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Abstract

For many prevalent complex diseases, treatment regimens are frequently ineffective. For

example, despite multiple available immunomodulators and immunosuppressants, inflam-

matory bowel disease (IBD) remains difficult to treat. Heterogeneity in the disease across

patients makes it challenging to select the optimal treatment regimens, and some patients

do not respond to any of the existing treatment choices. Drug repurposing strategies for IBD

have had limited clinical success and have not typically offered individualized patient-level

treatment recommendations. In this work, we present NetPTP, a Network-based Personal-

ized Treatment Prediction framework which models measured drug effects from gene

expression data and applies them to patient samples to generate personalized ranked treat-

ment lists. To accomplish this, we combine publicly available network, drug target, and drug

effect data to generate treatment rankings using patient data. These ranked lists can then

be used to prioritize existing treatments and discover new therapies for individual patients.

We demonstrate how NetPTP captures and models drug effects, and we apply our frame-

work to individual IBD samples to provide novel insights into IBD treatment.

Author summary

Offering personalized treatment results is an important tenant of precision medicine, par-

ticularly in complex diseases which have high variability in disease manifestation and

treatment response. We have developed a novel framework, NetPTP (Network-based Per-

sonalized Treatment Prediction), for making personalized drug ranking lists for patient

samples. Our method uses networks to model drug effects from gene expression data and

applies these captured effects to individual samples to produce tailored drug treatment

rankings. We applied NetPTP to inflammatory bowel disease, yielding insights into the

treatment of this particular disease. Our method is modular and generalizable, and thus
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can be applied to other diseases that could benefit from a personalized treatment

approach.

Introduction

Drug development is an expensive and lengthy endeavor, on average costing approximately a

billion dollars to successfully bring a drug to market [1]. As such, drug repurposing, also

known as drug repositioning, has become an important avenue for discovering existing treat-

ments for new indications, saving time and money in the quest for new therapies. With

increasing data available on drugs and diseases, computational approaches for drug reposition-

ing have shown great potential by integrating multiple sources of information to discover

novel matchings of drugs and diseases.

Using transcriptomic data, multiple existing computational approaches for drug repurpos-

ing are based on constructing representations of diseases and drugs and assessing their similar-

ity. For example, Li and Greene et al used differentially expressed genes to construct and

compare disease and drug signatures and van Noort et al applied a similar approach using 500

probe sets in colorectal cancer [2,3]. However, by representing the disease as an aggregate,

these methods can be limited in their ability to capture patient and disease heterogeneity. Fur-

thermore, by treating each gene or probe set individually, these methods frequently fail to cap-

ture different combinations of perturbations that cause similar disease phenotypes, which

contributes to disease heterogeneity. For complex, heterogeneous diseases, there are frequently

multiple avenues of treatment targeting different aspects of the disease, and many patients do

not respond to the same set of therapies. Such diseases could benefit from a generative method

that produces more personalized therapeutic strategies that target an individual’s disease state.

One such condition is inflammatory bowel disease (IBD), which consists of two main sub-

types, ulcerative colitis (UC) and Crohn’s disease (CD). Both are chronic inflammatory condi-

tions of the gastrointestinal system which together affect over 1.5 million people in the United

States [4]. As a heterogeneous disease, different IBD patients frequently respond to different

treatment drugs that target specific pathways unique to the disease pathogenesis seen in that

particular patient. As such, there currently exist multiple different treatments for IBD which

have different mechanisms of action, such as sulfasalazine, infliximab, azathioprine, and ste-

roids [5]. However, it is frequently unclear which patients would derive the most benefit from

each of these classes of drugs. Furthermore, many patients do not respond or develop nonre-

sponse to these therapies, resulting in escalation of their treatment regimens or surgery.

There exist a few previous computational repurposing methods that have been applied to

IBD. For example, Dudley et al compared drugged gene expression signatures from the Con-

nectivity Map (CMap) to IBD gene expression data identified topiramate as a potential thera-

peutic candidate [6]. Another approach overlapped IBD genes implicated in genome wide

association studies with known drug targets for IBD [7]. More recently, newer approaches

have incorporated gene interactions by examining sets of genes in the same pathway. For

example, Grenier et al employed a pathway-based approach using genetic loci from IBD gene

wide association studies and pathway set enrichment analysis to identify new candidate drugs

[8]. While these methods have yielded some new potential therapies, there is still a great need

for identifying responders and for additional therapeutic strategies for nonresponders.

