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Abstract

A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early
post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing
immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically
deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We
employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-
throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks.
Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed
the activation and proliferative expansion of CD45RO+CD62L2 effector memory CD4/CD8 T cells as well as progressive
activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial
monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a
unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated
with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the
profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct
pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that
includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the
phenotype and outcome of the kidney transplant.
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Introduction

A major challenge for the field of transplantation is the lack of

understanding of genomic and molecular drivers of early post-

transplant immunity. The early inflammatory response is initiated

by ischemia/reperfusion, activation of innate immunity and

subsequent alloantigen-primed T cell recruitment, activation and

proliferative expansion [1–5]. The early immune response creates

a complex milieu that contributes significantly to the course of

ensuing events and the ultimate outcome of the transplant

including acute and chronic rejection [6–9]. Thus, profiling the

mechanisms of early immunity is essential.

The last several decades of evolving clinical practice in kidney

transplantation has focused on increasing graft survival by

reducing the risk of acute rejection, while enhancing the safety

profiles of the drug regimens employed [10,11]. It is now common

to use induction therapy with anti-lymphocyte antibody prepara-

tions to profoundly deplete the cellular immune system immedi-

ately at the time of transplantation [12–14]. Induction in

combination with current drug therapies reduces acute rejection

incidence to less than 15% in the first year [15,16]. Unfortunately,

these dramatic results in the short term reduction of acute

rejection have not directly translated to long term immune

tolerance with successful drug withdrawal or even a significant

reduction in the incidence of chronic rejection or chronic allograft

nephropathy with interstitial fibrosis and tubular atrophy (CAN/

IFTA) [17–19]. Moreover, several studies in which biopsies were

performed by protocol rather than by clinical indication between 6

and 12 months after transplantation revealed that up to 15% of

patients demonstrated evidence of an active immune/inflamma-

tory response despite no evidence of transplant dysfunction

[17,20]. Thus, there is a pressing medical need to understand

what changes evolve in this early post-transplant period that allows

the immune response to reemerge intact and target the transplant

for immune-mediated rejection and injury.

The objective of the current study was to mechanistically

deconvolute the early immune response in kidney transplant

patients after antibody induction therapy by purifying and

profiling the constituent peripheral blood cell subsets using two

complementary technologies. First, we employed the novel

SurroScanTM laser scanning cytometry [21,22,23] technology on

whole blood cell populations to create a comprehensive survey of

well-established cell surface marker expression from 10 consecu-

tively enrolled transplant patients and 5 healthy controls. The

transplant patients were serially sampled from pre-transplant (Pre-

TX) to 12 weeks post-transplant (Post-TX). Second, genome-wide

differential gene expression profiling was done. We purified and

analyzed CD4+ and CD8+ T lymphocytes, CD14+ monocytes, and

CD19+ B cells. Whole blood and subset-specific gene expression

profiles were used to populate and map molecular pathways as a

function of time and population.

This novel approach to cell subset-based deconvolution revealed

the profound changes in blood cell composition and the activation

of multiple molecular pathways that occurs early Post-TX.

Moreover, each immune cell subset revealed a distinct set of

pathways and functional programs. Indeed, these subset-specific

changes illuminate a complex, early phase of alloimmunity

characterized by the activation and proliferative expansion of

the memory effector and regulatory T cells that play major roles in

determining the outcome of the kidney transplant. We also

demonstrated significant activation and proliferative expansion of

CD14 monocytes that are linked to ischemia reperfusion injury,

innate immunity and the transition to adaptive immunity. Finally,

we demonstrated the progressive activation of B cells by 12 weeks

consistent with early recruitment of the humoral immune system

post-TX.

Results

Patient population
Table 1 presents the clinical characteristics collected from 10

kidney transplant patients. Five patients were converted to

sirolimus immunosuppression at 12 weeks, two patients experi-

enced acute rejection episodes at 7 and 10 months, and creatinine

levels out to 12 months are provided. All patients were enrolled in

a single, consecutive series after consent. Table 2 lists all the

samples obtained for this study.

Cytometry results demonstrate the selective activation
and proliferative expansion of CD45RO+CD62L2 effector
memory CD4 T cells

A primary objective was to determine differences in immune/

inflammatory cell populations in the early Post-TX period.

SurroScanTM microvolume laser scanning cytometry provides

quantitative measurements of absolute cell counts per microliter of

blood and simultaneous measurement of hundreds of cell surface

markers defining multiple cell populations [22]. Of 1083 variables

measured at each time point, 441 were significantly different at

week 1 and 259 at week 12 (p,0.01) (Table 3).

Thymoglobulin induction also causes a rapid and profound

reduction in multiple cell populations [24–26]. The changes in

absolute cell counts for each major cell population are given in

Figure 1A. Consistent with a previous report following longer

term cell reconstitution [13], T cell counts returned to only 20% of

Pre-TX levels at 12 weeks and CD4 levels lagged behind CD8.

The excellent correlations of T cell markers with the gene

expression data we will describe later demonstrate the first proof

for integrating cytometry and DNA microarray profiling

(Figure 1B).

The distribution of different CD4 T cell subsets evolved from

Pre-TX to 12 weeks (Table 4). Naı̈ve and memory CD4 subsets

differ by expression of CD62L and either CD45RO (memory) or

CD45RA (naı̈ve). At 12 weeks, there was a significant expansion of

memory effector CD4 cells (CD45RA2CD62L) from 30% Pre-

TX to 45% at 12 weeks (p,0.01). These memory effector CD4

also significantly increased their expression of multiple activation

markers: CD60 [27], CCR5 (CD195) [28], CD69 [29], CD86

[30], CD132 [31], CD27 [32] and HLA DR [33]. While the

CD4+CD25+ T cells are also depleted by induction, they increased

significantly (2.5-fold) by 12 weeks. Reciprocally, the naı̈ve CD4

population was significantly lower at 12 weeks, going from 28% to

12% of the total CD4 T cells (p,0.001). In contrast, there were no

significant changes in central memory or terminal effector CD4

numbers.

