNI
(adni.loni.usc.edu), including 262 HC and 124 AD subjects (We have obtained permission
to use data from ADNI, and the approval date is October 7, 2020.). We analyzed the HC
and AD groups with the genetic data and the MRI scans separately. Details of participants’
information are shown in Table 1.
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Table 1. Participant characteristics. HC = healthy control; AD = Alzheimer’s disease; M/F = male/
female; Edu = education; sd = standard deviation.

Subjects HC AD

Number 262 125
Gender (M/F) 135/127 76/49

Age (mean ± sd) 74.6 ± 5.8 74.3 ± 7.7
Edu (mean ± sd) 16.4 ± 2.8 15.8 ± 3.0

MRI scans were preprocessed using voxel-based morphometry (VBM) and then seg-
mented and normalized to the Montreal Neurological Institute (MNI) space. An 8 mm
FWHM (full width at half maxima) kernel was applied to the segmented and extracted
gray matter density (GMD) maps for smoothing. The automatic anatomical labeling
(AAL) atlas [20] was employed to define the regions of interest and their coordinates (left
hippocampus and right hippocampus).

We used the process described in [21,22] to select SNPs. Briefly, according to the
manufacturer’s protocol, all ADNI participants were genotyped using Illumina GWAS
arrays (610-Quad, OmniExpress or HumanOmni2.5-4v1) (Illumina, Inc., San Diego, CA,
USA) and blood genomic DNA samples [23,24]. Then quality control was performed for
the SNPs obtained from ADNI using PLINK v1.9 [25]. SNPs meeting all the following
criteria were extracted: (1) SNPs on chromosome 1–22; (2) call rate of each SNP was above
95%; (3) minor allele frequency was above 5%; (4) Hardy–Weinberg equilibrium test p
was above 1.0 ×106and (5) call rate of each participant was above 95% [21,22]. Overall,
563,980 SNPs that passed the QC were included in the following analyses.

We performed GWAS using the image data and genetic data in the hippocampus using
the linear regression in PLINK. Age, gender, education and the top 10 principal components
from population stratification analysis were included as covariates. Finally, Bonferroni
correction was performed on the GWAS results to control for multiple comparisons.

The Manhattan plots of CA1 of HC and AD are shown in Figure 1 [26].
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2.2. Construction of Fusion Features

To detect the correlation between hippocampal subregions and genes, we firstly
constructed the fusion features of subregions and genes. Each SNP corresponded to a base
(A, T, C, G), and each gene contained multiple SNPs. If the base was recoded by a number,
then the gene was regarded as a set of multiple numbers. This combination of number
was defined as a gene sequence. In the linear regression, the direction of the regression
coefficient represents the effect of each extra minor allele (A1) (i.e., a positive regression
coefficient means that the minor allele increases risk/phenotype mean). Since we used
linear regression for GWAS, we chose the minor allele for the corresponding gene number
sequence (for example, if a gene is “AACGGTCA”, the corresponding gene sequence is “[1,
1, 3, 4, 4, 2, 3, 1]”). In the AD group, we found that the variances and correlations of the
hippocampal subregions explained by SNPs were quite different than in HC group, and the
SNPs with little changes had little or no contribution to AD. Using these correlations and
gene sequence to construct fusion features, the differences were further amplified between
the AD and HC groups, making it easier to detect related genes and regions.