We present Network-based Personalized Treatment Prediction (NetPTP), a novel systems

pharmacological approach for modeling drug effects, which incorporates the interactions of

genes and proteins with drug targets in order repurpose and prioritize drugs in individual
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patients. Using publicly available human and mouse gene expression data, we show how our

approach can be used to identify drugs based on each patient’s disease profile. We further

aggregate these individual results to the disease level to gain new insights into the treatment of

CD and UC.

Methods

Ethics statement

The experimental portion of this study (protocol ID 32963) was reviewed and approved by the

Institutional Animal Care and Use Committee (IACUC) at Stanford University.

Data preprocessing

The connectivity map. We downloaded all instances in CMap as raw CEL files. We first

preprocessed the instances using robust multi-array average [9]. Probes were then mapped to

genes using the corresponding platform annotation files. For genes corresponding to multiple

probes, the expression values were averaged across all probes corresponding to the same gene.

We then corrected for batch effects using ComBat [10] with the sva package [11], correcting

for batch number as given by CMap and for cell line. Only instances which mapped to a drug

in DrugBank and had at least one gene target measured were included in downstream analysis.

Human IBD disease datasets. We processed four publicly available IBD colonic sample

datasets from GEO: GSE16879 [12], GSE9686 [13], GSE10616 [14], and GSE36807 [15] (S1

Table). Each study contains baseline colonic sample prior to treatment of CD and UC patients,

and also contains healthy control colonic samples. Of note, GSE16879 consists of patients

refractory to corticosteroids and/or immunosuppression, and also contains samples before

and after infliximab treatment. We likewise preprocessed these datasets using the same frame-

work as described for the CMap data.

Mouse IBD disease datasets. We additionally processed two publicly available IBD

mouse model samples: GSE22307 [16] and GSE53835 [17] (S1 Table). GSE22307 used dextran

sulfate sodium (DSS) and consisted of a total of 18 mice, where six mice were sacrificed on day

2, 4, and 6 after IBD induction. GSE53835 utilized 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)

to induce IBD, and all mice were sacrificed on day 4.

Methotrexate response data in rheumatoid arthritis. Aside from IBD, we processed a

rheumatoid arthritis dataset, GSE45867 [18], which contains human synovial biopsy samples

before and after methotrexate treatment (N = 8) and before and after tocilizumab treatment

(N = 12). As tocilizumab is not a drug present CMap, we analyzed only the methotrexate sam-

ples, comparing our simulated drugged samples generated from the untreated samples to the

measured treated samples.

Network construction

We next downloaded all drug data available online from DrugBank [19]. We extracted drug

targets and converted all gene names to the Entrez gene identifier. Only drugs that were

included in CMap and have a gene target that was measured were included in downstream

analysis.

We extracted all human pathways from Reactome [20] and connected all pathways into one

large network. Only genes that were measured in CMap were included. Undirected edges

from Reactome are represented as two directed edges in opposite directions.

As shown in Fig 1, step 1, each circular node represents a gene, and each directed arrow

represents an interaction from Reactome. We next add drug nodes, depicted as triangles, to
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the overall network or genes (Fig 1, step 1). A drug may have multiple targets, which would be

represented as having multiple outgoing edges. Similarly, a gene may be the target of multiple

drugs, depicted by multiple incoming edges.

Drug effect modeling

The network is then parameterized by drugged gene expression data, where each circular gene

node is a linear regression of the incoming nodes, and triangular drug nodes are binary

Fig 1. Overview of drug effect modeling. (1) Drugs, drug targets, genes, and gene interactions are curated from DrugBank and Reactome to form a gene-drug

network. (2) The expression of each gene is modeled as a linear regression of incoming nodes, where the coefficient parameters are learned from the

Connectivity Map. (3) IBD data is curated from the Gene Expression Omnibus (GEO), and for each sample (4) a drugged IBD sample is created using the

network. (5) The healthy samples are averaged to create a healthy patient representation, and (6) each drugged IBD sample is compared to the healthy sample

using Euclidean distance to create a personalized ranked drug list.

https://doi.org/10.1371/journal.pcbi.1008631.g001
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variables (Fig 1, step 2). Regularized regression was not used as the median number of input

genes for each node, 13, was small compared to the 3,400 training instances, lowering the con-

cern for overfitting. The network of regressions can be intuitively thought of as diffusion of the

drug effect through the gene network. Thus, we have now created a model where drugs can be

turned “on” or “off”, where the network is capturing the changes induced by these effects.