By 12 weeks total CD8 cells were 40% of baseline (Figure 1A).

Parallel to the CD4 data, there was an observed increase in

activated memory effector CD8 cells (CD45RA2CD62L2; 25% to

30%; Table 4). While this did not reach statistical significance,

the parallel increase in CD8+CD45RA2 cells from 35% to 42%

was significant (p,0.05). Multiple activation markers were also

upregulated on CD8 including CD60, CCR5, CD27, while CD25

and CD57-expressing subsets were decreased by 25–50% at 12

weeks. In contrast to CD4, there was a significant decrease in

terminal effector CD8 T cells from 35% to 23% (p,0.05).

B cells and monocyte numbers dipped between weeks 1 and 4

but recovered to near baseline by 12 weeks (Figure 1A). Cell

counts were well correlated to gene expression for B cell markers

(CD19-21 and CD72; data not shown), another benchmark for
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integrating cytometry and gene expression. B cells expressing the

activation marker CD38 were significantly higher 12 weeks Post-

TX going from 31% to 45% (p,0.05; Table 5), consistent with

the role for this molecule in responses to T cell dependent protein

antigens [34]. In addition, B cells also demonstrated a significant

increase of cells expressing the activation markers CD5, CD40,

CD95 between early and late (data not shown). The number of

monocytes in whole blood was also significantly higher by week 12

(2.1–2.4 fold; Table 5) and the TLR2+ (CD282) population also

increased. Additional evidence for B cell and monocyte activation

post-transplant are the progressive increases in HLA expression in

both peaking at week 12 (Figure 2).

Whole blood gene expression profiling demonstrates
over 2000 differentially downregulated genes mapped to
multiple functional networks

Differential gene expression for each Post-TX timepoint was

determined. In a second analysis, ANOVA comparisons were

done for all timepoints to determine genes that change in a

coordinate fashion as a function of time (e.g. multivariate genes).

These two analysis strategies are intended to be complementary.

The number of differentially expressed genes obtained in each

whole blood cell analysis is provided in Figure 3A and Table 6.

The total number of differentially expressed and percent

upregulated genes was highest at week 1 (2638; 20.4%) and

decreased progressively by week 12 (1148; 6.7%). By ANOVA, we

found 2447 multivariate genes, whose expression evolves in the

continuum from Pre-TX to week 12. The majority of multivariate

genes (90%) were also downregulated Post-TX (Table S1).

Next, we performed a functional analysis of gene expression

comparing the Pre-TX gene expression to each of the serial time

points sampled. We populated all possible functional pathways and

then extracted only statistically significant pathways (p,0.05;

Methods S1) for further analysis. Four classes of functional

pathways were populated by this analysis: early (1–4 weeks), late

(8–12 weeks), consistent (all timepoints) and intermittent (selected

timepoints) (Figure 3B).

Most pathways were populated either early or consistently (see

Table S2 for gene details). Early pathways included NK Cell

Signaling, CD1 Lipid Antigen Presentation and mTOR Signaling.

Consistently populated pathways included CTLA4 Signaling in

CTL, TCR Signaling, iCOS-iCOSL Signaling and CD28

Signaling. It is evident that these pathways include many of the

known primary mechanisms of alloimmunity [35–38] and a key

finding is that the majority of the genes populating these pathways

are downregulated in the first 12 weeks coinciding with antibody

induction and immunosuppression.

Table 2. Summary of samples for whole blood and purified
cell subset analysis.

Samples
Whole
Blood CD4 CD8 CD14 CD19

Time

Pre-Tx 8 5 4 2 1

Week1 9 1 0 2 0

Week2 9 7 7 10 5

Week4 10 2 0 2 0

Week8 7 2 1 2 0

Week12 9 9 7 10 4

Healthy Normal
Controls

5 5 5 5 5

doi:10.1371/journal.pone.0013358.t002

Table 1. Transplant Patient Characteristics.

Recipient characteristics Pt. 1 Pt. 2 Pt. 3 Pt. 4 Pt. 5 Pt. 6 Pt. 7 Pt. 8 Pt. 9 Pt. 10

Age 67 41 44 29 65 58 41 67 44 60

Sex M M M F M M M M F F

Race/Ethnicity Black White Filipino White White Hispanic Asian Hispanic Black White

Type of renal disease^ HTN HTN HTN HUS Type 2 DM HTN & MPGN IgA UNK HTN & ?GN Type 1 DM

Thymoglobulin Induction Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Donor# DD DD DD Living DD DD Living DD Living Living

Conversion* No Sirolim-us Sirolim-us No No Sirolim-us Sirolim-us No Sirolim-us No

MPA dose/level at 12 weeks{ 2gm/0.8 1.25gm/5.0 2gm/2.2 2gm/4.2 2gm/2.9 1.5gm/3.0 3gm/2.4 3gm/3.3 2gm/1.2

