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Melanoma results from the malignant transformation of melanocytes and

accounts for the most lethal type of skin cancers. In the pathogenesis of

melanoma, disordered metabolism is a hallmark characteristic with multiple

metabolic paradigms involved in, e.g., glycolysis, lipid metabolism, amino acid

metabolism, oxidative phosphorylation, and autophagy. Under the driving

forces of oncogenic mutations, melanoma metabolism is rewired to provide

not only building bricks for macromolecule synthesis and sufficient energy for

rapid proliferation and metastasis but also various metabolic intermediates for

signal pathway transduction. Of note, metabolic alterations in tumor

orchestrate tumor immunology by affecting the functions of surrounding

immune cells, thereby interfering with their antitumor capacity, in addition to

the direct influence on tumor cell intrinsic biological activities. In this review,

we first introduced the epidemiology, clinical characteristics, and treatment

proceedings of melanoma. Then, the components of the tumor

microenvironment, especially different populations of immune cells and their

roles in antitumor immunity, were reviewed. Sequentially, how metabolic

rewiring contributes to tumor cell malignant behaviors in melanoma

pathogenesis was discussed. Following this, the proceedings of metabolism-

and metabolic intermediate-regulated tumor immunology were

comprehensively dissertated. Finally, we summarized currently available

drugs that can be employed to target metabolism to intervene tumor

immunology and modulate immunotherapy.
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Background

Melanoma is the deadliest type of skin cancer caused by the malignant

transformation of melanocytes. In 2021, there were estimated 106,110 new cases

emerging and 7,180 deaths due to melanoma in the United States (1). As melanocytes

are widely distributed in organs and tissues such as uvea, mucosa, inner ear, and rectum
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in addition to the skin epidermis, melanoma arising in different

anatomical locations is accordingly categorized into four

subtypes, namely, cutaneous melanoma (CM), acral melanoma

(AM), uveal melanoma (UM), and mucosal melanoma (MM).

CM is of a rather high mutation rate (2), especially in certain

genes like those involved in the mitogen-activated protein kinase

(MAPK) pathway, such as v-raf murine sarcoma viral oncogene

homolog B (BRAF) and ras viral (V-Ras) oncogene homolog

(RAS) (3, 4). Accordingly, BRAF inhibitors vemurafenib,

dabrafenib, and encorafenib, as well as mitogen-activated

protein kinase kinase (MEK) inhibitor trametinib, cobimetinib,

and binimetinib, are applied to the targeted treatment of

melanoma (5, 6). Although demonstrating better clinical

efficacy than conventional chemotherapies (7, 8), these BRAF

and MEK inhibitors engender inevitable drug resistance caused

by complex mechanisms, which eventually lead to tumor cell

proliferation and poor prognosis of melanoma patients (9–11).

Previous investigations of melanoma pathogenesis and

therapeutic approaches generally focused on the malignant

behaviors of tumor cells. While the study of the tumor

microenvironment (TME) has been extensive in recent years,

therapeutic strategies directly targeting the TME have not been

clinically adopted. The TME is composed of mixed populations

of cells such as melanoma cells and surrounding immune cells,

cancer-associated fibroblasts (CAFs), and keratinocytes (12).

Tumor-infiltrating immune cells gradually exhibit malfunction

in the dynamic interplay with melanoma cells and finally

become “accomplices” of melanoma immune escape. Immune

checkpoints prominently underlie the dysfunction of immune

cells; thus, the blockades of immune checkpoints programmed

cell death protein 1 (PD-1) (nivolumab and pembrolizumab),

programmed cell death ligand 1 (PD-L1) (atezolizumab), and

cytotoxic T lymphocyte antigen 4 (CTLA-4) (ipilimumab) are

applied in melanoma immunotherapy. Encouragingly, the

combination of nivolumab (anti-PD-1 antibody) and

ipilimumab (anti-CTLA-4 antibody) has been documented to

improve the overall 5-year-survival of melanoma patients to 52%

with a response rate of 58% (13), which underscores the

importance of the interactions between melanoma cells and

immune cells in the TME.

The interruptions of antitumor immunity in the TME partly

stem from melanoma metabolic reprogramming. Multiple

fundamental metabolic paradigms such as glycolysis, oxidative

phosphorylation, amino acid metabolism, autophagy, and lipid

metabolism are rewired by oncogenic factors in melanoma (14–

17), which not only provide sufficient energy and building bricks

of macromolecules biogenesis but also manipulate the TME to

help melanoma immune evasion. For instance, enhanced

glycolysis of tumor cell leads to the acidification of the TME,

which is associated with mitigated infiltration and antitumor

function of natural killer (NK) cells and CD8+T cells, as well as

the resistance to immunotherapy (18–20). However, activated

l ip id metabol ism in tumor potent ia tes melanoma
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immunogenicity and thereby increases its sensitivity to T cell-

mediated killing, rendering a higher response rate to anti-PD-1

immunotherapy (21). Apart from tumor cell metabolism, the

dysregulated metabolism in immune cells also undermines their

antitumor capacity. For example, peroxisome proliferator-

activated receptor gamma, coactivator 1 alpha (PGC-1a)
upregulation in CD8+T cells can favor the central memory

formation and provide stronger antitumor capacity in

restraining melanoma progression in a preclinical mouse

model (22). Therefore, dysregulated metabolism in both tumor

cells and immune cells affects antitumor immunity, which

underpins the significance of illustrating the implication of

metabolism in immunologic characteristics of the TME in

melanoma and the role of targeting metabolism in modulating

the efficacy of immunotherapy.
The tumor microenvironment and
antitumor immunity

The antitumor capacity of immune cells in the TME is

dynamically remodeled in melanoma. During the early stage of

tumor progression, tumor-infiltrating immune cells can fulfill

their responsibility to detect and eradicate tumor cells effectively

via the cooperation of innate and adaptive immunity. To be

specific, once the infiltrating natural killer (NK) cells detect and

exert a killing effect on melanoma cells, they concurrently secrete

cytokines to recruit antigen-presenting cells (APCs), especially

dendric cells (DCs), to engulf the dead tumor cells or process

tumor cells into damage-associated molecular patterns

(DAMPs) (23). Hereafter, DCs gradually mature and migrate

to lymph nodes, where they process and load cancer antigens

onto human leukocyte antigen class-1 (HLA-1) for presentation

to CD8+T cells, meanwhile upregulating costimulatory molecule

expression and pro-inflammatory cytokine secretion to activate

naive T cells (24). Thereby, melanoma-specific effector T cells

are recruited to the TME to take their responsibility for the

eradication of melanoma cells. In this immune elimination

process, NK cells act as the frontline of defense and the main

component of antitumor innate immunity. Actually, the

response of NK cells to target cells depends on the balance

between activating signals and inhibitory signals mediated by

surface receptors. Inhibitory receptors are represented mainly by

HLA class I-binding receptors (KIR, NKG2A, and LIR-1/ILT2),

while activating receptors include NKp46, NKp30, NKp44,

NKG2D, and DNAM-1. The susceptibility of tumor cells to

NK cells would largely depend on the high expression levels of

activating receptor–ligands, but it can be further increased by the

downregulation of HLA class I expression in melanoma cells

(25). Besides, they exert an immunomodulatory effect through

the production of cytokines such as interferon-g (IFN-g) and

tumor necrosis factor-a (TNF-a) and contribute to the

recruitment and maturation of APCs through secreting
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chemokines like CC chemokine ligand 3 (CCL3), CCL4, and

CCL5, which provide a linkage between innate and adaptive

immunity (26). APCs not only ingest and present tumor

antigens but also upregulate the expression of a large variety of

co-stimulatory receptors on their surfaces, like CD80 and CD86,

which are pivotal for T-cell priming (27). Besides, several

chemotactic receptors are also upregulated on APCs, for

instance, CCR7 (CD197), which induces the migration to

lymph nodes for antigen presentation and activation of T cells

(28, 29). As for the adaptive immunity, CD8+T cells and CD4+T

cells can be properly activated via two co-stimulatory signals.

The first is the combination between T-cell receptor (TCR) and

major histocompatibility complex (MHC) molecule (CD8+T

cells with MHC class I vs. CD4+T cells with MHC class II),

and the second is the binding of co-stimulation signal molecules

present on T cells (e.g., CD28) to their corresponding receptors

localized on APCs (e.g., CD80 and CD86) (30). Subsequently,

activated CD8+T cells and CD4+T cells are recruited to the TME

by the chemokine gradient of CXCL9, CXCL10, and CXCL11

generated by DCs and tumor-associated stroma (31). Then,

melanoma cells expressing a high level of costimulatory

molecules directly present a tumor-associated antigen (TAA)–

MHC compound to CD8+T cells, stimulating the production of

interleukin 2 (IL-2) that leads to their proliferation and

differentiation to cytotoxic T cells (CTL). CTLs bind to

melanoma cells via TAA presented on MHC molecules and

then exert an antitumor effect on melanoma cells by releasing

perforin and granzyme B to induce apoptosis and secreting

cytokines such as IFN-g and TNF to reinforce the inflammatory

TME. Meanwhile, CD4+T cells can differentiate into several

types of functional cells depending on the cytokines in TME

(32, 33). When diverse T cells cooperatively kill melanoma cells,

more TAA can be released to facilitate antitumor immunity.

Another kind of cells involved in antitumor defense is

macrophages. The pro-inflammatory subtype of macrophage

M1 can be activated by Th1 cells and pro-inflammatory

factors such as IL-6, IL-12, IL-23, and TNF-a. Upon

activation, M1 can exert non-specific killing through secreting

TNF-a and performing non-specific phagocytosis and exerting

an antibody-dependent cell-mediated cytotoxicity (ADCC)

effect. Also, they can act as antigen-presenting cells and

enhance adaptive immunity. Yet the other subtype of

macrophages, M2, is generally activated by Th2 cells and anti-

inflammatory stimuli such as IL-4, IL-10, and IL-13, resulting in

anti-inflammatory and pro-tumorigenic effects (34, 35).