With the parameterized network modeling drug effects, we then apply this network to IBD

disease data in order to discover which drugs may be most effective for each individual patient.

For each IBD sample, we take the gene expression values and overlay them onto the nodes of

the network. We then turn drugs on or off (Fig 1, step 3), and propagate these effects through

the network (Fig 1 step 4). Thus, for each IBD sample, we create a “drugged IBD sample” gene

expression sample. Using the healthy data, we average all healthy samples, to create an “average

healthy” gene expression sample (Fig 1, step 5). We then compare the average healthy sample

to each drugged IBD sample, using Euclidean distance, to create a personalized, ranked drug

list (Fig 1, step 6). In essence, we are comparing the effects of different drugs to see which set

can bring the original IBD sample closest to the average healthy sample. This way, we discover

drugs that not only treat the disease symptoms, but may have fewer side effects than drugs that

may have a beneficial effect on the disease but do not result in an expression profile closer to

the average healthy sample.

Curation of IBD drugs in literature

We curated a list of drugs that have been previously studied in the context IBD based on work

by Percha, et al. [21,22] Briefly, entities and dependency paths are extracted from over 16 mil-

lion MEDLINE abstracts. These paths are then clustered using the Ensemble Biclustering for

Classification method to produce clusters of entity relationships. Specifically, we used the

chemical-disease relationship output, which consists of 6 themes: 1) (T) Treatment/therapy, 2)

(C) Inhibits cell growth, 3) (Sa) side effect/adverse event, 4) (Pr) prevents, suppresses, 5) (Pa)

alleviates, reduces, 6) (J) role in pathogenesis. For our known drugs, we extracted any drug

that had a T, Pr, and/or Pa relationship with CD, UC, and/or IBD.

Calculating alternative drug-disease score rankings

We compared NetPTP to the drug rankings produced by the method used in Dudley et al [6],

as our work uses similar data sources and is also applied to the same disease, IBD. In their

method, a drug-disease score (DDS) is derived for each drug based on how anti-correlated the

drug signature is as compared to the disease signature. We calculated the DDS as described in

Sirota and Dudley et al [23] for all drugs and CD, and all drugs and UC using the samples in

GEO9686, GEO36807, and GEO10616. GEO16879 was not included as these patients were

refractory to the mainstay treatments for IBD. Following their method, we first used signifi-

cance analysis of microarrays (SAM) [24] to derive lists of up-regulated and down-regulated

genes, comparing diseased samples to the healthy samples in each study. We then calculated

the up-regulated and down-regulated enrichment score, and subsequently the drug-disease

score (DDS) for each drug-CD and drug-UC pair in each of the three studies.

We then ranked all drugs by their DDS, from most anti-correlated to least anti-correlated.

The original method calls for DDS to be set to 0 if the up-regulated enrichment score and

down-regulated enrichment score are the same direction, otherwise DDS is set to the differ-

ence between the two. This results in a large number of drugs all having a score of 0, and we

differentiated drugs with a score of 0 by ranking them by the difference between the up-regu-

lated and down-regulated enrichment scores.
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In order to compare the rankings from the two methods, we curated the FDA approved

treatments for IBD that are in CMap. These were budesonide, prednisone, prednisolone,

methylprednisolone, azathioprine, mercaptopurine, sulfasalazine, mesalazine, and methotrex-

ate. We then compared the rankings of these nine known treatments based on the DDS to our

NetPTP rankings across all studies.

Experimental protocol for drug evaluation in TNBS mice

We conducted a pilot experimental study to assess the top drug prediction in TNBS mice, amri-

none. The study was reviewed and approved by the Institutional Animal Care and Use Commit-

tee (IACUC) at Stanford University. We purchased twenty 6-week-old C57BL/6 mice from The

Jackson Laboratory (Bar Harbor, ME). This species was chosen to match the species used from

the source data used for drug prediction from Dohi et al [17], though this species is known to

be more resistant to the development of TNBS colitis as compared to others [25,26]. The mice

were divided evenly into drug treatment and control groups. TNBS 5% w/v in methanol was

purchased from Fisher Scientific Company, LLC (Hampton, NH). TNBS at a dosage of 100mg/

kg in 50% ethanol in a volume of 150μL was administered intrarectally to each mouse on day 0.