Rejection (Yes/No) Yes Yes No No No No No No No No

Type of Rejection Banff 1b{ Banff 1a None None None None None None None None

Rejection months Post-Tx 10 7 None None None None None None None None

Creatinine - Month 1 1.1 2 2 0.9 1.6 3.9 1.6 1.9 1.4 1.1

Creatinine - Month 3 0.9 1.7 1.8 0.9 1.2 1.9 1.2 NA 1.0 1.2

Creatinine – Month 12 1.8 3.0 1.8 0.8 1.7 1.6 1.2 1.5 1.0 1.3

^ HUS = Hemolytic Uremic Syndrome; Type 2 DM = Type 2 Diabetes Mellitus; IgA = IgA nephropathy; HTN = hypertension; MPGN = membranoproliferative GN; ?GN
= glomerulonephritis of ? etiology; Type 1 DM = Type 1 Diabetes Mellitus;

{MPA = Mycophenolic acid.
#DD = Deceased donor.
{Banff = international classification schema for kidney transplant pathology. Banff 1a and 1b are different forms of acute tubulointerstitial cellular acute rejection.
*All patients were started on FK506/CellCept with no Prednisone. Conversions from FK506 to sirolimus were done at approximately 3 months post-transplant as
tolerated.
doi:10.1371/journal.pone.0013358.t001
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Using the 2447 multivariate genes by ANOVA, we populated

19 significant functional pathways with 134 significantly differen-

tially expressed genes (Figure 3C, Table S3). These genes

populate a combination of immune response and metabolic

pathways. The top 5 pathways are CTL-mediated apoptosis

(35.7% populated), aminoacyl-tRNA biosynthesis (27.5% popu-

lated), glutamate metabolism (21.6% populated), alanine and

aspartate metabolism (21.4% populated), and allograft rejection

signaling (20.5% populated).

CD4 subset-specific gene expression reveals a unique
spectrum of time-dependent upregulated genes
mapping to multiple molecular networks

Two comparisons were done: Pre-TX vs. week 2 (early) and Pre-

TX vs. week 12 (late). Pre-TX vs. week 2 revealed 1584 significantly

differentially expressed genes. In sharp contrast to what was found

by whole blood analysis, 45.8% of these CD4+ genes were

upregulated (Table 6). Pre-TX vs. week 12 revealed 3358 genes

differentially expressed of which 50.1% were upregulated. Thus, by

week 12, the total number of differentially expressed and

upregulated genes more than doubles in the CD4+ T cells.

Functional pathways were mapped to understand changes in

differential gene expression between early and late Post-TX by the

strategy shown in Figure 4A. It is evident that there are many

unique pathways populated by genes expressed in either the early

or late phase (Figure 4B). For example, VEGF, IGF1,

chemokine, apoptosis and hypoxia signaling are unique early

phase responses while CD28, angiopoietin, IL2, IL15 and Fce R1

signaling are unique in the late phase. Second, a large number of

pathways are shared by both phases. However, it is important to

note that these pathways are consistently populated by increasing

numbers of differentially expressed genes in the late phase. These

represent functional pathways triggered in the early phase that

clearly are evolving with new gene members of the pathways being

recruited and activated in the late phase of the immune response

post transplant.

Table 3. Summary of the number of significant variables as a function of time defined by cytometry from a total of 1083 variables.

Pre-Tx
vs.
Wk1

Pre-Tx
vs.
Wk2

Pre-Tx
vs.
Wk4

Pre-Tx
vs.
Wk8

Pre-Tx
vs.
Wk12

Wk1
vs.
Wk2

Wk1
vs.
Wk4

Wk1
vs.
Wk8

Wk1
vs.
Wk12

Wk2
vs.
Wk4

Wk2
vs.
Wk8

Wk2
vs.
Wk12

Wk4
vs.
Wk8

Wk4
vs.
Wk12

Wk8
vs.
Wk12

# Subjects 10 9 10 8 10 8 9 8 9 9 8 9 8 10 8

P-value -log (p
values)*

P,0.0001 .4 96 91 81 9 53 3 16 25 24 7 9 29 0 0 1

P,0.001 .3 202 222 162 84 118 27 74 98 82 35 60 82 5 14 4

P,0.01 .2 441 423 374 256 259 153 294 294 349 133 254 290 43 78 42

P,0.05 .1.3 565 585 500 408 416 302 421 446 514 293 403 465 174 254 130

*Cytometry data shown in this manuscript are reported as –log (p values). They can be converted to traditional p values as shown here.
doi:10.1371/journal.pone.0013358.t003

Figure 1. Serial cytometry profiling of cell subset populations shows distinct patterns of depletion and recovery early post
transplantation. (A). Absolute cell counts were determined and expressed as a percent of the counts pre-treatment. Multiple changes were
observed in peripheral blood cell populations following transplantation, induction antibody therapy and drug-based immunosuppression. The
different major cell populations show distinct patterns of depletion, gain and recovery as a function of time in the first 12 weeks, which we have
defined as the ‘‘early’’ post transplant period. The gradual recovery of each of the subsets in time after transplant demonstrate that a proliferative
expansion of at least subpopulations of these cells is underway despite the many individual differences observed. (B). T cell counts and mRNA show
the same pattern of depletion and recovery. Cytometry variables for comparison to gene expression included: cell counts and expression intensity –
mean per cell. CD3 intensity per cell is constant with treatment. The product of count and intensity (Count x Int) integrates the expression of each
marker on each subpopulation at each time point and is the sum of the mean intensities of the given marker multiplied by all the cells identified in
that population at any given time point. Count x Int. gives the same relative to baseline as absolute counts, indicating that the loss of T cells, not CD3
intensity, is the key changing parameter. Gene expression shows a consistent pattern for the 8 variables representing known T cell markers and
correlates well with T cell counts. This is the first example of a proteogenomic validation of the results.
doi:10.1371/journal.pone.0013358.g001

Early Post-Transplant Immunity

PLoS ONE | www.plosone.org 4 October 2010 | Volume 5 | Issue 10 | e13358



Genes and pathways linked to CD8 activation are not
common to those identified for CD4

Class comparisons of CD8 populations yielded 574 differentially

expressed genes between Pre-TX and week 2 (51.3% upregulated)

and 2030 genes between Pre-TX and week 12 (54.2% upregu-

lated) (Table 6). Thus, the number of differentially expressed

CD8+ genes almost quadruples by week 12.