Firstly, the hippocampus of resulting images was segmented into 12 subregions [2]
(Figure 2) and combined with genetic data for genome-wide association studies. The results
represented the correlation between subregions and SNPs were kept, such as heritability,
regression coefficient and asymptotic p-value. Secondly, we used GATES (gene-based
association test using the extended Simes procedure) and Genome Reference Consortium
Human build 37 (also known as “hg19”) [27,28] to map 563,980 SNPs onto 24,894 genes
according to their based positions and the chromosome they belong. Among these genes,
the largest number of SNPs is 1415, and the smallest number is one. Thirdly, we selected
genes based on the number of SNPs they contained. Among them, genes with SNPs
number ≥ Nsnp were defined as top Ngens genes. Then, the digital sequences of genes
were obtained by recoding the four bases into digits (A -> 1, T -> 2, C -> 3, G -> 4). For
the Nsnp SNPs in one gene, the set of the corresponding Nsnp correlations (such as the
corresponding Nsnp heritability) was defined as a correlation sequence. Furthermore, the
correlation sequences and gene sequences were adjusted into several groups according to
SNP numbers. As the optimal method that was described in [14], the Pearson correlation
analysis was introduced to construct the “subregion-gene pairs”.
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Figure 2. The anatomical representation of the 12 hippocampal subregions. The color represented
different subregions. HATA = the hippocampus amygdala transition area; GL_ML_DG = the granule
cell layer and molecular of the dentate gyrus; CA1 = cornu ammonis 1 region; CA3 = cornu ammonis
3 region; CA4 = cornu ammonis 4 region.
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2.3. Construction of Genetic Clustering Random Forest

The multimodal data research was faced with the challenge of large capacity and
multiple styles. As a representative algorithm of ensemble learning, random forest had
desirable processing capabilities for such data. Therefore, the genetic clustering random
forest method was performed in this paper. The random forest and genetic algorithm
were combined to evolve decision trees genetically. Through hierarchical clustering of
the resulting trees, the features that classified AD and HC better were gradually selected
from the original dataset. The schematic diagram of genetic clustering random forest is
described in Figure 3.
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clustering evolution were applied to increase the difference among basic classifiers and further
improve their diversity and accuracy.

The original sample set S is defined as

S = {xi, yi}, i ∈ [1, N] (1)

where xi donate the features in data set, and yi = {−1, 1} donate the corresponding label of
xi. (HC = 1, and AD = −1). N is the total number of features.

The training set Strain, validation set Sv and test set Stest are extracted according to S.
Additionally, the ratio of Strain:Sv:Stest is 5:3:2. Then, f ix (Ngens × 12) features and labels
are randomly selected from Strain. The f ix(x) is the rounding function, the Ngens is the
number of selected genes and 12 is the number of hippocampal subregions. Finally, we
used the selected features and labels to construct the decision trees.

To obtain the initial random forest, n decision trees were constructed by repeating the
method above for n times.
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The Euclidean distance was introduced to detect the similarities between decision
trees in the random forest. The formula was defined as

de =

√
n

∑
i = 1

(x1i − x2i)
2 (2)

where de is the Euclidean distance. x1i and x2i are the features in two decision trees.
The decision trees in random forest were taken as the initial population, and 2 groups

of 5 trees were chosen randomly. For each group, the similarities between trees were calcu-
lated using Equation (2), and the tree pair with the biggest similarity was extracted as the
candidate parent. Among the four candidate parents, the group with the closest similarity
was regarded as a parent group, and a new decision tree was then generated. Another tree
was generated by the group having the second-ranked similarity. The schematic diagram
of genetic evolution is described in Figure 4.
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the parent.

A new random forest was constructed by repeating the step above for n/2 times.
The similarities between decision trees were calculated using Equation (2), and the

lower triangular similarity matrix Ms (Equation (3)) was formed.

MS =


0 0 . . . 0 0

M2,1 0 . . . 0 0
...

...
...

...
Mq,1 Mq,2 . . . Mq,q−1 0

 (3)

The M2,1 calculated by Formula 2 is the similarity between tree 2 and tree 1. Then, the
decision tree pair with the lowest similarity were regarded as a cluster, and the decision
tree with the better classification accuracy in this cluster was chosen as the new decision
tree. To avoid the decision trees decreasing too fast, the number of clusters Nc for evolution
was set. By repeating the clustering evolution for i times, the random forest reached the
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highest prediction performance and the amount of the final decision trees was n − iNc
(i = 1, 2, 3 · · · n). The prediction accuracy of decision tree was defined as

Accx = Nvx/Nv (4)

where Accx is the prediction accuracy of tree x, Nvx is the number that predicted by tree x
in Sv correctly, and Nv is the size of Sv.

2.4. Parameter Optimization Adjustment

For the genetic clustering random forest, the combination performance of the initial
decision tree size, the evolution times of genetic algorithm and clustering evolution were
examined, and then the best parameter combination was selected.