For control mice, 150μL of 50% ethanol solution was used. Amrinone was purchased from

Sigma-Aldrich, Inc (St. Louis, MO) and was administered at 10mg/kg in 1% v/v DMSO with

saline at a dilution of 1mg/mL via intraperitoneal injection. Control mice received a 10mg/kg

injection of saline. The treatment injections were administered daily from day 1 to day 4.

Mice were sacrificed on day 4, which was chosen to further match the experiments from the

source data in Dohi et al [17], where mice were sacrificed on day 4. The colon was then dis-

sected and harvested from each mouse. The tissue was fixed in formalin and paraffin-embed-

ded. A longitudinal cross section slice of the colon was mounted on a slide and stained with

hematoxylin and eosin.

Each slide was assessed in a blinded and randomized fashion by an independent veterinary

pathologist. Each slide was graded based on ulceration, inflammation, edema, and fibroplasia.

Ulceration, edema, and fibroplasia were considered as present or absent. Inflammation was

graded as follows: 0 = no inflammation; 1 = small, focal areas limited to the lamina propria;

2 = multifocal or coalescing areas extending into the submucosa; 3 = transmural.

Given the heterogeneous and patchy nature of TNBS colitis, we assessed for the presence of

fibroplasia, or wound healing, while taking into account the degree of induced colitis. Using R

3.6.1, we constructed a logistic regression model to assess the presence of fibroplasia. We used

the degree of inflammation, the presence of ulceration, the presence of edema, and the treat-

ment group as the covariates in our model.

Results

Integrating the connectivity map, drugbank, and reactome

Our network consists of 6,982 genes, that corresponds to the intersection of genes measured in

CMap and genes present in Reactome. From DrugBank and CMap, we curated 453 drugs,

which corresponded to 3,400 instances from CMap, including controls. These 453 drugs tar-

geted 496 genes, with a median of 4 gene targets per drug.

Similar drug mechanisms cluster together

We first assessed the effects of the drugs on individual patients, to examine if similar drugs

result in similar effects. As an example, using a drugged IBD sample derived from the first CD

sample (GSM244753) in GSE9686, we clustered the drugged profiles (S1 Fig). The dendrogram
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reveals that drugs with similar mechanisms of action cluster together. Starting from the right,

we see that the steroids cluster together, which includes topical and systemic steroids (Fig 2A).

The neighborhood of drugs clustered near the steroids include additional anti-inflammatory

drugs and immunosuppressants. For example, the cluster right below the steroids includes

leflunomide, chloroquine, sirolimus, and tacrolimus (Fig 2A). Amrinone is present in this

cluster, with chloroquine as its nearest neighbor. Though the steroids belong to four different

categories of ATC codes due to being used in different disease processes, they all have a similar

mechanism of action.

As we move counterclockwise, we come across a group of antibiotics mixed with chemo-

therapeutic agents (Fig 2B). These drugs block various forms of topoisomerase, with the antibi-

otics blocking bacterial topoisomerase and the chemotherapeutic agents blocking human

topoisomerase.

Continuing along, the next large cluster along the top contains drugs that act on various

receptors within the body, such as beta-adrenergic and dopamine receptors (Fig 2C). On the

left, we see another section of anti-inflammatory drugs, including cyclooxygenase inhibitors

and immunomodulatory drugs such as azathioprine (Fig 2D). The bottom portion of the circle

contains drugs that are used for neuropsychiatric diseases, liver, and kidney issues, such as

antipsychotics, diabetes and cholesterol medications, and diuretics (S1 Fig).

Assessing drug response in GSE16879

Using the samples from GSE16879, we visualized treatment responders, treatment nonre-

sponders, and controls for CD (Fig 3A) and UC patients (Fig 3B). Before treatment,

Fig 2. Excerpts from dendrogram shown in S1 Fig. Clusters of drugs emerge which share similar mechanisms, such

as steroids and immunosuppressants (A), topoisomerase blockers used as antibiotics and chemotherapy (B),

adrenergic and dopamine receptor drugs (C), and anti-inflammatory and immunomodulating drugs (D). Dendrogram

branches are colored by the first level of the anatomic therapeutic chemical classification system (see S1 Fig for legend).