Comparison analysis identified pathways populated either early,

late or at both phases Post-TX (see Table S4 for entire list of

pathways). The majority of pathways were either uniquely

populated in the early phase (52 pathways) or expressed during

both phases (46 shared pathways) compared to only 22 unique late

pathways. The top 66 populated pathways are shown in Figure 5.

Second, as seen with the CD4+ T cells, every shared pathway

demonstrates a significant increase in the number of populating

genes from week 2 to 12. Unique early pathways include IL2, IL4,

sphingosine-1-phosphate and CD27 signaling. Unique late

pathways include fatty acid biosynthesis, chemokine, Wnt-catenin,

cell cycle signaling and IL15 production. Shared pathways

increasingly populated in the late phase include IL3, CD28,

integrin, VEGF and IL15 signaling, the latter matching the IL15

production pathway seen only in the late phase.

Table 4. Cytometry results defining CD4 T and CD8 T cell subsets.

Subtype Population^ -log(p)# Effect Size{ Mean Ratios Mean Wk 0* Mean Wk 12*

CD4 CD45RA2 CD62L2 (effector memory) 2.46 1.29 1.44 0.30 0.45

CD4 CD45RA2 CD62L+ (central memory) 0.78 0.28 1.10 0.34 0.37

CD4 CD45RA+ CD62L+ (naı̈ve) 3.49 0.96 0.44 0.28 0.12

CD4 CD45RA+ CD62L2 (terminal effector) 0.35 0.35 0.78 0.08 0.06

CD4 CD45RO2 CD62L+ (naı̈ve) 2.36 0.99 0.40 0.21 0.09

CD4 CD45RA+ CD28+ 4.13 1.22 0.44 0.38 0.16

CD4 CD45RA2 CD28+ 1.32 0.77 1.24 0.53 0.67

CD4 CD60+ CCR52 1.90 1.28 1.68 0.19 0.28

CD4 CD60+ CCR5+ 2.41 1.24 2.47 0.06 0.15

CD4 CD602 CCR52 (unactivated) 3.66 2.63 0.57 0.62 0.36

CD4 CD602 CCR5+ 2.41 1.36 1.76 0.08 0.16

CD4 CD132+ 2.71 1.33 3.31 0.05 0.13

CD4 CD183+ 2.13 1.24 1.77 0.18 0.31

CD4 CD197+ 2.01 1.12 0.58 0.47 0.27

CD4 CD252 2.44 1.47 0.90 0.93 0.84

CD4 CD25+ (includes putative T regs) 2.41 1.45 2.49 0.07 0.16

CD4 CD45RB+ CD27+ 3.63 1.41 0.49 0.50 0.24

CD4 CD49d+ 2.49 1.25 1.14 0.78 0.87

CD4 CD69+ 1.77 1.23 2.56 0.03 0.06

CD4 CD86+ 2.07 1.55 5.38 0.03 0.07

CD4 HLA DR+ 1.62 1.13 2.94 0.09 0.21

CD4 IL-15Ra+ 2.72 1.28 2.38 0.03 0.08

CD8 CD45RA2 CD62L2 (effector memory) 0.87 0.43 1.22 0.25 0.30

CD8 CD45RA2 CD62L+ (central memory) 0.68 0.41 1.21 0.10 0.13

CD8 CD45RA+ CD62L+ (naı̈ve) 0.15 0.09 1.05 0.30 0.34

CD8 CD45RA+ CD62L2 (terminal effector) 1.59 0.90 0.70 0.35 0.23

CD8 CD252 0.45 0.38 1.01 0.96 0.98

CD8 CD25+ 0.45 0.38 0.73 0.04 0.02

CD8 CD602 CCR52 (unactivated) 3.59 1.17 0.70 0.53 0.38

CD8 CD60+ CCR52 2.41 0.96 2.81 0.06 0.09

CD8 CD60+ CCR5+ 0.98 0.83 1.55 0.09 0.11

CD8 CD57+ 1.99 NA 0.52 0.14 0.06

CD8 CD27+ 1.93 NA 1.18 0.66 0.78

CD8 CD38+ 1.60 NA 2.15 0.18 0.35

^Nomenclature of cell populations are based on the antigen expression: + = positive, 2 = negative.
#Significant using the term ‘‘–log(p)’’ equals 1.30 or greater. In standard p values that is equivalent to p#0.05 (see Table 2).
{Effect size = Mean difference between groups divided by the weighted standard deviation (SD) is presented as an absolute value. This is another metric for
significance such that greater than 0.80 equals significant expression difference.

*CD4 T cell subsets are given as a fraction of total CD4 cells. CD8 T cell subsets are given as a fraction of total CD8 cells.
doi:10.1371/journal.pone.0013358.t004
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CD14 monocytes reveal early activation of cytokine and
inflammatory genes

Because of low cell yields, we substituted CD14-purified normal

donor controls for the Pre-TX baselines and normalized the data

by eliminating any genes differentially expressed between the

controls and the two Pre-TX samples available. The class

comparison at week 2 yielded 312 differentially expressed genes,

258 of which remained after normalization (84% upregulated;

Table 6). At week 12, we identified 616 genes, 455 of which

remained after normalization (54% upregulated).