However, the surveillant and self-defensive efficacy of tumor-

infiltrating immune cells is dampened in the cancer-

immunoediting process during the equilibrium phase. In this

phase, melanoma cells reshape their immunologic features when

in interactions with immune cells, including the downregulation

of tumor-associated antigens (TAAs) and MHC molecules; the

deletion in antigen-processing machinery; the upregulation of

immune checkpoints PD-L1, TIM-3, and LAG-3; and the
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secretion of chemokines and cytokines, and finally result in

melanoma immune escape (36, 37). Initially, melanoma mutants

featuring downregulated TAA andMHCmolecule expressions are

reserved in the “natural selection” by the TME, rendering these

melanoma cells invisible to antitumor immunity (38). Further,

melanoma cells also alter the functions of various infiltrating

immune cells in the TME, especially T lymphocytes, NK cells,

DCs, and macrophages, to facilitate immune escape.

The antitumor effects of melanoma-specific CD8+T cells are

inhibited by aberrantly expressed immune checkpoints on the

surface of tumor cells. Chronic exposure to tumor antigens and the

overexpression of CTLA-4 and PD-L1 on melanoma cells raise the

inhibitory receptors on T cells, which hinder their activation.

Besides, inhibitory molecules, such as regulatory T cell (Treg)-

derived TGF-b, restrain the cytotoxic capability of CTLs.

Indoleamine 2,3-dioxygenase 1 (IDO1) deprives CD8+ T and

DCs of tryptophan needed for their metabolism, resulting in

deficiency of T-cell activation and antitumor function (39).

While T cells mainly contribute to adaptive antitumor immunity,

NK cells are responsible for innate immunity for tumor control.

Functional NK cells are able to detect and eradicatemelanoma cells

with a low MHC-I expression, which are unable to be recognized

by cytotoxic T cells, yet they are also silenced by suppressive

molecules. In the interaction with NK cells, melanoma cells express

increased prostaglandin E2 (PGE2) and IDO, leading to the

shrinkage of activating receptors on NK cells and thus

attenuating NKs’ capability of binding to and killing melanoma

cells (25). As the most potent antigen-presenting cells in the

immune system, DCs are also enervated by certain suppressive

molecules, i.e., TGF-b, IDO, IL-2, and vascular endothelial-derived
growth factor (VEGF), and are even induced to premature

apoptosis for expressing apoptotic molecules (40–42).

In contrast to inhibited antitumoral immune cells, pro-tumoral

immune cells are boosted in the stage of immune escape.

Regulatory T cells are the immunosuppressive cells preventing

the overreaction of the immune system through expressing CTLA-

4 and secreting immune-suppressive molecules. However, it is

observed that in melanoma TME, Tregs are abnormally activated

and thus suppress the activity of antitumor immune cells, leading

to melanoma immune escape. Other immune cells in the TME

including myeloid-derived suppressor cells (MDSCs), B cells, and

neutrophils all play their parts in the modulation of antitumor

immunity. In addition, cancer-associated fibroblasts (CAFs) and

endothelia in the TME also affect angiogenesis and tumor

development by remodeling the extracellular matrix, interacting

with surrounding cells and secreting soluble growth factors

(43–45).

Altogether, multiple cells and various molecules synergistically

weave a TME in which tumor cells are restricted initially but then

develop and finally escape the immune surveillance. More

mechanisms underlying the interactions within the TME remain

to be revealed to optimize the diagnoses and treatments

of melanoma.
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Proceedings of metabolic
dysregulation in melanoma
pathogenesis

Multiple paradigms of cellular metabolism such as

glycolysis, oxidative phosphorylation, amino acid metabolism,

autophagy, and lipid metabolism are altered in melanoma cells

to ensure the supplement of sufficient energy and precursors for

macromolecular biosynthesis. In melanoma, these metabolic

alterations are of relatively high plasticity, which is tightly

associated with and greatly implicated in the regulation of

tumor cell behavior. Hence, an insight into the proceedings of

metabolic dysregulation of melanoma is necessary.
Reprogramming of glucose
metabolism in melanoma

Glycolysis

Aerobic glycolysis is robustly activated in various types of

tumors including melanoma to support their increased energetic

and biosynthetic demands. Melanoma cells promote the activation

of glycolysis through various mechanisms; thereinto, genetic

mutations are at the fundamental place. By profiling metabolites

in 17 patient-derived xenograft melanoma models, Shi et al.

identified that compared with BRAF-wild-type tumors, BRAF-

mutant tumors have the metabolomics and metabolic flux

characteristics of enhanced glycolysis (46). Mechanically, BRAF

mutation directly upregulates a series of transcription factors,

glucose transporters, and kinases to promote glycolysis, for

instance, hypoxia-inducible factor-1a (HIF-1a), myc proto-

oncogene protein (MYC), glucose transportase-1 (Glut 1), Glut

3, and hexokinase 2 (HK2) (47). In addition, the activation of

glycolysis in melanoma cells is putatively a compensation for the

inhibited mitochondrial oxidative phosphorylation. BRAF-

activated melanomas are characterized by a suppressed level of

microphthalmia-associated transcription factor (MITF) and thus a

low PGC-1a expression, which leads to attenuated mitochondrial

function (14). Aside from genetic regulation by BRAF, the

overactivated MAPK pathway in melanoma also contributes to

increased glycolysis. Ribosomal S6 kinase 1 (RSK), the substrate of

extracellular signal-regulated kinase 1/2 (ERK1/2) in the MAPK

pathway, directly phosphorylates and activates fructose-6-

phosphate 2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), an

enzyme catalyzing the synthesis of fructose-2,6-bisphosphatase, to

promote melanoma glycolysis (48). Enhanced glycolysis provides

melanoma cells with abundant energy and metabolic

intermediates, promoting the synthesis of proteins, nucleic acids,

fatty acids, and other macromolecules needed for further growth

and proliferation, while inhibiting the entire glycolysis process by
Frontiers in Immunology 04
targeting the BRAF or MAPK pathway may help hamper the

growth and spread of melanoma (49).
Mitochondrial oxidative phosphorylation

Mitochondrial oxidative phosphorylation (OXPHOS) also

provides energy, but it is generally thought to be inhibited in

tumor cells due to the canonical Warburg effect, which leads to

the omittance of its significant role in melanoma survival and

growth. However, PGC1a-positive melanoma cells show better

capability of energy generation, resistance to reactive oxygen

species (ROS), and thus improved viability in hypoxia conditions

than PGC1a-negative ones (50). In addition, since BRAF suppresses
mitochondrial function via the downregulation of MITF, melanoma

cells treated by BRAF-targeted drugs restore oxidative

phosphorylation to maintain their survival, leading to adaptive

resistance to targeted therapy (51). Moreover, it has been

documented that long non-coding RNA (lncRNA) SAMMSON,

which co-expresses with MITF, promotes melanoma growth by

upregulatingmitochondrial main regulatory factor p32 and targeting

SAMMSON renders melanoma cells therapeutic vulnerability (52,

53). However, while PGC1a upregulates OXPHOS to provide

energy for melanoma cells, it suppresses metastasis. PGC1a
enhances the transcription of inhibitor of DNA binding 2 (ID2),

which in turn binds to and inactivates the transcription factor 4

(TCF4), leading to the downregulated expression of metastasis-

related genes and thus impeding melanoma metastasis (54). In

contrast to this report, another two investigations have

demonstrated that the suppression of mitochondrial respiration

function can robustly restrain the invasive capacity and metastasis

of melanoma cells (55, 56). Conclusively, the role of mitochondrial

function in melanoma metastasis remains controversial and needs

further investigations to elucidate the discrepancy. Moreover,

oxidative phosphorylation seems to be a promising target to

overcome the adaptive resistance to targeted therapy, which is of

considerable translational potential in future clinical practice.
Reprogramming of amino acid
metabolism in melanoma

The metabolisms of different types of amino acid, especially

glutamine, serine, cystine, and branched-chain amino acids, are

ubiquitously aberrant in melanoma cells. In some subtypes of

melanoma cells, glutamine metabolism is enhanced via c-myc-

mediated upregulation of glutaminase (15). This hyper-activated

metabolism of glutamine, an anaplerotic substrate, replenishes

carbon and nitrogen for almost every melanoma cell metabolic

activity and promotes melanoma growth (57). In addition,

glutamine compensates for the energy deficiency triggered by the

therapeutic dual suppression of glycolysis and mitochondrial
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oxidative phosphorylation, which leads to drug resistance (58). Of

note, while glutamine dependence underlies the resistance to the

BRAF inhibitor (59), local deprivation of glutamine in melanoma

TME increases histone hyper-methylation, which contributes to

tumor cell dedifferentiation and also results in resistance to BRAF

inhibitor treatment (60). Therefore, the role of glutamine

metabolism in drug resistance toward BRAF inhibitors remains

under debate. Apart from glutamine metabolism, the synthesis of

serine is also significantly increased in melanoma cells (61). The

upregulation of serine through dietary serine supplementation or

gene overexpression of 3-phosphoglycerate dehydrogenase

(PHGDH), the rate-limiting enzyme in serine synthesis, effectively

promotes melanoma development (62). In a serine and glycine-

limited brain environment, melanoma is highly dependent on serine

synthesis for brain metastasis. Targeting PHGDH, which catalyzes

the rate-limiting step of glucose-derived serine synthesis, is

promising in restraining melanoma brain metastasis (63).