https://doi.org/10.1371/journal.pcbi.1008631.g002
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Fig 3. Principal components analysis showing drug responders and nonresponders before and after infliximab treatment in patients

with CD (A) and UC (B) from GSE16879. Responder samples after treatment appear to migrate towards the control healthy samples.

https://doi.org/10.1371/journal.pcbi.1008631.g003

PLOS COMPUTATIONAL BIOLOGY Modeling drug response using network-based personalized treatment prediction (NetPTP)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008631 February 5, 2021 8 / 19

https://doi.org/10.1371/journal.pcbi.1008631.g003
https://doi.org/10.1371/journal.pcbi.1008631


responders and nonresponders tend to be located in close proximity in both CD and UC. For

treatment nonresponders, there was minimal movement of the samples after treatment. For

treatment responders, there is a shift of the after-response samples toward the cluster of

healthy control samples. Overall, treatment responders after treatment were located signifi-

cantly closer to healthy controls than treatment nonresponders for CD (p< 0.001) and for UC

(p< 0.001). This indicates that the treatment appears to have an effect on the tissue that brings

the sample closer to the healthy tissue, in part reversing some of the effects caused by the dis-

ease. The treated samples ultimately appear to exhibit an expression profile partway between

the original disease state and healthy state. Our approach leverages this when creating our

ranked drug list, comparing simulated drugged samples to healthy control samples.

Comparing measured versus predicted methotrexate response

We visualized our simulated methotrexate treatment samples versus untreated and actual

methotrexate treatment samples using principal components analysis (Fig 4). Notably,

untreated samples and methotrexate treated samples did not cluster together but were scat-

tered across both principal component 1 (PC1) and principal component 2 (PC2) (Fig 4A).

PC1 and PC2 accounted for 29.1% and 13.2% of the variance respectively. The simulated

methotrexate samples were generally located on the trajectory between the untreated and

treated samples, with some deviance towards the center of the plot. When analyzing PC1 and

PC2 separately (Fig 4B and 4C), the simulated methotrexate samples always fell in between the

untreated and actual treated samples for PC2 (Fig 4C).

Drug rankings in human IBD samples

We applied NetPTP to four publicly available IBD datasets: GSE9686 (11 CD, 5 UC, 8 healthy)

[13], GSE16879 (19 CD, 24 UC, 6 healthy) [12], GSE10616 (14 CD, 10 UC, 11 healthy) [14],

and GSE36807 (13 CD, 15 UC, 7 healthy) [15]. The top 10 ranked drugs per study for CD are

shown in Table 1 and for UC are shown in Table 2. Averaging the rankings across all patients

in GSE9686, GSE10616, and GSE36807 yielded the top drugs shown in Table 3.

GSE16879 consists of patients that are refractory to corticosteroids and/or immunosuppres-

sion, with 7 UC patients and 6 CD patients on corticosteroids at baseline, per Table 1 of Arijs

et al [12]. We evaluated the rank of prednisone in GSE16879 versus the other studies. For

patients in GSE16879, the rank of prednisone was significantly higher than the patients from

the other 3 studies (p = 0.028), indicating prednisone was predicted to be less effective in

patients in GSE16879. The median in GSE16879 was 261 with an interquartile range (IQR) of

154.5–338.5 versus a median of 178 and an IQR of 68.25–297.25 in the other patients.

We next assessed the rankings of drugs previously associated with IBD in the literature for

CD (Fig 5A) and UC samples (Fig 5B). In CD patients (Fig 5A), three different subgroups of

patients appear, and samples do not cluster by study. Patients on the left are predicted to have

good response to anti-inflammatory medication and steroids, but not to immunomodulators

such as azathioprine. Those in the middle show the opposite pattern, with good predicted

response to immunomodulators but not anti-inflammatory medications, and those on the

right tend to have high ranks for all classes.

In UC patients (Fig 5B), we again see that samples do not cluster by study, but instead in

two main groups. Patients on the left exhibit a high ranking for steroids, anti-inflammatory

medications, and immunomodulators. In contrast, patients on the right are predicted to have

poor efficacy to immunomodulators but maintain favorable rankings for steroids and anti-

inflammatory medications.