Firstly, the size of initial decision trees, the evolution times of genetic algorithm
and clustering evolution were defined in [a, b], [c, d] and [e, f ]. Then, all the parameter
combinations were evaluated. Thirdly, the steps above were repeated for Nadjust times
to avoid the difference due to the initial data sets. Finally, an optimal combination was
extracted for the genetic clustering random forest.

2.5. Important “Subregion-Gene Pairs” Determination

The Stest was used to test the prediction accuracy and the universality of the final
random forest. Since the features in final decision trees distinguished AD and HC, it showed
that the differences in characteristics between AD and HC were extremely significant.
Therefore, these features were defined as important pairs. AD pathogenic genes and
abnormal hippocampal subregions were further defined based on the important pairs. The
important features were picked out for the following steps.

Firstly, the frequencies of features in the final decision trees were counted, and features
were sorted by the frequency. Subsequently, the features were separated into several
subsets, and these subsets were evaluated by a traditional random forest. Then, the subset
with best classification capability was defined as the important “subregion-gene pair”.
Finally, the frequency of subregions and genes in important pairs were counted. The top
Nf subregions and genes were considered as abnormal hippocampal subregions and AD
pathogenic genes according to the frequency.

3. Results
3.1. The Results of Fusion Feature

According to Sections 2.1 and 2.2, we calculated the correlations between hippocampal
subregions and SNPs, such as heritability, regression coefficient and asymptotic p-value for
t-statistic and extracted 123 genes with the SNPs number ≥ 200 in each gene. Then, the
SNPs in each gene were separated into 10 groups equally. The corresponding correlation
sequences were also separated in the same way. Finally, Pearson correlation coefficients
of gene sequences and correlation sequences were calculated, and 1476 “subregion-gene
pairs” were obtained from each group.

3.2. The Results of Parameter Optimization

Initially,
√

1476 ≈ 38 features were extracted from the original data set randomly as
the elements to construct a decision tree. According to this step, a random forest with
300 decision trees were selected. Subsequently, the evolutionary times was set to 5, and
the obtained random forest was used as the initial population for the genetic algorithm.
After this, the similarities and differences between decision trees were further amplified,
and a new random forest was constituted by these decision trees. Then, the clustering
evolutionary with a step size of 10 was applied to the resulting random forest, and the
evolution generations was 20. Based on the process above, we obtained a basic genetic
clustering random forest.

To obtain the optimal parameter combination, the strategy described in Section 2.4
was used for the three parameters optimization. Firstly, the size of initial random forest,
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the evolution times of genetic algorithm and clustering evolution were in the interval
of (300, 500), (1, 10) and (1, 20). Then, the classification performances of all parameter
combinations were counted. Specifically, the size of the random forest started from 300 with
a step size of 20 and ended at 500. Each different initial forest was genetically clustered in
200 parameter combinations to obtain the optimal genetic clustering combination. To avoid
the difference due to the initial data sets, the steps above were repeated for 10 times and
the optimal combination in each time was selected. The highest prediction performance in
different initial forests and their corresponding genetic clustering parameter combinations
are shown in Figure 5. We find that the peak value is at the node of the random forest size
480. The corresponding parameter combination is {3, 17}. Therefore, the best parameter
combination with the optimal classification ability of the genetic clustering random forest
is {480, 3, 17}.
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3.3. Comparison with Other Methods

Besides the methods described in Section 3.2, the traditional random forest, the genetic
algorithm random forest and the clustering evolutionary random forest were applied to
select the optimal features.

Traditional Random Forest:
The numbers of decision trees in traditional random forest were also in (300, 500).

To ensure that the results are credible, we used the same training set and validation set
to optimize the model. The accuracies of the random forests and their size are shown in
Figure 6, and the best size of the initial forest was 420.
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Genetic Algorithm Random Forest:
To find the best genetic evolution times, the initial decision trees was evolved 500 times

using the genetic algorithm. Then, the genetic algorithm random forest was constructed.
Figure 7 displays the accuracies of the genetic algorithm random forest and the parameter
combinations, and the best parameter combination is {500, 469}.