Furthermore, the upregulation of PHGDH expression contributes

to the resistance to MAPK-inhibiting therapy (64). Another

significantly-reprogrammed type of amino acid is cystine. The

expression of SLC7A11, which encodes the cystine/glutamate

antiporter Xc- to mediate cystine uptake, is significantly higher in

melanoma tissues compared to the controls. The increased cystine

uptake elevates the intracellular cysteine level to facilitate the

synthesis of glutathione (GSH) and improve the antioxidant

capability and viability of melanoma cells (65). In addition to the

abovementioned glutamine, serine, and cystine, the metabolism of

branched-chain amino acids (BCAAs) also demonstrates pathogenic

significance in melanoma. The three BCAAs, namely, leucine (Leu),

isoleucine (Ile), and valine (Val), share similar chemical properties

and metabolic pathways and provide carbon and nitrogen for

biosynthesis and energy generation for melanoma cells. Branched-

chain amino acid transaminase 1 and 2 (BCAT1/2) plays a pivotal

role of transferring the nitrogen of BCAAs to a-ketoglutarate (a-
KG) to produce glutamine and the specified branched-chain keto

acid (BCKA) for further catabolism (66). The expression of BCAT1

is prominently upregulated in melanoma cells, and the knockdown

of BCAT1 suppresses tumor growth through the suppression of

oxidative phosphorylation (67). Moreover, it is discovered that

melanoma cells with BRAF mutation are highly dependent on

leucine, the deprivation of which results in defective autophagy in

tumor cells and thus reveals a targetable liability (68). In aggregate,

the dysregulation of amino acid metabolism serves as a motivator of

the progression of melanoma.
Reprogramming of autophagy
in melanoma

Autophagy is a pivotal cellular degradation process in which

intracellular proteins and organelles were digested in lysosomes to

respond to diverse-cell stress and maintain cellular homeostasis. In
Frontiers in Immunology 05
melanoma, the histone deacetylase sirtuin 6 (SIRT6)-mediated

epigenetic modulation of the insulin-like growth factor 1 receptor

(IGF1R)-protein kinase B (AKT) pathway results in the

downregulation of autophagy in the early stage and an

upregulation in the metastatic stage (16). In addition, the

canonical melanoma mutation BRAFV600E inhibits autophagy by

phosphorylating and inactivating transcription factor EB (TFEB),

the master transcriptional factor of autophagy, via downstream

ERK (69). Dysregulated autophagy in melanoma plays paradoxical

roles in melanoma progression. On the one hand, enhanced

autophagy mediates the extracellular ATP secretion, which

confers the invasion and migration of melanoma cells as well as

drug resistance to BRAF-targeted therapy (70). Moreover,

melanoma autophagy suppression due to autophagy-related-7

(Atg7) deficiency in a BRAFV600E-mutant, phosphatase and tensin

homolog (Pten)-null mouse model induces oxidative stress and

senescence of melanoma cells and ultimately impedes melanoma

development (71). On the other, in BRAFV600E mice wild-type for

Pten, the previously mentioned senescence obstacle ATG7 inversely

promotes melanoma senescence and thus acts as a barrier to

melanoma occurrence and development (71, 72). Another critical

autophagy regulator ATG5 is documented to be downregulated in

the early stage of melanoma, enabling the bypass of BRAF-induced

senescence and contributing to the proliferation of melanoma cells

(73, 74). Besides, the upregulation of lncRNA ZNNT1 increases the

expression of ATG12 to promote autophagy, leading to inhibition

of tumorigenesis and migration of UM cells (75). These reports

have contrarily demonstrated the suppressive role of autophagy in

melanoma progression. Later on,Wang et al. discovered that, in the

early stage of melanoma, the autophagy level is significantly

downregulated and plays a role of tumor suppressor, while in the

metastatic stage, its level is prominently increased to facilitate tumor

progression. This study provides a relatively rational explanation for

the paradoxical role of autophagy in different stages of melanoma

(16) (Figure 1). Apart from its dual function in melanoma

development, autophagy activation underlies drug resistance to

BRAF-targeted therapy, whereas its inhibition improves the

therapeutic effect (76, 77). Similarly, targeting GNAQ/11 activates

the MAPK pathway which induces melanoma autophagy, resulting

in therapy ineffectiveness in UM treatment, and the concomitant

inhibition of Ga and autophagy increases melanoma cell death and

prolongs the survival of mice bearing melanomas (78). These

findings hint that the modulation of autophagy may serve as a

possible approach for melanoma treatment.
Reprogramming of lipid metabolism
in melanoma

Lipid metabolism which provides energy and substances for

melanoma survival and proliferation is also altered in melanoma

(79). Melanoma cells with high invasive capability rely on
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phospholipids for biofilm synthesis and fatty acids (FAs) for

ATP synthesis. Therefore, advanced melanomas are highly

dependent on the increased uptake of exogenous lipids, which

is another hallmark of melanoma (80). Zhang et al. have proved

that in transgenic zebrafish and xenograft mice, melanoma cells

adjacent to stromal adipocytes can intake adipocyte-derived

lipid through the overexpressed fatty acid transport protein 1

(FATP1/SLC27A1) lipid transporter. This melanocyte-specific

FATP1 synergizes with BRAF V600E in promoting the

proliferation of cancer cells, and its pharmacological inhibition

causes tumor regression (81). In addition to acquiring lipids

from adjacent cells, melanoma cells can absorb dietary lipids by

expressing high-level CD36, a membrane-bound exogenous

lipid deliverer, to facilitate their metastasis. The inhibition of

CD36 restricts melanoma metastasis and improves prognosis of

melanoma patients (17). In addition to intaking more exogenous

lipids, de novo lipogenesis is activated in melanoma cells through

upregulating the enzymes controlling lipid synthesis—ATP-

citrate lyase (ACLY) and sterol regulatory element-binding

protein (SREBP), for instance. The inhibition of these enzymes

causes melanoma withdrawal, reaffirming the significance of

lipid metabolism in melanoma cells (82, 83). Of note, the

activation of lipid-producing enzymes such as ACLY and

SREBP1 also causes drug resistance of melanoma toward

targeted therapy. ACLY induces the resistance to MAPK

inhibition by activating acetyltransferase P300 to acetylate the

histone at the MITF locus, thus promoting the transcription of

the MITF-PGC1 a axis and ultimately facilitating melanoma

growth (84). More importantly, in vivo preclinical trials show

that the inhibition of SREBP-1 can effectively improve the
Frontiers in Immunology 06
sensitivity to targeted therapy (85). In sum, the metabolism of

lipid is activated to promote melanoma growth through various

ways and targeting lipogenesis could be employed as a promising

strategy to enhance the effectiveness of targeted therapy.
The crosstalk between
metabolism rewiring and
melanoma immunology

In addition to providing abundant nutrients for biosynthesis

and energy generation to support melanoma survival and

proliferation, metabolic rewiring alters both the immunological

characteristics of melanoma cells and the functions of immune

cells in the TME, ultimately leading to immune escape and the

impaired efficacy of immunotherapies.
The crosstalk between aerobic
glycolysis and tumor immunology
in melanoma

Aerobic glycolysis is among the earliest revealed metabolic

hallmarks of cancer, which alters the immune profile of

melanoma cells and the antitumor immune function of

immune cells. Thus, elucidating the network of glycolysis-

related melanoma immunology is of great significance in

understanding the immunological behaviors of melanoma cells.
FIGURE 1

Reprogramming of autophagy in melanoma. During early stage, autophagy level in melanoma is significantly down-regulated, which is induced
by MAPK activation-induced suppression of TFEB, the down-regulation of ATG5, and the down-regulation of SIRT6 and its-mediated IGF1R-AKT
signaling. During advanced stage, autophagy level is prominent increased, which is related to the up-regulation of SIRT6 and its-mediated
IGF1R-AKT signaling, and the up-regulation of lncRNA ZNNT1 and ATG12. Autophagy plays a bimodal role in melanoma progression, namely,
acts as a tumor suppressor at early stage, whereas acts as a tumor promoter at advanced stage. .
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Glycolysis in immunologic characteristics
of melanoma cells

Aerobic glycolysis in melanoma cells plays a pivotal role in

modulating the immunologic features of melanoma through

diverse approaches, including extracellular acidification,

immune checkpoint expression, expression of immune-related

genes, and secretion of cytokines. Increased glycolysis leads to

the extracellular accumulation of its end product, lactic acid,

which inhibits up to 95% of the capacity of proliferation and

secretion of cytokines of immune-infiltrated CTL cells and

reduces their activity by 50%, while supporting Treg survival

(18, 86). Mechanically, a high concentration of extracellular

lactic acid blocks monocarboxylate transporter-1 (MCT-1) on

CTLs, which depends on the gradient of cytoplasmic and

extracellular lactic acid concentrations to get rid of the lactic

acid generated by their own aerobic glycolysis, to accumulate

lactic acid in CTLs and eventually attenuate their function (18).

In addition, lactic acid-induced extracellular acidification

prevents the upregulation of nuclear factor of activated T cells

(NFAT) in T and NK cells viaMCT-4, waning IFN-g production
and consequently attenuating the antitumor functions of T and

NK cells (19). Moreover, lactic acid promotes the expression of

VEGF and thus the differentiation of tumor-associated

macrophages toward the M2 subtype, promoting the growth

and metastasis of melanoma cells (87). Apart from causing the

extracellular accumulation of lactic acid, glycolysis activates the

IFN-a signaling pathway, which accounts for the upregulated

expression of PD-L1 and the ultimate immune escape in head

and neck squamous cell carcinoma, and the mechanism perhaps

remains the same in melanoma (88). In addition, studies on the
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expressions of CD274, PDCD1LG2, and TGFB1 are higher in

high-glycolysis tumor cells than in low-glycolysis tumor cells

(89), indicating that higher glycolysis of melanoma cells

attenuates T cells by overexpressing these certain immune

inhibitors (90). Particularly, the upregulated expression of

TGFB1 increases the secretion of TGF-b, a significant cytokine

mediating immunosuppression of tumor cells (91). For instance,

in the TME with a high concentration of TGF-b, the mammalian

target of rapamycin (mTOR) signaling pathway in NK cells is

inhibited, which results in less production of IFN-g and impaired

antitumor function (92). In sum, aerobic glycolysis in melanoma

cells suppresses antitumor immunity within the TME; thus,

inhibiting this metabolic pathway may restrain melanoma

immune escape (Figure 2).
Glycolysis in the antitumor capacity of
immune cells

Immune cells such as T cells, NK cells, M1 cells, and DCs

also turn to aerobic glycolysis for nutrition and energy

supplementation. Upon activation by the TCR–MHC

combination, melanoma-specific CD8+T cells upregulate

aerobic glycolysis to support their rapid proliferation and

anabolic metabolism for building biomass (93, 94). Moreover,

the activated PI3K–Akt–mTOR signal pathway upon TCR

stimulation enhances glycolysis metabolism in primed CD8+T

cells and promotes their secretion of IFN-g, which accentuates

the antitumor function of T cells (95). In addition, glycolysis is

also related to the differentiation of T cells. While high glycolysis
FIGURE 2

The crosstalk between glycolysis and tumor immunology in melanoma. The dysregulation of glycolysis could exert regulatory multiple effects
on the immunologic characteristic of tumor cells and the anti-tumor capacity of immune cells. On one hand, the activated glycolysis in
melanoma cells lead to extracellular lactic acid accumulation, which can affect the function of macrophage, T cells and NK cells. On the other,
glycolysis in T cells, NK cells and macrophages can also modulate their function and anti-tumor activity.
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leads to T-cell differentiation toward CTL, a low level of

glycolysis is a feature of memory and regulatory T-cell

responses (95–97). Nevertheless, in competition with

melanoma cells, T cells are deprived of glycolysis, resulting in

weakened antitumor function as well as differentiation toward

regulatory T cells, which finally triggers melanoma immune

evasion (98). As for NK cells, they also depend on glycolysis to

support their effector functions upon activation (99, 100). Of

note, the level of glycolysis in TAMs depends on their subtype.