PLOS COMPUTATIONAL BIOLOGY Modeling drug response using network-based personalized treatment prediction (NetPTP)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008631 February 5, 2021 9 / 19

https://doi.org/10.1371/journal.pcbi.1008631


Comparison to drug-disease score rankings

We compared the ranking of nine known IBD treatments generated by NetPTP against the

rankings generated by the DDS from the method in Sirota and Dudley et al [23]. Rankings

were generated for each drug-disease pair for 9 drugs, 2 diseases (CD, UC), and in 3 studies,

resulting in N = 54. Using the Wilcoxon rank-sum paired test, our NetPTP rankings of the

Fig 4. (A) PCA showing untreated, methotrexate treated, and simulated methotrexate treated samples generated by NetPTP for samples in GSE45867.

Samples were further visualized along PC1 (B) and PC2 (C) separately, showing that simulated methotrexate samples are located between untreated and

measured methotrexate samples along PC2. Our method seems conservative in that the simulated treatment samples tend to remain closer to the untreated

samples as compared to the treated samples.

https://doi.org/10.1371/journal.pcbi.1008631.g004
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known IBD treatments were significantly more favorable than the DDS rankings (p = 0.0011).

Overall, where a lower ranking is more favorable, our rankings of known IBD treatments had

a median ranking of 102.5 (interquartile range 46.5–205.2) and the DDS rankings had a

median of 243.5 (interquartile range 128.2–331.8).

Drug rankings in mouse IBD samples

Fig 6 depicts the rankings of previous IBD drugs in literature for the DSS day 2, day 4, day 6,

and TNBS samples from GSE22307 [16] and GSE53835 [17]. As we progress from day 2 to day

6 of DSS administration and the inflammation is being induced, the drug ranking pattern

changes from immunomodulators being highly ranked to ant-inflammatory drugs and ste-

roids being highly ranked. For example, sulfasalazine significantly improves in rank as the

inflammation progresses (Fig 7, p = 0.01). By the time we reach day 6, the pattern generally

resembles the TNBS samples, which represent acute inflammation of the colon. For day 6 DSS

mice and TNBS mice, the top 10 drugs are shown in Table 4.

Experimental evaluation of top ranked DRUG in TNBS mice

We constructed a logistic regression model to assess the presence of wound healing in TNBS

mice given our top prediction, amrinone, versus saline controls (Table 5). Drug status was

treated as 1 for amrinone, and 0 for saline. A higher level of inflammation or the presence of

ulceration led to a greater likelihood of the presence of recovery, whereas edema had the

Table 1. Average drug rankings for each GEO study for CD samples.

Rank GSE9686 GSE10616 GSE36807 GSE16879

1 furosemide furosemide propofol mesalazine

2 ribostamycin hydrochlorothiazide primidone hydrocortisone

3 ivermectin bendroflumethiazide colforsin sulfasalazine

4 metolazone ivermectin valproic acid methazolamide

5 piretanide piretanide selegiline rimexolone

6 puromycin thiocolchicoside procainamide triamcinolone

7 thiocolchicoside quinethazone biotin betamethasone

8 torasemide torasemide etodolac medrysone

9 hydrochlorothiazide metolazone bupropion tenoxicam

10 hydrocortisone benzthiazide mebendazole nabumetone

https://doi.org/10.1371/journal.pcbi.1008631.t001

Table 2. Average drug rankings for each GEO study for UC samples.

Rank GSE9686 GSE10616 GSE36807 GSE16879

1 dextromethorphan cefoxtaxime prednisolone thichlormethiazide

2 prednisone dextromethorphan alclometasone diazoxide

3 sulfinpyrazone methazolamide budesonide methazoldamide

4 cefotaxime brinzolamide hydrocortisone hydroflumethiazide

5 rimexolone streptozocin fluorometholone furosemide

6 triamcinolone biotin prednicarbate hydrochlorothiazide

7 betamethasone diclofenamide diflorasone hydrocortisone

8 doxazosin triamcinolone flunisolide astemizole

9 alfuzosin rimexolone medrysone bendroflumethiazide

10 medrysone betamethasone betamethasone terfenadine

https://doi.org/10.1371/journal.pcbi.1008631.t002
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opposite effect. Those mice that were in the amrinone treatment group had a coefficient of

2.06, corresponding to an odds ratio of 7.75.