Figure 7. The relationship between the genetic evolution times and the size of initial random forest.

Clustering Evolutionary Random Forest:
The clustering evolutionary random forest was described in [14]. Compared with the

genetic clustering random forest, the difference between them was whether there was a
process of genetic evolution. Therefore, the size of initial random forest and the clustering
evolution times were in the interval of (300, 500) and (1, 20). As shown in Figure 8, the
prediction performance reached the peak with the size of 500 and evolution times of 18.
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Figure 8. The relationship between the clustering evolution times and the size of initial random
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Comparison of the Four Methods:
We applied the test set Stest to evaluate the classification capability of the four methods,

and the experiments were repeated 10 times with the selected parameter combination in
each method. The accuracies and the corresponding number of experiments are displayed
in Figure 9. As shown in Figure 9, the genetic clustering random forest model hade good
prediction accuracy. In genetic clustering random forest and genetic algorithm random
forest, the peaks of prediction accuracy exceeded 90%, while the peaks of the other two
methods were all below 90%. The curve in Figure 9 also shows that the genetic clustering
random forest had good stability. In 10 repeated experiments, the gap of the accuracy was
less than 10%. These analyses proved the satisfied ability in classification and stability of
the genetic clustering random forest.
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3.4. The Extraction of Fusion Features

The analysis above proved that the features selected by the genetic clustering random
forest had more effective classification. The essence of these features was the Pearson
correlation between subregions and genes. Therefore, by analyzing the features in the final
decision trees, important “subregion-gene pairs” could be identified.

The features in the final decision trees were resolved into “subregion-gene pairs”,
and then the number of occurrences of each “subregion-gene pair” was counted. The top
500 pairs were candidate “subregion-gene pairs”. Table 2 lists the top 15 pairs with numbers
greater than 20. However, only part of these candidate “subregion-gene pairs” had strong
distinguishing ability. In order to define abnormal subregions and genes, it was necessary
to extract the “subregion-gene pairs” with high contribution from these features. Firstly, the
subsets size of candidate “subregion-gene pairs” was set in (70, 500), and the step size was 5.
Then, a traditional random forest with 340 decision trees was used to test the classification
ability. As displayed in Figure 10, the accuracy of the random forest reached the peak
83.3%. Therefore, the top 475 “subregion-gene pairs” were the important “subregion-gene
pairs”. The top 475 “subregion-gene pairs” and the first 15 important “subregion-gene
pairs” are shown in Figure 11. The details of top 475 important hippocampal subregions
and genes are in Table S1.

Table 2. The important “subregion-gene pairs” with numbers greater than 20. GL_ML_DG = the
granule cell layer and molecular of the dentate gyrus; CA4 = cornu ammonis 4 region.

Numbers Subregions Genes

29 PARASUBICULUM CAMTA1
25 PARASUBICULUM PCSK5
23 HIPPOCAMPAL_FISSURE TSBP1-AS1
23 FIMBRIA LRRC4C
22 GL_ML_DG KIF26B
22 CA4 LINGO2
22 CA4 NRXN1
22 FIMBRIA TRAPPC9
21 MOLECULAR_LAYER FHIT
21 MOLECULAR_LAYER NAV2
21 GL_ML_DG LINC01317
21 CA4 KIAA1217
21 PRESUBICULUM PCSK5
21 CA3 PTPRN2
21 CA3 RYR3
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We defined the abnormal subregions and pathogenic genes according to the experi-
ment results above. The subregions and genes with a high frequency were the abnormal
subregions and pathogenic genes of hippocampus in AD.

Table 3 shows the important “subregion-gene pairs” that were found by four methods.
The number of important features selected by the genetic clustering random forest was the
least. Interestingly, although the genetic evolution was used in two methods, there were
still the highest overlapping features ratio among the optimal features extracted by the two
methods. Another interesting finding is that the method with a higher overlap ratio with
our method had a higher classification ability (Figure 9). This proved that the classification
performance of features in genetic clustering random forest was the highest and suggested
that the process of genetic algorithm was significant to the classification.