Upon priming, M1 is characterized with boosted glycolysis and

suppressed TCA, whereas M2 features a normal level of TCA

with no significant activation of glycolysis (101, 102). In the

TME with the shortage of glucose, TAMs differentiate toward

the pro-tumoral M2 subtype, which contributes to tumor

immune evasion and thereby melanoma progression (103).

Moreover, the antigen presentation and inflammatory cytokine

production functions of DCs are also impaired in the TME with

the shortage supply of glucose, as DCs also rely on glycolysis to

exert their antitumor role (104) (Figure 2). To sum up, the

activation of most tumor-inhibitory immune cells rely on the

mTOR-mediated upregulation of glycolysis, and consequently,

their functions are attenuated in the TME with scarce glucose or

mTOR suppression. Meanwhile, this TME promotes the

differentiation toward pro-tumoral immune cells, which

ultimately gives rise to melanoma immune escape.
Mitochondrial oxidative
phosphorylation in melanoma
immunology

Recently, the role of mitochondrial function in melanoma

immunology and the response to immunotherapy have been

gradually revealed. An initial proteomics analysis of the clinical

samples from advanced-stage melanoma patients undergoing

either tumor-infiltrating lymphocyte (TIL)-based or anti-PD-1

immunotherapy has shown that oxidative phosphorylation in

general melanoma tissues is significantly higher in responders

than in non-responders in both treatments, indicating that

mitochondrial function can be used as a potential biomarker for

predicting the response to immunotherapy (21). Nevertheless,

another study has identified a unique CD8+T-cell blood/tumor-

shared subpopulation in melanoma patients with high levels of

oxidative phosphorylation, which is correlated with immune

checkpoint inhibitor (ICI) resistance in melanoma patients. The

establishment of a transcriptomic profile reflecting CD8+T cells

with high oxidative phosphorylation can be effective in discerning

responders from non-responders (105). The above two studies

seem to display contrary conclusions, which might be due to

distinct cellular sources of mitochondria in the TME.

Subsequently, the detailed mechanism underlying the effect of

mitochondrial function on melanoma immunology has been
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capacity of immune cells. Generally, memory CD8+T cells

engage oxidative phosphorylation to fulfill their metabolic

demands. Potentiating mitochondrial biogenesis in CD8+T cells

via the overexpression of the PGC-1a level can significantly

enhance their antitumor immunity in a preclinical melanoma

mouse model (22). In line with this, the impairment of

mitochondrial function in activated CD8+T cells is sufficient to

suppress proliferation and upregulate genes linked to the

exhaustion of T cells (106). Besides, the dysfunction of

the mitochondria is also responsible for the deficiency of the

antitumor immunity of T cells during the process of aging,

indicating that the mitochondria can build the bridge between

aging and its related tumor immunology (107). Furthermore,

those tumor-reactive effector/memory cytotoxic T lymphocytes in

draining lymph nodes are characterized with increased PGC-1a
expression as well as concomitant mitochondrial OXPHOS

activation, forwardly indicating the facilitative role of OXPHOS

in the antitumor function of T cells (108). Of note, persistent

antigenic stimulation conversely inhibits mitochondrial oxidative

phosphorylation in activated T cells, leading to their exhaustion

and attenuating their suppression on melanoma progression

(106). What is more, redox reactions in the mitochondria can

result in ROS accumulation, which is also implicated in mediating

the effect of the mitochondria on tumor immunology. While

elevating mitochondrial ROS (mtROS) promotes the secretion of

IFN-g in TIL via a nuclear factor E2-related factor 2 (Nrf2)–

(mammalian target of rapamycin complex 1) mTORC1 activation

feedback loop and mediate antitumor effectiveness (109),

intolerable levels of intrinsic ROS in T cells lead to their

exhaustion and impaired antitumor immunity (110). This

bifacial effect of ROS may be level-dependent, and quantitative

studies of mtROS are in need for a deeper comprehension of its

effect on antitumor immunity and future application in

immunotherapy. Apart from the role of mitochondria in

immune cells, the role of mitochondria in CAFs and the

involvement in melanoma pathogenesis have been recently

revealed. CAFs are one of the most abundant components of

tumor stroma, characterized by a spindle-like morphology and

positive for mesenchymal markers such as vimentin (111). In

particular, immortalized mouse embryonic fibroblasts (iMEFs)

with the knockdown of mitochondrial master regulator PGC1a
displayed a decrease in oxidative metabolism and an increase in

glycolytic flux. In parallel, PGC1a KO iMEFs helped to form

larger and more proliferative primary tumors than WT

counterparts and fostered the formation of lung metastasis by

B16 melanoma cells (112), which indicated that the metabolic

adaption in response to the knockdown of PGC1a and

mitochondrial functional deficiency in CAFs played a tumor-

facilitative role in melanoma progression. The glucose oxidation

and tricarboxylic acid cycle forward flux were reduced after the

knockdown of PGC1a, and the anaplerotic pathways were

activated to provide sufficient tricarboxylic acid cycle
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intermediates, so as to synthesize lipids and proteins to support

tumor growth. Therefore, PGC1a-mediated mitochondrial

function in CAFs acted as a tumor suppressor in melanoma.

Targeting oxidative phosphorylation in CAFs might be of high

translational potential for melanoma therapy (Figure 3).
The role of amino acid metabolism
in melanoma immunology

The metabolism of amino acids within the tumor

microenvironment is profoundly rewired to support the

malignant behaviors of melanoma cells, as well as to mediate

the functions of tumor-infiltrating immune cells. An abundant

level of amino acid and protein in melanoma cells suppresses

antitumor immunity. Rubio-Patino et al. have discovered that a

low-protein diet can robustly activate inositol-requiring enzyme-

1a (IRE1a) and retinoic acid-inducible gene-1 (RIG1) signaling

pathways and induce an unfolded protein response in tumor cells,

resulting in augmented cytokine production and increased

efficiency of anticancer immune response (113). However,

utilizing protein or amino acid restraint to bolster antitumor

immunity may not be a feasible tact, for amino acid is

fundamental in the antineoplastic functions of immune cells,

and its depletion compromises antitumor immunity. Taking

CD8+T cells as an example, amino acid maintains

recombination activating gene (Rag) complex (especially RagD)-

mediated mTORC1 translocation to lysosomes and thus supports

mTORC1 activity, favoring effective receptor-initiated antitumor
Frontiers in Immunology 09
immunity (114). Focusing on specific types of amino acid

metabolisms, researchers found that cystine, leucine, tryptophan,

and arginine metabolisms all play pivotal roles in immune

modulations. Melanoma cystine depletion underlies the

immunotherapy-related ferroptosis. The treatment with PD-1

antibody increases the secretion of IFN-g in activated infiltrating

CD8+T cells, which further suppresses the expression of subunits

of glutamate-cystine antiporter system Xc- and leads to restrained

tumor cell cystine uptake, potentiated lipid peroxidation, and

ultimately ferroptosis (115, 116). In addition to cystine, limited

access to leucine (Leu) inhibits the functions of immune cells. For

instance, insufficient Leu supply impairs mTORC1 in a RagD-

dependent manner and retards the elimination of melanoma cell

by T cells. Conversely, supplement of Leu synergizes with the anti-

PD-1 antibody to improve the antitumor capacity of T cells in vivo

(114). Similarly, in Leu-depleted media, mTOR signaling, a

sustainer of the initial expression of c-Myc, is also inhibited in

NK cells. Consequently, the downregulated c-Myc fails to regulate

IL-2/12-stimulated NK cell metabolic reprogramming (including

the upregulation of glycolysis) and thus impairs NK cells’

antitumor capacity, which perpetuates tumor progression (117).

Compared with cystine and leucine, aberrant tryptophan

metabolisms disturb immune responses through more diverse

pathways. Deficiency of tryptophan in melanoma cells is found to

disturb mRNA translation through ribosomal frameshifting,

which results in the presentation of aberrant trans-frame

peptides, hence exposing melanoma cells to immune cells (118,

119). Interestingly, this tryptophan depletion in melanoma cells is

largely due to RAS activation and could be reversed by
FIGURE 3

The role of metabolism in CAFs and its implication in melanoma progression. The deficient mitochondrial function induced by PGC1a deficiency
triggers the activation of anaplerotic pathways to provide sufficient tricarboxylic acid cycle intermediates, so as to synthesize lipids and proteins
to support tumor growth. In addition, CAFs display increased activity of L-arginase, which contributes to TIGIT and BTLA expression on CTLs
and impairs the activity of CD8+T cells. What’s more, the knockout of ATF4 in fibroblasts leads to defects in collagen biosynthesis and
deposition, so as to result in growth delay of melanoma. .
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pharmacological inhibition of the MAPK pathway, showing that

oncogenes somehow paradoxically regulate the immunogenicity

of tumor cells via the regulation of amino acid metabolism (119).