Mapping of functional pathways demonstrates a distinct

contrast with the CD4 and CD8 results. In the CD14 subset,

pathways are uniquely populated in the early (27 pathways) or the

late phase Post-TX (17 pathways) with only 2 common pathways

(PTEN and HMGB1 signaling) (Figure 6A). The nature of these

CD14 pathways is also distinct between early and late. A large

number of immune/inflammatory cytokine signaling and TLR

pathways are activated early. Multiple metabolic and synthetic

pathways are populated late consistent with the proliferative

expansion of the activated CD14 phenotype demonstrated by

cytometry.

CD19 B cells reveal the predominantly late activation of
immune signaling pathways

Again, due to low cell yields, CD19 profiling was performed

substituting normal donor controls for Pre-TX samples and

normalizing. Class comparisons identified 208 significant differ-

entially expressed genes at week 2 (58.1% upregulated) and 389

genes (49.1% upregulated) at week 12 (Table 6). Functional

mapping populated 32 total pathways (Figure 6B) of which only

10 are populated early and 20 are late. Late pathways are rich in

immune signaling pathways: interferon, IL2, integrin, PKR-

interferon induction, PDGF, TLR receptors, and communications

between innate and adaptive immunity. Only two pathways are

shared but highly populated: IL9 signaling, a cytokine made by

activated T cells, and RAN signaling linked to transport of RNA

and proteins from the nucleus.

Differences in gene expression between whole blood
and the purified subsets are due to the impact of
neutrophils, eosinophils, and basophils

There is a significant difference in the percent of up/

downregulated genes identified by whole blood analysis (11%

upregulated; week 2) and the purified CD4, CD8 and CD14

analyses (46%, 52% and 84% upregulated) (Figure S1 A and B).

The majority of differentially expressed genes in all comparisons

are unique to either whole blood or the individual cell subsets

underlining the extent of additional information provided by

subset analysis in this situation. Secondly, few genes in the subsets

move coordinately in opposite directions from whole blood

indicating that these values would not cancel out when analyzed

in a whole blood sample. As shown in Figure 1, cytometry reveals

a dramatic depopulation of the major lymphocyte populations

immediately following antibody induction therapy. Thus, the

explanation for these huge differences in gene expression between

whole blood and purified subsets is the impact of the high numbers

of neutrophils, eosinophils, and basophils remaining in whole

blood.

Validation of Gene Expression Data By Cytometry-Based
Proteomics

Finally, we tested whether we could proteogenomically validate

the results of both cytomety and gene expression. We matched 157

different DNA array probesets used for gene expression profiling

to the 65 different cell proteins tested by specific antibodies and

cytometry. Thus, the novel premise is that the gene expression

array data is validated proteomically by the cytometry and the

Figure 2. HLA Class II intensity levels for B cells and monocytes
increase in time. HLA Class II expression intensity as percent of
baseline is shown on the Y-axis, while weeks post transplant/induction
is shown on the X-axis. Plotted are intensities for antibodies staining
HLA-DP, DQ, DR and a pan HLA-reactive antibody for B cells and
monocytes. These results clearly show the progressive upregulation of
HLA antigen expression on both cell types consistent with a progressive
immune activation that is supported by concomitant expression of
multiple activation markers as described in the Results.
doi:10.1371/journal.pone.0013358.g002

Table 5. CD14 Monocytes and CD19 B cell subsets.

Subtype Population^ -log(p) Effect Size{ Mean Ratios Mean Wk 0* Mean Wk 12*

B cells CD20+CD38- 1.52 0.94 0.80 0.69 0.55

B cells CD20+CD38+ 1.52 0.94 1.43 0.31 0.45

B cells CD5-CD20+ 0.71 0.28 1.01 0.96 0.97

B cells CD5+CD20+ 0.71 0.28 0.79 0.04 0.03

Mono CD20-HLADR- 2.01 0.51 2.12 0.03 0.05

Mono CD20-HLADR+ 1.86 0.50 0.97 0.97 0.95

Mono CD282- 2.30 1.06 2.41 0.01 0.02

Mono CD282+ 2.32 1.05 1.10 0.92 0.98

{^*See Table 4 for explanations.
doi:10.1371/journal.pone.0013358.t005
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protein expression data identified by cytometry is validated by the

gene expression profiling. We found that all the gene expression

calls and all the proteins identified were detected by both

technologies (Table S5).

Discussion

We have used two complementary strategies to deconvolute the

early post-transplant immune response. The first is based on a

novel high-throughput laser scanning cytometry technology

enabling hundreds of parallel analyses in whole blood [22]. The

second approach was purifying constituent blood cell subsets

followed by genome-wide gene expression profiling. We studied 10

consecutive kidney transplants with serial blood samples analyzed

pre-transplant and at 1, 2, 4, 8 and 12 weeks. Our results provide a

unique view of the complex evolution of immune/inflammatory

molecular pathways occurring early post-transplant. A critical

finding is that the constituent blood cell subsets reveal an entirely

new level of detail, effectively deconvoluting a process that is

otherwise lost in the mix. A second critical finding is that even in

this early period post-TX during the most intense immunosup-

pression there emerges a clear pattern of immune activation

involving memory T cells, monocytes and B cells.

Cytometry results demonstrate the profound reductions in

lymphocyte subsets expected with antibody induction. Nonethe-

less, we demonstrate significant increases in memory CD4 effector

cells (CD45RA2CD62L2) and a reciprocal decrease in naı̈ve

CD4, consistent with previous reports [24,39,40]. These results

support the hypothesis that the protective impact of induction

therapy may be limited in this early period by the relative

resistance and subsequent expansion of memory effector CD4

cells. In fact, the expansion of memory effector CD4 is supported

by the significant upregulation of multiple activation markers.