Table 3. The important “subregion-gene pairs” identified by the traditional random forest. GCRF = ge-
netic clustering random forest; RF = random forest; GARF = genetic algorithm random forest;
CERF = clustering evolutionary random forest.

Method Discoveries Overlap with Our Method

GCRF 475 -
RF 205 68

GARF 90 35
CERF 220 73
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In case of small sample size, the robustness and generalization of the proposed model
need to be verified. Therefore, we conducted the following experiments. We constructed
the fusion features based on two datasets (262HC+269EMCI and 262HC+288LMCI) and
applied the genetic clustering random forest to calculate the parameter combinations and
accuracies. To avoid the high accuracy occasional, the 12 independent experiments were
performed, and the best and worse results were deleted. The information of datasets and
parameter combinations are listed in Table 4, and the accuracies of 10 independent results
are shown in Figure 12.

Table 4. Model validation experiments on different datasets. GE = genetic evolutionary times;
CE = clustering evolutionary times; HC = healthy control; EMCI = early mild cognitive complaint;
LMCI = late mild cognitive complaint; AD = Alzheimer’s disease.

Dataset Base Classifier
Number

GE
Times

CE
Times

Optimal Features
Number

Average
Accuracy

125AD + 262HC 480 3 17 475 87.50%
269EMCI + 262HC 460 1 3 165 84.58%
288LMCI + 262HC 400 5 14 470 85.00%
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As shown in Table 4, the proposed model achieved satisfactory classification accuracy
in different datasets by simply adjusting parameters. In addition, the curves of the three
datasets classification accuracy in Figure 12 also proved the stability of the proposed model.
The verified analysis proved that the feature construction method and the genetic clustering
random forest had good applicability and classification ability.

4. Discussion

In this work, we proposed a method to construct the fusion features using multimodal
data. Particularly, we proposed a genetic clustering random forest based on genetic
algorithm for detecting fusion features constructed by subregions and genes.

Prior research on multimodal data focused on the structural covariance networks
of white and gray matter [29–31]. These were applied to study the correlation between
multimodal structural covariance networks and aging or aging-related pathologies [29,30],
and suggested that these structural covariance networks had a good classification [32].
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Another study applied the multimodal neuroimaging of structure and function to diagnose
the Parkinson’s disease and HC [33]. Although these were multimodal data studies,
they were all based on the fusion of the same data sources. An interesting and different
method to construct the fusion features from multimodal data was described in [14].
Bi et al. fused the gene sequence data and time series of fMRI data to classify AD and HC.
In this study, we proposed a novel method to construct fusion features, which had the
following two benefits. Since there were differences between the MRI scans of AD and
HC groups, we performed GWAS using the MRI data as phenotypes. The aim of applying
GWAS was to obtain correlations, and the correlations between SNPs and phenotypes
were usually used to identified significant SNPs. The use of GWAS enlarged them and
found some significant SNPs. This was the first advantage. Since SNPs were in genes and
had corresponding correlations, the significant correlations had corresponding genes. In
addition, the significant SNPs and correlations of the AD group and HC group are quite
different. Using the characteristics of these genes and correlations, the differences of fusion
features between the AD group and HC group were further amplified. This was another
advantage. Therefore, compared to the method in [14], we used correlation sequences
instead of image sequences to construct the fusion features.

For the feature’s detection, the genetic clustering random forest based on the genetic
algorithm was proposed as a novel and improved method. Compared to the method in [14],
we applied a genetic algorithm before clustering evolution. The genetic process drew on
the idea of clustering evolution to select parents with high classification accuracy, and the
similarities between the generated decision trees were low. The advantage of this was that
decision trees with high classification accuracy were retained. As shown in Figure 9, the
classification accuracy of genetic clustering random forest is the best of the four methods.
Additionally, the accuracy of genetic algorithm random forest is also better than the other
two. The parent selection strategy in genetic clustering random forest and genetic algorithm
random forest draws on the idea of clustering evolution and parents are selected based
on the similarity between decision trees. These shows that the combination of genetic
algorithm and clustering evolution has an effective grouping effect in the evolution of
random forest. In traditional classification methods [34,35], a single learner is common.
In the improved methods [14,36,37] based on a learner, the ensemble learning is used to
enhance the classification performances of the models. In our proposed model, the idea
of a genetic algorithm is introduced to evolve the initial decision trees. The diversities of
decision trees in the same group were further reduced and the differences between AD
and HC were enhanced. Although the accuracies of four methods in validation set were
similar (Figures 5–8), the accuracy of genetic clustering random forest in the test set was
obviously higher than in the other three methods (Figure 9). Additionally, we observe that
the stability of genetic clustering random forest was better than others (Figure 9). We can
also observe that the model had good generalization performance in different datasets in
Table 4 and Figure 12. These demonstrate that the genetic clustering random forest had
good predictive classification ability and generalization.