Aside from the influence on the immunological alterations of

tumor cells, the abnormally activated indoleamine 2,3-

dioxygenase (IDO1)/tryptophan 2,3-dioxygenase (TDO)

pathway of tryptophan metabolism alters the immune profile of

TME, which is highly related to an unoptimistic prognosis of

patients with melanoma. IDO1 and TDO are two main enzymes

regulating the first and rate-limiting step of tryptophan catabolism

through the kynurenine pathway (120, 121). In melanoma TME,

IDO1 and TDO pathways are hyper-activated in both melanoma

cells and tumor-infiltrating lymphocytes by immune cell-derived

IFN-g, which reduces tryptophan in TME. This downregulation of

tryptophan contributes to a diversified peptidome landscape

which may facilitate immune recognition (118). Despite the

exposure of tumor-associated antigens, immune cells may not

be able to manage antitumor immunity under this condition, for

tryptophan (Trp) depletion causes the starvation of cytotoxic T

cells and activation of immunosuppressive Tregs (122, 123). In

addition, IDO1/TDO activation causes kynurenine (Kyn)

accumulation in the TME, which activates the aryl hydrocarbon

receptor (AhR), orienting T-cell differentiation into FoxP3+

regulatory T cells and the resultant melanoma immune escape

(124). Besides, Liu et al. discovered that the transcellular Kyn-aryl-

AhR pathway upregulates PD-1 expression in CD8+T cells that

hampers their activation to eliminate melanoma cells in tumor-

bearing mice (125). Moreover, it is found that the IDO1-induced

increase of the Kyn/Trp ratio in peripheral blood is a critical

predictive biomarker for drug resistance and poor outcome of

patients receiving immune checkpoint blockade (126).

Considering the tumor-suppressive effect of the IDO pathway,
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more studies are now focusing on inhibiting it to restore

ant i tumor immunity and enhance the efficacy of

immunotherapy. Although the direct inhibition of IDO1 shows

uncertainty in treatment outcome, targeting the downstream Trp-

Kyn-AhR pathway has been proved to bring a relatively positive

outcome (127, 128). In addition to the IDO pathway, signal

transducer and activator of transcription 5 (STAT5) activated

by a continuously high level of IL-2 induces the conversion of

tryptophan to 5-hydroxytryptophan (5-HTP), which activates

AhR nuclear translocation and results in an elevated expression

of inhibitory receptors such as PD-1, TIM3, LAG3, and CD39,

leading to CD8+ T-cell exhaustion (129) (Figure 4). Apart from

cystine, leucine, and tryptophan, L-arginine is also implicated in

the regulation of tumor immunology in melanoma. L-Arginine is

the precursor of multiple important metabolites, in particular,

polyamine and NO, which are of strong immunomodulatory

properties. Metabolism of L-arginine through arginase (ARG)

and nitric oxide synthase (NOS) enzymes in melanoma reportedly

generates diverse metabolic products, which suppresses T-cell

function in cancer and causes immune suppression and

neovascularization (130, 131). Moreover, arginine metabolism in

T cells is crucial for the activation of their antitumor function.

Geiger et al. demonstrated that elevated L-arginine content can

promote T-cell proliferation and differentiation toward central

memory-like T cells with high survivability and antitumor

capacity (132). Thus, upregulating CD8+ T cells’ extracellular

arginine via Arg2 deletion or adoptive transfer of Arg2–/– CD8+

T results in augmentation of CD8+ T-cell activation, effector

function, and persistence (133). In addition to amino acid

metabolism in tumor cells and immune cells, the alteration of

amino acid metabolism in CAFs also participated in melanoma

progression. To be specific, compared to normal dermal
FIGURE 4

The role of tryptophan metabolism in melanoma immunology. On one hand, abnormally activated IDO1/TDO pathway of tryptophan in
melanoma cells contributes to a diversified peptidome landscape and aberrant transframe peptides which could facilitate immune recognition.
On the other, tryptophan in TME can affect the function and differentiation of T cells. .
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fibroblasts, melanoma-associated fibroblasts (MAF) displayed

increased activity of L-arginase, the selective inhibition of which

could neutralize MAF-induced TIGIT and BTLA expression on

CTLs and result in the activation of CD8+T cells and antitumor

immunity (134). What is more, the deficient supply of amino acid

glycine and proline induced by the knockout of ATF4 in

fibroblasts could lead to significant defects in collagen

biosynthesis and deposition and a reduced ability to support

angiogenesis, so as to result in a pronounced growth delay of

syngeneic melanoma (135). Therefore, the dysregulation of amino

acid metabolism in CAFs exerts a versatile role in melanoma

pathogenesis via the regulation of either tumor immunology or

tumor vascularization (Figure 3).

To sum up, as substance involved in diverse essential

metabolic pathways, the contents of amino acids and related

metabolic pathways have great impacts on the immunological

characteristics of melanoma cells, immune cells, and CAFs.
The crosstalk between autophagy
and melanoma immunology

Some previous reports have revealed that melanoma autophagy

may act as an effective promoter of immune escape. It is observed

that hypoxia-induced autophagy in cancer cells leads to STAT3-

mediated suppression of the tumor-lysing function of cytotoxic T

cells, while inhibition of melanoma autophagy restores the function

of CTL through ubiquitin proteasome system and SQSTM1/p62

(136). Recently, genetically targeting the autophagy-related gene

Becn1/Beclin1 in B16-F10 malignant melanoma cells increases the

infiltration of functional NK cells into melanoma tumors and

inhibits their growth. In these beclin 1 (BECN1)-defective tumor

cells, the MAPK8/JNK-JUN/c-Jun signaling pathway is activated,

leading to the overexpression and secretion of the CCL5 cytokine in

TME, which upregulates NK-cell activator NKp46 to facilitate NK

cells’ antitumor immunity and is correlated with increased survival

of melanoma patients. In addition to BECN1 inhibition, targeting

other autophagy-relatedmolecules, such as ATG5 or p62/SQSTM1,

or inhibiting melanoma autophagy pharmacologically by

chloroquine can similarly induce the expression of CCL5 in

melanoma cells and consequently enhance the antitumor capacity

of NK cells. This mechanism may serve as a novel therapeutic

approach to improve NK-based immunotherapy (137, 138). In

addition to NK cells, the inhibition of melanoma autophagy by

antimalarial and chemotherapies with anthracycline and

doxorubicin helps restore equivalent T-cell infiltration and their

intact antitumor function (139). Inhibition of autophagy-related

protein phosphatidylinositol 3-kinase catalytic subunit type 3

(PIK3C3/VPS34) in melanoma with a genetic target or

pharmacological inhibitors reprograms cold immune checkpoint

blockade (ICB)-unresponsive tumors into inflamed immune-

infiltrated tumors by recruiting NK and CD8+T cells into the
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tumor bed and as such improves the efficacy of anti-PD-1/PD-L1

immunotherapy (140, 141). Similarly, autophagy in myeloid-

derived suppressor cells’ (MDSCs) inhibits the antitumor

immune responses, as evidenced by the report that autophagy-

deficient monocytic MDSCs result in efficient activation of tumor-

specific CD4+ T cells and improved antitumor immunity (142).

Given the suppressive effect of melanoma cells’ and MDSCs’

autophagy on antitumor functions of immune cells, the

combination of autophagy inhibition and immunotherapy can be

regarded as a therapeutic approach with probabilities. However, it

should also be noted that the autophagic degradation of certain

immune checkpoints in melanoma cells is beneficial to the

antitumor function of immune cells. Sunitinib, a multitargeted

receptor tyrosine kinase (RTK) inhibitor, is found to promote PD-

L1 translocation into lysosomes for autophagic degradation by

binding to p62 and attenuates the inhibition on T cells’ activation

and improves the antitumor function of immune cells. Moreover,

sunitinib can synergistically enhance the antitumor effect of the

CTLA-4 monoclonal antibody in the preclinical context (143). Of

note, compared to the role of autophagy in the regulation

melanoma cell immunogenicity, its effects on the antitumor

capacity of immune cells are rarely studied. Additional studies

are needed to clarify the role of autophagy in the regulation of

immune cells’ function in melanoma immunology.
Lipid metabolism in
melanoma immunology

Lipid metabolism is greatly implicated in energy provision,

membrane composition, and signal transmission to enable cell

proliferation, of which reprogramming is regarded as a hallmark

of malignant tumors like melanoma. Previous investigations have

revealed that the remodeling of lipid metabolism alters immune

features of melanoma cells and tumor-infiltrating immune cells,

both of which are decisive for tumor immunology and the

treatment outcome of immunotherapy. Specifically, the studies on

lipid metabolism in melanoma mainly concentrate on lipogenesis,

cholesterol metabolism, and fatty acid oxidation (FAO). Therefore,

we comprehensively summarized the regulation of melanoma cell

immunogenicity and immune cell characteristics in the TME from

the aspects of these crucial lipid metabolism pathways.
Lipid metabolism in immunologic
characteristics of melanoma cells

Some recent reports have highlighted that the dysregulation of

lipid metabolism affects the immunologic characteristics of tumor

cells to modulate immune evasion and the response to

immunotherapy. By profiling the proteome of clinical samples

from patients with advanced-stage melanoma undergoing either
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tumor-infiltrating lymphocyte (TIL)-based or anti-PD1 antibody

immunotherapy, the authors discovered that compared to non-

responders, responders are demarcated by higher oxidative

phosphorylation and lipid metabolism. Potentiated lipid

metabolism significantly increases the immunogenicity of

melanoma cells by elevating antigen presentation, thereby

increasing the sensitivity to T cell-mediated killing both in vitro

and in vivo (21). In addition, the inhibition of de novo synthesis of

mevalonate (MVA) and cholesterol by lipid-lowering agent statins,

including simvastatin, atorvastatin, lovastatin, and fluvastatin, might

suppress the expression of PD-L1 on melanoma cells through an

AKT- and b-catenin-dependent pathway, which helps to suppress

tumor-immune evasion and increase the efficacy of immune

checkpoint inhibitor-based cancer therapy in a preclinical tumor

model (144). Consistently, another investigation conducted by Xu

et al. shows that inhibition of the MVAmetabolic pathway in tumor

cells elicits type 1 classical dendritic cell (cDC1)-mediated tumor

recognition and antigen cross-presentation for antitumor immunity.