Additionally, induction is less effective at CD8 depletion and these

cells also express multiple activation markers and recover more

rapidly [14]. The significant reduction in the CD8 terminal

effector cell population (CD45RA+CD62L2) in the context of

activation indicates that this early proliferation favors CD8 effector

memory and central memory subsets.

A reasonable question is whether cytometry and gene

expression data correlate, in effect allowing a proteogenomic

validation of both results consistent with our view that these

Figure 3. Gene expression profiling and functional analysis of whole peripheral blood. (A). A Pie chart summary for the number of
differentially expressed genes in whole blood obtained in each time class-comparison analysis (p,0.001). The size of each slice represents the
percentage of genes in that class based on the total of differentially expressed genes identified in all of the analyses done. Significant differential
gene expression for each Post-TX timepoint was determined against the Pre-TX samples and these are represented in this figure as ‘‘Pre-TX vs. Week
1’’ and so on. In parallel, we performed ANOVA comparisons for all timepoints to determine what we have termed the ‘‘multivariate’’ genes that
change significantly and differentially in a coordinate fashion at all timepoints post transplantation. (B). Functional analyses of the significant
differentially expressed genes populating statistically significant Ingenuity pathways. The results for 5 timepoint comparisons: Pre-TX vs. week 1, 2, 4,
8 and 12 are shown in different colors. The Y-axis depicts the % of genes identified in our results vs. the total number of genes known to populate the
pathway in the literature upon which Ingenuity mapping is based. We identified 4 different classes of differentially expressed genes mapping to these
functional pathways: early, late, consistent and intermittent. The majority of genes are in the early and consistent classes. (C). Pie chart representing
the 19 significant functional pathways populated by 134 significantly differentially expressed multivariate genes, with percentage of multivariate
genes per total genes in a pathway. On the right, the 19 functional pathways shown in the pie chart are ranked by their p-value significance and
includes the % genes populated per pathway, and the total number of genes identified for each pathway in our samples.
doi:10.1371/journal.pone.0013358.g003

Table 6. Summary of differential gene expression from whole blood (WB) and the purified blood cell subsets.

Comparative analysis Subset
Significant DE# genes
(p,0.001) Upregulated genes % Upregulated

Pre-TX vs. Week 1 WB* 2638 539 20.4%

Pre-TX vs. Week 2 WB* 2448 265 10.8%

Pre-TX vs. Week 4 WB* 1308 174 13.3%

Pre-TX vs. Week 8 WB* 1118 167 14.9%

Pre-TX vs. Week 12 WB* 1148 77 6.7%

Multivariate: Pre vs. Post WB* 2447 NA NA

Pre-TX vs. Week 2 CD4 1584 726 45.8%

Pre-TX vs. Week 12 CD4 3358 1685 50.1%

Pre-TX vs. Week 2 CD8 574 295 51.3%

Pre-TX vs. Week 12 CD8 2030 1101 54.2%

Control vs. Week 2 CD14 312 251 80.4%

Control vs. Week 2 (Pre-TX normalized) CD14 258 216 83.7%

Control vs. Week 12 CD14 616 301 48.8%

Control vs. Week 12 (Pre-TX normalized) CD14 455 245 53.8%

Control vs. Week 2 CD19 208 121 58.1%

Control vs. Week 12 CD19 389 191 49.1%

*WB = whole blood.
#DE = differentially expressed.
doi:10.1371/journal.pone.0013358.t006
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technologies are complementary. Comparison of cytometry and

gene expression for multiple pan T cell markers such as CD3e,g,d,

TCRab, CD2, CD5, CD6 and CD7 correlated well and similar

results were found for pan B cell markers. In fact, gene expression

profiling results were validated with all 65 protein antigens

measured by cytometry at multiple time points. In turn, all 65

proteins were validated with 157 different probesets detecting the

corresponding mRNA transcripts on DNA microarrays. Thus,

microarray-based gene expression is representative of the cell

proteins expressed and this represents a novel strategy for

validating gene expression results by cytometry-based proteomics.

We next investigated gene expression profiles obtained from

whole blood. Given the availability of reagents enabling whole

blood transcriptome analysis in a clinical setting it was logical to

start here. Functional analysis was done using a curated and

constantly updated literature database (Ingenuity Pathways Anal-

ysis) to populate known pathways with significantly differentially

expressed genes. Four classes of functional pathways were populated

in the first 12 weeks post-TX: early (1–4 weeks), late (8–12 weeks),

consistent (populated at all timepoints) and intermittent (selected

timepoints). Most of the pathways were populated either early or

consistently and related to primary mechanisms of alloimmunity

[24–26]. Thus, even in this complicated period, by looking at the

evolution of the changes in whole blood gene expression, we

identified 2447 genes that change uniquely as a function of time and

these mapped to 19 canonical functional pathways (Figure 3C).

The obvious question is what do we miss in a whole blood analysis

because of the dramatic changes in the cell composition that occur

after antibody induction in this early period.

The immediate impact of induction is a profound depletion of

CD4, CD8 and NK cells, while B cells, eosinophils and neutrophils

are suddenly the dominant populations. The ideal way to address

this confounding cell admixture challenge is to separate the

constituent cell subsets and analyze gene expression from each.