Discussion

In this work, we present NetPTP, a novel systems pharmacological approach for drug repur-

posing and modeling drug effects. In our approach, we model drug effects and apply these

effects to diseased samples to assess which samples exhibit the closest return to a healthy pro-

file, thus leading to individualized predictions of drug efficacy. NetPTP was motivated in part

by previous studies [6] and our analysis of the samples in GSE16879, which showed that inflix-

imab responder samples were located significantly closer to healthy controls than non-

responder samples. By assessing for a shift toward healthy controls, we believe we may not

only predict the efficacy of the drug in treating the disease but may also rank drugs higher that

have fewer adverse effects.

We assessed NetPTP using methotrexate treated samples from GSE45867, which studied

another autoimmune disease, rheumatoid arthritis. Our simulated drugged samples were gen-

erally located on the trajectory between the untreated and the treated samples. NetPTP appears

to capture the direction of the effect of the drug and then subsequently apply the learned effect

to new data samples, producing simulated drugged samples which represent a conservative

step from the untreated sample towards the treated sample. In particular, the model’s predic-

tion fell between the untreated and treated sample for all eight samples along principal compo-

nent 2. Thus, this particular principal component may reflect more of the biological changes

induced with methotrexate treatment. Delving deeper, the gene with the largest absolute

weight in PC2 is PMAIP1, also known as NOXA. NOXA plays a role in the apoptosis pathway

as part of the BCL-2 family and is regulated by p53 [27]. Methotrexate has been shown to

mediate apoptosis via upregulation of p53 and its downstream targets, including NOXA [28].

NOXA has been shown to induce apoptosis of fibroblast-like synoviocytes [29] and bone oste-

oclasts [30], both of which are thought to have a role in the pathogenesis of rheumatoid arthri-

tis [31].

We applied NetPTP to multiple publicly available CD and UC datasets with human colonic

samples. Clustering the simulated drugged profiles for one patient revealed that drugs with

similar mechanisms cluster together (Fig 2). When clustering our patients and their rankings

with IBD drugs in literature, we found that patients grouped into multiple different treatment

response profiles (Fig 5). This suggests that it may be possible to guide treatment decision

making, particularly when deciding between multiple first line treatment options.

Table 3. Overall average drug rankings for CD and UC human colonic samples.

Rank CD UC

1 furosemide diazoxide

2 propofol methazolamide

3 metolazone hydrocortisone

4 hydrochlorothiazide trichlormethiazide

5 ivermectin hydroflumethiazide

6 methazolamide brinzolamide

7 ribostamycin furosemide

8 thiocolchicoside hydrochlorothiazide

9 piretanide diclofenamide

10 mesalazine rimexolone

https://doi.org/10.1371/journal.pcbi.1008631.t003
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In CD samples, we see that of the ten top ranked drugs, mesalazine, a known IBD drug, is

included (Table 3). The others are diuretics, antimicrobials, and two GABA antagonists,

including thiocolchicoside which has anti-inflammatory effects [32]. This list suggests that

these CD samples tend to have a fluid overloaded state, likely due to edema, with some dysre-

gulation of the enteric nervous system and inflammation. In UC, though we have some of the

same diuretic medications, we also see steroids more often, for example as the top ranked drug

in GSE36807 (Table 2, Table 3). The top overall ranked drug, diazoxide, is a potassium channel

activator, and has been shown to heal acute gastric ulcers in rats [33]. Carbonic anhydrase

inhibitors are also present on both top ranked lists, and previous studies have shown targeting

carbonic anhydrase I and IV have ameliorated IBD in mouse models [34,35].

We compared the rankings generated by NetPTP to the drug-disease score (DDS) gener-

ated by Sirota and Dudley et al [23]. Overall, our method produced significantly better rank-

ings for the nine known IBD drugs in the Connectivity Map. However, as IBD is a

heterogenous disease, some of the study patients may have not been responsive to each and

every one of these therapies. We compared our results at the study level, as calculating the

DDS uses SAM, which aggregates multiple patients to derive up-regulated and down-regulated

Fig 5. Heatmaps showing drug ranks for IBD related drugs for patients with CD (A) and UC (B) from GSE16879,

GSE10616, GSE36807, and GSE9686. Blue indicates a drug with higher predicted efficacy and orange indicates one

with lower predicted efficacy.

https://doi.org/10.1371/journal.pcbi.1008631.g005

Fig 6. Heatmap showing drug ranks for IBD related drugs for two mouse IBD colonic sample studies from GEO. Blue indicates a drug with higher predicted

efficacy and orange indicates one with lower predicted efficacy.

https://doi.org/10.1371/journal.pcbi.1008631.g006
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genes. NetPTP aims to address some of these limitations by providing predictions at the

patient level while incorporating the connections between genes to capture more of the under-

lying biology driving drug response.