In particular, the suppression of MVA disrupts prenylation of the

small GTPase Rac1 and induces cancer cell actin filament exposure,

which can be recognized by c-type lectin domain family 9 member A

(CLEC9A) specifically expressed on cDC1s and thus activating

infiltrating T cells (145). Of note, the roles of lipogenesis and

cholesterol biogenesis in the regulation of antigen presentation

seem to be paradoxical, which indicates that different metabolic

pathways might exert contrary effects on melanoma cell

immunogenicity in the context of lipid metabolism. Furthermore,

the status of lipid peroxidation in melanoma cells is decisive for the

outcome of immunotherapy. Upon the treatment with the anti-PD-1

antibody, infiltrating CD8+T cells would upregulate the secretion of

IFN-g that suppresses the subunit of the glutamate-cystine antiporter

Xc- system, which diminishes the uptake of cystine and accumulates

lipid peroxidation that induces ferroptosis (116) (Figure 3). This

regulatory effect is further proved in the context of radiotherapy. IFN-

g derived from immunotherapy-activated CD8+T cells and

radiotherapy-activated ataxia telangiectasia mutated (ATM) can

independently or synergistically suppress the expression of

SLC7A11 to reduce cystine uptake, enhance tumor lipid oxidation

and ferroptosis, and improve tumor control. Based on this,

immunotherapy was found to sensitize tumors to radiotherapy by

promoting tumor-cell ferroptosis in a preclinical melanoma mouse

model (115). The intervention of lipid metabolism in tumor cells

might prominently optimize tumor immune evasion and the

response to immunotherapy.
The role of lipid metabolism in antitumor
capacity of immune cells

Compared to the role of lipid metabolism in the regulation of

melanoma cell immunogenicity, the effect of lipid metabolism on

the antitumor capacity of immune cells was more extensively

investigated. Under the circumstance of hypoglycemia and
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hypoxia in TME, peroxisome proliferator-activated receptor

(PPAR)-a signaling and fatty acid catabolism in CD8+T cells are

activated to preserve the effector functions and confine tumor

progression. In a preclinical melanoma model, specifically

promoting the fatty acid metabolism can work jointly with the

anti-PD-1 antibody to elevate the antitumor function of CD8+ T

cells in melanoma treatment (146). In accordance, the suppression

of fatty acid metabolism due to the accumulation of long-chain fatty

acids (LCFAs) in CD8+ T cells in pancreatic ductal adenocarcinoma

can impair their mitochondrial function and induce lipotoxicity,

which dampens CD8+T cell-instigated tumor progression (147).

Therefore, the positive role of potentiated fatty acid catabolism in

the antitumor immunity of CD8+T might be highly conserved in

different types of cancers. Intriguingly, the senescence of T cells can

also be modulated by lipid metabolism. Tumor cells and Treg cells

drive the elevated expression of group IVA phospholipase A2 that

induces lipid metabolism alteration and senescence in T cells, which

is coordinately controlled by MAPK and STAT signals. The

inhibition of group IVA phospholipase A2 significantly not only

reprograms the lipid metabolism in effector T cells and prevents T

cells from senescence in vitro but also potentiates the efficacy of

immunotherapy in a mouse model of melanoma in vivo (148).

Apart from T cells, the alteration of fatty acid metabolism also

disrupts the function of other immune cells in the TME. For

instance, obesity could induce prominent PPAR-driven lipid

accumulation in NK cells and cause complete “paralysis” of their

cellular metabolism and trafficking, which prevents cytotoxic

machinery trafficking to the NK cell-tumor synapse and underlies

obesity-related blunted antitumor immunity in tumor (149).

Similar to fatty acid metabolism, cholesterol biogenesis is also

greatly involved in the regulation of the antitumor immunity in

TME. Tumor tissues enriched with cholesterol in tumor-infiltrating

CD8+T cells are positively and progressively associated with

upregulated expressions of PD-1, 2B4, TIM-3, and LAG-3. After

entering the tumor, CD8+T cells harboring high-level cholesterol

express increased levels of immune checkpoints and display an

exhaustion phenotype. The underlying mechanism is that

cholesterol supplement induces endoplasmic reticulum (ER) stress

and promotes the transcription of PD-1 and 2B4 via x-box binding

protein-1 (XBP1) (150). In line with this, the gene profiling of IL-9-

secreting (Tc9) cells and classical Tc1 cells suggests that Tc9 cells are

of lower cholesterol content, andmanipulating cholesterol content in

polarizing Tc9 cells can significantly affect IL-9 expression and the

antitumor immunity in vivo (151). Contrary to these two reports,

increasing cholesterol via the inhibition of cholesterol esterification

by targeting acetyl-CoA acetyltransferase 1 (ACAT1) reportedly

potentiates the effector function and cell proliferation of CD8+T

cells instead of CD4+T cells, as the increased plasma membrane

cholesterol level enhanced T-cell receptor clustering and efficient

formation of the immunological synapse. Either pharmacological or

genetic inhibition of ACAT1 in CD8+T could control tumor

progress better by activating antitumor immunity in mice bearing

melanoma (152). Therefore, given the complicated role of
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cholesterol in CD8+T cell-mediated antitumor immunity, it has to be

cautious enough to manipulate the process of cholesterol biogenesis

and esterification in CD8+T cells. In addition to T cells, cholesterol

biogenesis also impacts the antitumor immunity of invariant natural

killer T (iNKT) cells in TME. PPAR-g and promyelocytic leukemia

zinc finger (PLZF) synergically enhance the transcription of sterol

regulatory element binding transcription factor 1 (SREBF1) to

promote cholesterol biogenesis, which is required for the optimal

IFN-g production of iNKT cells. The treatment with PPAR-g agonist
pioglitazone promotes IFN-g production in tumor-infiltrating iNKT

cells and helps to prolong the survival of tumor-bearing mice by

enhancing the antitumor response (153) (Figure 5).

The reprogramming of FAO and lipid peroxidation is also

decisive for the antitumor capacity of immune cells, including T

cells and Treg cells in TME. Compared to classic Tc1 cells, Tc9

cells exhibit unique lipid metabolic programs. Specifically, Tc9

cell-derived IL-9 can activate STAT3 to increase fatty acid

oxidation and mitochondrial activity, which imparts Tc9 cells

with reduced lipid peroxidation and the resistance to tumor or

ROS-induced ferroptosis. Therefore, lipid peroxidation regulates

Tc9-cell longevity and antitumor effects via the IL-9-STAT3-

fatty acid oxidation pathway (154). Congruently, the

upregulated CD36-mediated uptake of fatty acids in CD8+T

cells can induce lipid peroxidation and ferroptosis, which

contributes to reduced cytotoxic cytokine production and

impaired antitumor ability. The blockade of CD36 or targeting

ferroptosis in CD8+T cells acquires greater antitumor efficacy in

combination with anti-PD-1 antibodies (155). Taken together,

targeting lipid peroxidation might be employed to enhance the T

cell-based immunotherapy in melanoma. Extending to this,

glutathione peroxidase 4 (GPX4)-mediated lipid peroxidation

is also involved in regulating the function of Treg cells. Treg-

specific ablation of GPX4 induces robust generation of

mitochondrial superoxide and production of IL-1b to facilitate

Th17 responses, both of which potentiate antitumor immunity

and repress tumor growth in melanoma (156). From this

perspective, lipid peroxidation seems to play contrary roles in

the regulation of the function in CD8+T cells and Treg cells.

In aggregate, different paradigms of metabolic pathways can

alter both the immunological characteristics of melanoma cells

and the functions of immune cells in TME, ultimately regulating

immune escape and the efficacy of immunotherapies in

melanoma (Tables 1, 2).
Targeting metabolism in
melanoma immunology

Based on the mechanistic discoveries of the regulation of

melanoma immunology by metabolism, some clinical trials were

conducted to verify the effect and safety of the combined therapy

with both immune checkpoint blockade and metabolism-targeting
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drugs. Metformin is a well-known metabolic modulator and

inhibitor of mitochondrial function. A previous report firstly

documented that metformin treatment could prominently

suppress oxygen consumption and result in reduced intra-

tumoral hypoxia. Then the combination of metformin and anti-

PD-1 antibody is found to improve intra-tumoral T-cell function

in a preclinical mouse model (157). In addition, metformin

administration elevates mtROS to activate Nrf2, which

contributes to mTORC1 activation and IFN-g production in

CD8+TILs, thus solidifying the combined treatment effect of

metformin and immunotherapy in melanoma (109).

Furthermore, favorable treatment-related outcomes (objective

response rate (ORR), disease control rate (DCR), median

progression-free survival (PFS), and median overall survival

(OS)) in patients with melanomas who have received metformin

in combination with ICIs were observed in a retrospective study,

despite the result dose not reaching significance (158). Of note,

another two clinical trials (NCT04114136, NCT03311308) have

been conducted to forwardly verify the therapeutic value of the

combined complication of both metformin and anti-PD-1

antibody in melanoma and other types of solid tumors.

In addition to mitochondria-regulating agent metformin,

drugs targeting amino acid metabolism, in particular, the

inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme,

have been applied in multiple clinical trials in combination with

anti-PD-1 immunotherapy in melanoma. A phase 1/2 study of

IDO1 inhibitor epacadostat in combination with ipilimumab in

patients with unresectable or metastatic melanoma revealed that

epacadostat ≤50 mg BID demonstrated clinical and

pharmacologic activity and was generally well tolerated

(NCT01604889) (159). However, in another study enrolling

706 patients with unresectable stage III or IV melanomas,

epacadostat 100 mg twice daily plus pembrolizumab does not

improve progression-free survival or overall survival compared

with placebo, indicating that the adoption of IDO1 inhibition as

a strategy to enhance anti-PD-1 therapy activity in melanoma

needs further verification (NCT02752074) (160). Recently, a

first-in-class immune-modulatory vaccine (IO102/IO103)

against IDO and PD-L1 that targets immunosuppressive cells

and tumor cells expressing IDO and/or PD-L1 has been applied

in combination with nivolumab to treat patients with

melanomas (NCT03047928). As a result, the T-cell influx of

peripherally expanded T cells into tumor sites is observed in

responsive patients. The clinical efficacy and favorable safety

data support further validation in a larger randomized trial to

confirm the clinical potential of this therapeutic approach (161).