The “subregion-gene pairs” that classify AD and HC well may be the potential
pathogenic factors of AD. Some abnormal subregions and pathogenic genes associated
with AD were detected in our research, such as hippocampus amygdala transition area
(HATA), fimbria, parasubiculum, hippocampal fissure and RYR3 and PRKCE. The HATA
was connected with the amygdala closely, and compared with the healthy group, the vol-
umes of HATA were reduced in the MCI group [2,38]. In another study, obvious changes
in fimbria were observed in AD [39]. The change of parasubiculum affected the medial
temporal memory system and dementia, and AD patients had more cellular neurofibrillary
tangles in parasubiculum [40–43].

We counted the overlaps of the genes identified in our study and the genes of the
top 26 “important brain region-gene pairs” in [14]. Only KAZN and RF00019 were not
included in our study. This demonstrated that most of the same genes were obtained using
different methods and data sets. However, we found the overlaps of fusion features were
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73 using the two methods in our data set (Table 3). The randomness of the genetic algorithm
is the main reason. These 73 features had a great contribution to classification, and the
classification accuracy and identified features of our method are higher than those in [14]. It
can be inferred that these more identified features improve the classification accuracy, and
the genes in these features can be speculated as AD candidate genes. Among these genes,
priori research showed that RYR3 identified the association with AD using multifactor
dimensionality reduction [44]. The upregulated level of RYR3 and a significant interaction
between RYR3 and CACNA1C were observed in the AD group [45,46]. Gong et al. found
four disease related SNPs (rs965471, rs10519874, rs7498093 and rs17236525), and proved
that RYR3 had shared genetic susceptibility in hypertension, diabetes, and AD [47]. Ac-
cording to our founding, PRKCE detected by our method tend be associated with AD. The
previous study has proved that the endothelin-converting enzyme activity increased by
overexpression of PRKCE reduces the αAβ levels [48]. Based on the above analysis, the part
of the abnormal subregions and pathogenic genes identified are related to AD. Therefore,
the remaining genes can be speculated as AD candidate genes. The discovery of these
subregions and genes by our method provides new candidate genes for the future research
of AD and is significant to the study of the potential mechanism in the hippocampus.

5. Conclusions

The genetic clustering random forest proposed in this paper provides a novel method
for detecting the abnormal “subregion-gene pairs” in the hippocampus. This method
constructs decision trees through random forest, evolves the decision trees genetically
through genetic algorithm and performs cluster evolution on the results obtained. Finally,
the important “subregion-gene pairs” were extracts based on the fusion features that were
constructed by subregions and genes. Furthermore, we also show that our method had
higher accuracy than the traditional random forest, the genetic algorithm random forest
and the clustering evolutionary random forest.

In this paper, the study of detecting abnormal subregions and genes using genetic
clustering random forest had the following strengths. (1) We improved a more efficient
method to construct the fusion features. This method reduced the differences between
the subjects in the same group and increases the differences between AD and HC groups.
(2) We improved a genetic clustering random forest based on the genetic algorithm to
detect the features. The evolution of training set using genetic algorithm amplified the
differences between decision trees too. (3) We also show that the classification ability and
stability of our method were better than other conventional methods.

Since AD also has other markers, in the future, we will continue to look for fusing
other data such as protein and RNA to construct the fusion features. Further research needs
to be carried out to verify the correlations between candidate genes and AD.
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