We have reviewed in detail the results of these studies. These cell

subset-specific results reveal a number of new insights into the

mechanisms that may drive the early Post-TX immunity, and are

not revealed by whole blood analysis. For example, as shown in

Figure 4B, we have defined unique early, late and shared

pathways for CD4 T cell activation Post-TX. These shared

Figure 4. Gene expression profiling and functional analysis of the CD4 cell subset. (A). Schema representing our analysis of differential
gene expression and the mapping of functional pathways for the CD4 T cell subset. This work was based on two time comparisons to clarify the
evolution of changes during the first 12 weeks post transplantation: Pre-TX vs. Week 2 and Pre-TX vs. Week 12. (B). Functional pathways populated by
genes differentially expressed early (blue), late (red) or shared at both timepoints Post-TX up to Week 12 in the CD4 T cell subset. The Y-axis
represents % genes populated per pathway in our data based on the total number of genes identified by Ingenuity for each pathway.
doi:10.1371/journal.pone.0013358.g004
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pathways are consistently populated by increasing numbers of

differentially expressed genes in the late phase, revealing pathways

that are triggered early and then evolve by recruitment and

activation of new genes into each pathway with time.

Results for CD8, CD14 and CD19 subsets also demonstrate the

evolution of distinct molecular networks as a function of time and

cell subset. For example, most of the genes and pathways identified

for CD8 are not common to those identified for CD4, underlining

the unique nature of the mechanisms driving activation and

proliferative expansion of these two T cell subsets. Pathway

analysis for CD14 monocytes is consistent with our data showing

upregulation of activation markers and published literature that

early Post-TX events are dominated by ischemia/reperfusion

injury and activation of innate immunity [1,2,41]. Thus, the

majority of CD14 pathways are activated in the early phase and

include signaling via IL10, PPAR, APRIL, ICOS and TLR. In

contrast, the majority of CD19 pathways are populated only in the

late phase of the early immune response including signaling via:

IL9, interferon, IL2, CD4 differentiation, PKR-interferon induc-

tion and TLR receptors. Whether these represent coordinated

waves of signaling from monocytes to B cells during this early

activation of transplant immunity will have to be tested.

This study has several limitations that are important to

acknowledge. The data is limited to only 10 patients and 5

healthy donors. To mitigate sample size limitation, patients were

enrolled consecutively to avoid selection bias. Also, the serial time

sampling of whole blood and purified cell subsets presented here

represents over 170 microarrays and thousands of parallel

cytometry measurements. Stopping the study at 12 weeks was

arbitrary. We also acknowledge that our use of the terms early and

late, refer to this 12 week period, which is certainly early in the

post-transplant course. The immune response continues to evolve

as a function of time and critical events can and will occur later.

Future studies, based on the proof of concept provided here, can

explore that question productively for the entire first post-

transplant year.

There is no attempt to identify specific genes or biomarkers for

early transplantation. And the small numbers of patients studied in

this pilot preclude any outcome-specific correlations. Rather, we

are clear that this study was designed to test the hypothesis that

deconvolution of the early Post-TX period is possible by analysis of

purified blood cell subsets. First, the results demonstrate that even

without subset purification there is considerable information

contained within the genome and cytometry data of whole blood

samples to identify a number of important candidate pathways.

Second, subset-based deconvolution allows a novel correlation of

the profound changes in blood cell composition created by

antibody induction with the molecular pathways activated in

Figure 5. Gene expression profiling and functional analysis of the CD8 cell subset. Top 22 populated functional pathways for genes
differentially expressed early (blue), late (red) or at both timepoints Post-TX in the CD8 T cell subset. Y-axis represents % genes present per pathway.
For the complete list of functional pathways, see Table S4.
doi:10.1371/journal.pone.0013358.g005
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critical immune cell subsets. These subset-specific changes

illuminate a very complex, early phase of immunity that includes

activation and proliferative expansion of the memory effector and

regulatory cells that determine the phenotype and outcome of the

kidney transplant. In fact, it is striking that in this first 12 weeks

under the most intense levels of immunosuppression achieved at

any time post-transplant that there is such a dramatic activation of

CD4, CD8, CD14 and B cells and particularly of the memory

effector subsets. With these results, it is now justifiable to consider

a larger investment in serial sampling and blood cell subset analysis

of kidney transplant patients that should extend its reach to at least

12 months post-transplantation. Ultimately, the question for the

field is whether these networks of immune activation represent the

necessary repopulation of the immune system in response to early

antibody-mediated destruction, and if so, what are the implications

of this activation for the evolution and regulation of the post-

transplant immune response? The current clinical reality is that

despite significant reductions in the incidence of acute rejection

over the last two decades, we still have not found a protocol that

results in tolerance with drug withdrawal or even indefinite long

term graft survival on immunosuppression.

Materials and Methods

Ethics Statement
All the studies in this manuscript were covered by Human

Subjects Research Protocols approved by the Center’s Institutional

Review Board and by the IRB of The Scripps Research Institute.

Informed written consent was obtained from all study subjects in

the study.

Patient population and treatment regiment
The immunosuppressive protocol was: methylprednisolone

(60 mg/days 1–4); rabbit polyclonal anti-thymocyte globulin

(ThymoglobulinH; 6 mg/kg in 3 doses); mycophenolate mofetil

(CellCeptH); and tacrolimus (PrografH). Peripheral blood from 10

transplant patients was collected with IRB approved informed

consent at the Scripps Center for Organ and Cell Transplantation

immediately prior to administration of immunosuppression and

transplantation and at weeks 1, 2, 4, 8, and 12. Whole Blood was

collected into PAXgene (PreAnalytix, Franklin Lakes, NJ) or

EDTA-coated tubes for separation into cell subsets using positive

cell selection with magnetic Dynal beads (Invitrogen, Carlsbad,

CA). Blood Samples from 5 healthy control subjects from our

Normal Blood Drawing Service represented by 2 males and 3

females, 25–45 years of age, were collected following the same

protocol at a single time point.