Aside from these clinical trials, there are also some other

ongoing trials combining IDO inhibitor and immunotherapy

in melanoma, for example, the combination of IDO inhibitor

indoximod and ipilimumab/nivolumab/pembrolizumab

(NCT02073123). More clinical trials are expected to discover

additional promising therapeutic combinations based on the

regulation of tumor immunology by metabolism (Table 3).
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To date, there are only limited ongoing clinical trials

investigating the therapeutic effect of the combination of

immunotherapy agents and metabolism-targeting drugs. Based

on the mechanistic discoveries, the nuance of metabolism-

targeted strategy between melanoma cells and tumor-infiltrating

immune cells might sometimes lead to contradictory effects and

therefore dissatisfied treatment outcome. Therefore, more

investigations are needed to be conducted to dig out alternative

common targets, the intervention of which can simultaneously

suppress tumor development and activate antitumor immunity.

Apart from the discovery of novel metabolism-related therapeutic

targets, optimizing the drug delivery approaches can also be taken
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into consideration. It has been reported that recombinant adeno-

associated virus (rAAV) with a modified tumor-specific promoter

can express genes specifically in tumor cells (162). Therefore, it

would be possible to more precisely target some specific metabolic

enzymes and intermediates in tumor cells via rAAV or an

alternative delivery system, so as to avoid the contrary effect

brought by the nuance of targeting the metabolic pathway

between tumor cells and immune cells. What is more, it might

be helpful to systematically and comprehensively rewire the

metabolism of the TME by simultaneously targeting multiple

targets in both tumor cells and immune cells, instead of the

intervention of a single metabolic pathway. This strategy based on
A B

C

FIGURE 5

The role of lipid metabolism in melanoma immunology. (A) Suppressive role of cholesterol in anti-tumor immunity. Cholesterol promotes the
expression of exhaustion-related immune checkpoints in T cells and suppresses the cytotoxic function of Tc9 cells. (B) Facilitative role of
cholesterol in anti-tumor immunity. Increase of cholesterol via targeting at ACAT1 causes enhanced T-cell receptor clustering as well as more
efficient formation of the immunological synapse. In addition, increased cholesterol biogenesis via PPAR-g could enhance the transcription of
SREBF1 to optimize IFN-g production. (C) During radiotherapy and immunotherapy, activated T cells can secret IFN-g to suppress the expression
of system Xc- to induce lipid peroxidation and thereby ferroptosis.
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TABLE 1 The crosstalk between metabolism rewiring and melanoma immunology.

Class of
metabolism
rewiring

Aspect of
melanoma
immunology

Detailed underlying mechanism Ref

Aerobic
glycolysis

Tumor cell
immunologic
characteristics

Extracellular
lactic acid
accumulation

Extracellular lactic acid blocks monocarboxylate transporter-1 (MCT-1) on CTLs, leads to intracellular
accumulation of lactic acid in CTLs, and eventually enervated their function.

(18)

Extracellular acidification prevents the up-regulation of NFAT in T and NK cells via MCT-4, leading to
the insufficiency of IFN-g production.

(19)

Lactic acid promotes the expressions of VEGF and Arg1 which leads to the differentiation of tumor-
associated macrophages towards M2 subtype.

(87)

Aerobic glycolysis up-regulates PD-L1 expression via IFN-a signaling pathway. (88)

High-glycolysis melanoma cells upregulates TGFB1 expression thus increasing the secretion of TGF-b which inhibit
mTOR signaling pathway and result in less production of IFN-g and impaired anti-tumor function.

(89–
92)

Anti-tumor
capacity of
immune cells

T cells Enhanced glycolysis metabolism in primed CD8+T cells promotes their secretion of IFN-g and IL-2
which accentuates their anti-tumor function.

(95)

Aerobic glycolysis leads to T-cell differentiation towards CTL, while low level of glycolysis is a feature
of memory and regulatory T cell responses.

(95–
97)

NK cells Glycolysis promotes NK cells’ production of IFNg and granzyme B, supporting their effector functions
upon activation.

(99,
100)

TAMs Activation of glycolysis is related with M1 phenotype while shortage of glucose in the TME leads to
TAMs’ differentiation towards pro-tumoral M2 subtype.

(101–
103)

DC cells Glycolysis supports DCs antigen presentation and inflammatory cytokine production functions. (104)

Mitochondrial
oxidative
phosphorylation

Anti-tumor
capacity of
immune cells

OXPHOS facilitates the anti-tumor immunity of T cells and the inhibition of OXPHOS leads to their exhaustion and
attenuates their suppressive function on melanoma progression.

(22)
(106–
108)

ROS generated by OXPHOS promotes the TIL secretion of IFN-g via a Nrf2-mTORC1 activation feedback loop,
resulting in anti-tumor effectiveness, while intolerable levels of intrinsic ROS in T cells lead to their exhaustion and
impaired anti-tumor immunity.

(109,
110)

Tumor-
regulatory role of
CAFs

The inhibition of mitochondrial function induced by PGC1a knockdown promotes the activation of anaplerotic
pathways to provide sufficient tricarboxylic acid cycle intermediates, so as to synthesize lipids and proteins to support
tumor growth.

(112)

Amino acid
metabolism

Tumor cell
immunologic
characteristics

Low protein diet activates IRE1a and RIG1 signaling pathways and thus induce unfolded protein response in tumor cell,
resulting in augmented cytokine production and increased efficiency of anticancer immune response.

(113)

Cystine Melanoma cystine depletion via IFNg-mediated suppression of glutamate-cystine antiporter system Xc-

underlies the immunotherapy-related ferroptosis.
(115,
116)

Tryptophan Deficiency of tryptophan in melanoma cells (mediated by MAPK pathway) disturbs mRNA translation
through ribosomal frameshifting, which results in presentation of aberrant trans-frame peptides,
exposing melanoma cells to immune cells

(118,
119)

Abnormally activated IDO1/TDO pathway of tryptophan in melanoma cells contributes to a diversified
peptidome landscape which facilitates immune recognition.

(120,
121)

Arginine L-arginine metabolism through ARG and NOS enzymes in melanoma generates diverse metabolic
products which suppresses T cells anti-tumor functions.

(130,
131)

Anti-tumor
capacity of
immune cells

Leucine Amino acid (Leu for instance) maintains Rag complex (especially RagD)-mediated mTORC1
translocation to lysosome and thus supports mTORC1 activity in CD8+ T cells, leading to effective
receptor-initiated antitumor immunity.

(114)

Leu-depletion inhibits mTOR signaling in NK cells, and thus down-regulates IL-2/12 secretion and
hampers NK metabolic reprogramming impairing NK cells’ anti-tumoral capacity.

(117)

Tryptophan Try depletion causes the starvation of cytotoxic T cells while activation of immunosuppressive Tregs. (122,
123)

IDO/TDO activation-mediated kynurenine (Kyn) accumulation in the TME activates AhR, leading to T
cells differentiation into FoxP3+ regulatory T cells and thus melanoma immune escape.

(124)

The transcellular Kyn-AhR pathway up-regulates PD-1 expression on CD8+ T cells. (125)

IL-2 induced activation of STAT5 converts tryptophan to 5-HTP, which activates expression of
inhibitory receptors such as PD-1, TIM3, LAG3 and CD39, leading to CD8+ T cells exhaustion.

(129)

Arginine Up-regulated CD8+ T cells’ extracellular arginine via arginase 2 (Arg2) deletion or adoptive transfer of
Arg2–/– CD8+ T results in augmentation of CD8+ T cell activation, effector function, and persistence.

(133)

Arginine (134)

(Continued)
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TABLE 1 Continued

Class of
metabolism
rewiring

Aspect of
melanoma
immunology

Detailed underlying mechanism Ref

Tumor-
regulatory role of
CAFs

The selective inhibition of L-arginase neutralizes MAF-induced TIGIT and BTLA expression on CTLs,
and result in the activation of CD8+T cells and anti-tumor immunity

Glycine and
Proline

The deficient supply of glycine and proline induced by ATF4 knockout in CAFs leads to significant
defects in collagen biosynthesis and a reduced ability to support angiogenesis, so as to result in
pronounced growth delay of melanoma.

(135)

Autophagy Tumor cell
immunologic
characteristics

Hypoxia-induced autophagy in melanoma cells leads to STAT3-mediated suppression of the tumor-lysing function of
cytotoxic T cells, while inhibiting melanoma autophagy restores CTLs’ function through ubiquitin proteasome system
and SQSTM1/p62 involved down-regulation of phospho-STAT3.

(136)

Inhibition of melanoma autophagy through targeting at ATG5, p62/SQSTM1 and BECN1 activates MAPK8/JNK-JUN/c-
Jun signaling pathway in melanoma cells which up-regulates CCL5 cytokine in the TME and thus enhance NK function
via activation of NK cell activator NKp46.

(137,
138)

Inhibition of the autophagy-related protein PIK3C3/VPS34 in melanoma recruits NK and CD8+T cells into the tumor
bed, and as such improves the efficacy of anti-PD-1/PD-L1 immunotherapy.

(140,
141)

Sunitinib promotes PD-L1 translocation into lysosome for autophagic degradation by binding to p62, and thus attenuates
the inhibition on T cells’ activation and enhances the efficacy of immunotherapy.

(143)

Anti-tumor
capacity of
immune cells

Autophagy-deficient monocytic MDSCs (M-MDSCs) results in efficient activation of tumor-specific CD4+ T cells and
improved anti-tumor immunity.

(142)

Lipid
metabolism

Tumor cell
immunologic
characteristics

Potentiated lipid metabolism increases the immunogenicity of melanoma cells by elevating antigen presentation, thereby
increasing sensitivity to T cell mediated killing both in vitro and in vivo.

(21)

Mevalonate Inhibition of de novo synthesis of mevalonate suppresses the expression of PD-L1 on melanoma cells
through a AKT and b-catenin-dependent pathway

(144)

Inhibition of MVA elicits type 1 classical dendritic cells (cDC1)-mediated tumor recognition and
antigen cross-presentation for anti-tumor immunity

(145)

MVA suppression disrupts prenylation of the small GTPase Rac1 and induces cancer cell actin filament
exposure, which can be recognized by CLEC9A specifically expressed on cDC1s and thus activating
infiltrating T cells.

(145)

IFNg-mediated suppression of SLC7A11 results in enhanced tumor lipid oxidation and ferroptosis. (115,
116)

Anti-tumor
capacity of
immune cells

Fatty acid
metabolism

PPAR-a signaling and fatty acid catabolism in CD8+T cells are activated in hypoxia TME to preserve
the effector functions and slow tumor progression.

(146)

The suppression of fatty acid metabolism due to the accumulation of LCFAs in CD8+ T cells impairs
their mitochondrial function and induce lipotoxicity, dampening CD8+ T cells and facilitating tumor
progression.

(147)

PPAR-driven lipid accumulation in NK cells causes complete “paralysis” of their cellular metabolism
and trafficking and blunts their anti-tumor immunity in tumor.

(149)

Cholesterol
biogenesis

Cholesterol supplement in CD8+T cells induces ER stress and promotes the transcription of PD-1 and
2B4 via XBP1.

(150)

Down-regulating cholesterol content induces polarization towards Tc9 cells and enhance IL-9
expression and the anti-tumor immunity in vivo.

(151)

Increase of cholesterol via targeting at ACAT1 causes enhanced T-cell receptor clustering as well as
more efficient formation of the immunological synapse, leading to potentiated effector function and cell
proliferation of CD8+T cells but not CD4+T cells.

(152)

Promotion of cholesterol biogenesis via PPAR-g and PLZF synergic enhancement of the transcription
of SREBF1 optimizes IFN-g production of iNKT cells.

(153)

FAO and lipid
peroxidation

Lipid peroxidation regulates Tc9-cell longevity and anti-tumor effects via IL-9-STAT3-fatty acid
oxidation pathway.

(154)

CD36-mediated uptake of fatty acids in CD8+T cells induces lipid peroxidation and ferroptosis, which
contributes to reduced cytotoxic cytokine production and impaired anti-tumor ability.

(155)

Robust generation of mitochondrial superoxide and production of IL-1b induced by Treg-specific
ablation of GPX4 help to potentiate antitumor immunity and repress tumor growth in melanoma.

(156)
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the notion of systemic biology might bring some new insights in

metabolism-targeted melanoma immunotherapy.
Conclusion and perspective

Melanoma is of rather metabolic heterogeneity and can

adaptively rewire its metabolism to meet the energetic demand

during progression. The critical pathogenic role of metabolic

rewiring in melanoma is supported by accumulative evidence

and has been recently extended to be associated with tumor

immunology and immunotherapy. In this review, we have

comprehensively summarized the cross talk between
Frontiers in Immunology 17
metabolism and tumor immunology in melanoma and

discussed the innovations of targeting metabolism-related

regulators combined with immunotherapy from the perspectives

of both preclinical mouse model and ongoing human clinical

trials. Multiple metabolic paradigms including aerobic glycolysis,

mitochondrial oxidative phosphorylation, amino acid

metabolism, autophagy, and lipid metabolism are implicated in

not only tumor cell biology but also tumor immunology in

melanoma. Moreover, the dysregulation of metabolic pathways

can affect both the immunologic characteristics of tumor cells and

the antitumor capacity of immune cells, and the underlying

mechanisms are of rather complexity. Although the current

reports have gradually revealed the linkage between cell
TABLE 2 List of inhibitors of metabolic targets for re-activation of immune cells.

Class of metabolism rewiring Inhibitors of metabolic targets for re-activation of immune cells Ref

Aerobic glycolysis LDH inhibitor Oxamic acid (OA)
Re-activation of cytotoxic T lymphocytes

(18, 86)

MCT inhibitor CHC (a-cyano-4-hydroxycinnamate)
Suppression of M2-like phenotype of TAM

(87)

Mitochondrial oxidative
phosphorylation

ROS scavenger NAC and VEGFR inhibitor Axitinib
Suppression of the exhaustion of intratumoral T cells

(110)

Amino acid metabolism Cystine metabolism inhibitors cyst(e)inase and sulfasalazine
Increased efficacy of immunotherapy and radiotherapy by promoting ferroptosis

(115,
116)

Tryptophan metabolism IDO1 inhibitor epacadostat
The activation of cytotoxic T cells, the suppression of immunosuppressive Tregs

(121–
124)

L-arginine metabolism enzymes ARG inhibitor nor-NOHA and CB-1158
Reactivation of CD8+ T cells-dependent anti-tumor immunity, including the cytotoxic effect and persistence of
CD8+T cells

(130–
133)

Autophagy Autophagy inhibitor hydroxychloroquine and chloroquine
Increased tumor-lysing function of cytotoxic T cells, increase of NK cells’ infiltration

(136–
138)

Autophagy-related protein PIK3C3/VPS34 inhibitors (SB02024 and SAR405)
Increase of the recruitment of NK and CD8+T cells

(140,
141)

Lipid metabolism Mevalonate pathway inhibitor statins
Activation of cDC1-mediated tumor antigen recognition and T cells-dependent anti-tumor immunity

(144,
145)

PPARa antagonist GW6471 and PPARd antagonist GSK3787
The activation of anti-tumor function of NK cells

(149)

Cholesterol biogenesis inhibitor simvastatin
The suppression of the exhaustion of CD8+T cells and the activation of their anti-tumor capacity
The activation of IL-9-producing CD8+T (Tc9) cells

(150,
151)

Lipid peroxidation-related ferroptosis inhibitor ferrostatin-1
The increase of Tc9-cell longevity and anti-tumor effects

(154,
155)
fronti
TABLE 3 List of clinical trials combining metabolic drug and immunotherapy in melanoma.

Clinical trial ID Recruitment
Status

Phase Immunotherapy agent Metabolic drug Cancer type

Mitochondrial
inhibitor

NCT04114136 Recruiting II Nivolumab& Pembrolizumab Metformin Melanoma, NSCLC

NCT03311308 Recruiting I Pembrolizumab Metformin Advanced Melanoma

IDO inhibitor NCT01604889 Terminated I/II Ipilimumab Epacadostat Melanoma

NCT02752074 Completed III Pembrolizumab Epacadostat Melanoma

NCT03047928 Recruiting I/II Nivolumab PD-L1/IDO peptide
vaccine

Metastatic melanoma

NCT02073123 Completed I/II Ipilimumab& Nivolumab&
Pembrolizumab

Indoximod Metastatic Melanoma, Stage III Melanoma,
Stage IV Melanoma
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metabolism and tumor immunology in melanoma, the actual

effect of different metabolic paradigms and detailed underlying

mechanisms remain far from clear, and even some of the

investigations have gained contrary conclusions. For example,

while higher oxidative phosphorylation in tumor tissues can be

regarded as a potential biomarker for predicting better response to

immunotherapy, enhanced mitochondrial function in a unique

CD8+T-cell blood/tumor-shared subpopulation in melanoma

patients is correlated with ICI resistance in melanoma patients.

Similarly, under some circumstances, the alteration of one specific

metabolic pathway might even lead to contrary effects on tumor

immunology. When intra-tumoral hyper-activated aerobic

glycolysis induces extracellular lactic acid accumulation that

would mitigate the cytotoxic function of CD8+T cells, tumor-

infiltrating DCs and CD8+T cells are also highly dependent on

glycolysis to fulfill their antigen presentation function and

antitumor capacity, respectively. Therefore, the controversial

and paradoxical results obtained from these reports point out

the challenge that the intervention of one metabolic paradigm

should be based on more credible evidence to precisely identify

the subpopulation of patients who might get real benefit. In

addition, it should be cautious to avoid the paradoxical effects in

case of developing metabolism targeted-based immunotherapy.

Additional functional and mechanistic studies are required to

elucidate the discrepant conclusion, particularly with the

involvement of more innovative technical approaches and the

validation in a larger cohort of patients in the future.

Interestingly, it would be also possible to simultaneously

obtain the suppression of melanoma progression and the

activation of antitumor immunity by intervening one specific

metabolic pathway, based on the discoveries of mechanistic

studies. For example, the inhibition of autophagy can lead to

prominent tumor regression and in parallel induces the

potentiation of antitumor immunity via the activation of NK

cells and CD8+T cells, which helps to amplify the antitumor

effect of autophagy inhibitors. In addition to this, the

intervention of arginine metabolism by targeting arginase not

only restrains the proliferation and migration of melanoma cells

(163) but also induces prominent augmentation of CD8+T-cell

activation, effector function, and persistence. These speculations

need more experimental proofs and support evidence from

future preclinical and clinical studies. What is more important,

since there is a strong linkage between cell metabolism and

tumor immunology, more and more attention is paid on the

combination of immune checkpoint inhibitors with agents

targeting metabolic reprogramming (164). At present, there

are only few ongoing clinical trials testifying the combinatorial

effect of immunotherapy agents and metabolism-targeting drugs

like mitochondria-targeting metformin and tryptophan

metabolism-related IDO inhibitors. However, the final results

of those completed trials are far from satisfactory, which suggests

that there are still some key points regarding either the

underlying mechanism or the clinical setting waiting to be
Frontiers in Immunology 18
addressed, and more trials enrolled alternative metabolism-

targeting agents should be employed to explore additional

potential therapeutic strategies.

It should also be noted that there might be compensated

activation of alternative metabolic pathways in case of targeting

one specific metabolic paradigm, which would rewire the

metabolic network in either tumor cells or immune cells to

achieve the biological balance again and mitigate the treatment

effect as a result. Actually, previous studies merely emphasize on

investigating the relationship among different metabolic

pathways and their cross talk in tumor immunology, which

poses the obstacle in the path to get a more comprehensive

understanding of the metabolic landscape during the process of

antitumor immunity and immunotherapy. In the future, the

notion of systemic biology should be put into practice in

investigation. To simultaneously target multiple metabolic

targets in both tumor cells and immune cells, rather than one

single metabolic pathway, might be a more practical and useful

strategy for metabolism-targeted melanoma immunotherapy.
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