Cytometry
Cytometry analysis was performed on the SurroScanTM system

(SurroMed/PPD Biomarker Discovery Sciences) comprised of 49

three-color cell surface assays performed by microvolume laser

scanning cytometry as described previously [21–23,42]. Template

gates were established using FlowJoTM software (Tree Star, Inc.,

Ashland, OR) customized for PPD. Gating information was

applied for each assay using CytoSuiteTM analysis software to

generate cell counts and antigen intensity data. Table S6 provides

a summary of target antigens used in this study for each major cell

population. Template gates were established with healthy controls

(Stanford Blood Bank) and confirmed to work with study samples

(Figure S2). Control experiments demonstrated that residual

thymoglobulin did not interfere with the cytometry measurements

(not shown). We evaluated 1083 statistical variables from cell

counts and cell surface antigen intensities. Within group

comparisons were performed as paired two-group comparisons

to identify differences associated with transplantation and

immunosuppression independent of outcome. If all variables were

independent, 11 would be expected to be different by chance at a

univariate p-value of ,0.01.

Gene expression profiling and functional mapping
RNA was extracted and hybridized to Affymetrix U133 Plus 2.0

GeneChips (Affymetrix, Santa Clara, CA). Normalized signals

were used for class comparisons of variance by two-way t-tests for

two sample comparisons and parametric univariate F-tests for

multiple sample comparisons (p,0.001, FDRs,2%; BRB-Array-

Tools, (http://linus.nci.nih.gov/BRB-ArrayTools.html) to identify

significantly differentially expressed genes. All tests done were

based on comparing the differences in normalized, mean log-

transformed intensities between classes of samples. Heatmaps were

generated using Cluster and Treeview [43]. Functional mapping

was performed using Ingenuity Pathway Analysis (IPA, IngenuityH
Systems, Redwood City, CA, http://www.ingenuity.com). All

gene expression files are available at the NIH GEO site,

submission number GSE24223. For detailed description of

cytometry, statistical methods and gene analysis refer to Methods
S1.

Supporting Information

Figure S1 Comparisons of gene expression between 3 cell

subsets (CD4, CD8 and CD14) and whole blood. (A) The Venn

diagram represents the gene expression overlaps between whole

blood (WB) and the purified CD4, CD8, and CD14 subsets,

showing genes downregulated early. The number in parenthesis

next to each cell subset represents the total number of

downregulated genes at that timepoint Post-TX. The data shows

that the majority of genes differentially expressed early in each cell

type is unique to that cell type. (B) The Venn diagram represents

the gene expression overlaps between whole blood (WB) and the

purified CD4, CD8, and CD14 subsets, showing genes downreg-

ulated late in the 12 week period post transplantation. The

number in parenthesis next to cell subset represents the total

number of downregulated genes at that timepoint Post-TX. The

data shows that the majority of genes differentially expressed late

in each cell type is unique to that cell type.

Found at: doi:10.1371/journal.pone.0013358.s001 (1.08 MB TIF)

Figure S2 Representative laser scanning cytometry plots with

standard gates for the major cell populations. (A) Total T cells

identified with CD3; (B) CD4 and CD8 T cells after gating on

CD3; (C) NK cells identified as CD3 negative (not shown) and

CD2 and CD56 positive; (D) B cells (CD20) and monocytes

(CD14); (E) Granulocytes (CD16) and monocytes (CD14); and, (F)

granulocytes (CD16) and eosinophils, identified as CD16 negative

and CD66b positive. All of these examples are from whole blood

staining with healthy controls. When a population was measured

Figure 6. Gene expression profiling and functional analysis of the CD14 monocyte and CD19 B cell subsets. (A). Functional pathways
populated by genes differentially expressed early (blue), late (red) or shared at both timepoints Post-TX in the CD14 monocyte subset. Y-axis
represents % genes present per pathway. (B). Functional pathways populated by genes differentially expressed early (blue), late (red) or shared at
both timepoints Post-TX in the CD19 B cell subset. Y-axis represents % genes present per pathway.
doi:10.1371/journal.pone.0013358.g006
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in more than one assay, averages of the absolute cell counts were

used for the comparative statistics.

Found at: doi:10.1371/journal.pone.0013358.s002 (2.22 MB TIF)

Table S1 Whole Blood multivariate gene expression

Found at: doi:10.1371/journal.pone.0013358.s003 (1.62 MB

XLS)

Table S2 134 multivariate whole blood genes that populate 19

significant functional pathways

Found at: doi:10.1371/journal.pone.0013358.s004 (0.12 MB

XLS)

Table S3 Significant pathways (p,0.05) identified in Ingenuity

Pathway Analysis populated by genes from whole blood as a

function of the serial time points sampled

Found at: doi:10.1371/journal.pone.0013358.s005 (0.05 MB

XLS)

Table S4 Comparison analysis of functional pathways populated

either early, late or at both stages Post-Tx in CD8 subset

Found at: doi:10.1371/journal.pone.0013358.s006 (0.02 MB

XLS)

Table S5 Cytometry Antigen Gene Expression

Found at: doi:10.1371/journal.pone.0013358.s007 (0.14 MB

XLS)

Table S6 Target Antigens for Cellular Assays.

Found at: doi:10.1371/journal.pone.0013358.s008 (0.03 MB

DOC)

Methods S1 Supplemental methods

Found at: doi:10.1371/journal.pone.0013358.s009 (0.03 MB

DOC)
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