In mouse samples, we analyzed the drug rankings over the course of acute inflammation

development in DSS mice and in TNBS mice. We found that as inflammation progressed from

day 2 to day 6, known treatments such as sulfasalazine became significantly more highly

ranked (Fig 7), and the day 6 DSS drug rankings became more similar to the drug rankings

seen with the TNBS mice (Fig 6). The top drug ranked in the TNBS mice was amrinone, a

phosphodiesterase (PDE) type 3 inhibitor with some effect on PDE type 4, which was clustered

with other immunosuppressants (Fig 2A). Phosphodiesterases control the concentration of

Fig 7. Sulfasalazine rank significantly decreases (p = 0.01) from day 2 to day 6 of DSS administration for mice colonic samples from GSE22307. The mean is

indicated by the black bars.

https://doi.org/10.1371/journal.pcbi.1008631.g007
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cyclic adenosine monophosphate, which suppresses inflammation via the NF-κB pathway.

Amrinone has long been shown to have anti-inflammatory effects [36,37], and PDE4 inhibi-

tors have recently been suggested as a new avenue for IBD drugs [38].

We assessed this top drug, amrinone, in a preliminary study using a TNBS mouse model,

using the same mouse strain as used in GSE53835. We assessed the presence of fibroplasia in

twenty mice, taking into account the degree of inflammation and the presence of ulceration, as

this particular strain is moderately resistant to TNBS and to account for the heterogenous

nature of the TNBS model [25,26]. We evaluated the drug effect on day 4 in keeping with the

source data; however, these experiments may benefit from a longer time course to better char-

acterize the drug effect. Though the drug status did not reach statistical significance, it appears

to be one of the more important covariates for predicting the presence of fibroplasia in these

mice and would merit further investigation in a larger study.

Our approach involves curating and combining multiple publicly available resources,

including Reactome [20], the Connectivity Map [39], DrugBank [19], and the Gene Expression

Omnibus. Though CMap includes hundreds of drugs, some IBD therapies, such as infliximab,

are not represented. Furthermore, transcriptomics data are shifting from gene expression to

RNA-seq. For IBD, currently most published studies for public use are gene expression data.

However, our approach can easily translate to RNA-seq data and be expanded to include more

drugs, such as data from the Library of Integrated Network-Based Cellular Signatures (LINCS)

project (http://www.lincsproject.org/).

In addition to different sources of drugged data, the other aspects of NetPTP are also modu-

lar and can be easily adjusted to accommodate different network architectures, network data

from different species, additional drugs and drug targets, and additional diseases of interest.

As NetPTP can use different sources of healthy control data, it could also be used to rank

drugs based on a patient’s own healthy samples before he or she developed a disease. In addi-

tion to being able to incorporate different sources of transcriptomic data, NetPTP works with

any pre-defined set of edges that has been converted to a directed network, such as Reactome,

Table 4. Overall average drug rankings for DSS and TNBS mouse colonic samples.

Rank DSS Day 2 DSS Day 4 DSS Day 6 TNBS

1 hydralazine mepyramine hydrochlorothiazide amrinone

2 probenecid chlorcyclizine bendroflumethiazide chloroquine

3 gliclazide diphenhydramine ivermectin puromycin

4 maprotiline alimemazine bumetanide etomidate

5 vinblastine menhydrinate etomidate ivermectin

6 cAMP triprolidine gliquidone flucytosine

7 phenformin clemastine quinethazone azacytidine

8 probucol cyclizine flucinonide triflusal

9 metformin cypropheptadine metolazone ribostamycin

10 milrinone cetirizine furosemide decitabine

https://doi.org/10.1371/journal.pcbi.1008631.t004

Table 5. Logistic regression model assessing fibroplasia in TNBS mice.

Variable Log Odds Ratio 95% Confidence Interval p-value

Drug Status 2.05 (-0.82, 5.71) 0.180

Inflammation 0.86 (-0.78, 3.06) 0.340

Edema -0.74 (-4.57, 2.13) 0.651

Ulceration 2.14 (-0.91, 6.77) 0.237

https://doi.org/10.1371/journal.pcbi.1008631.t005
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the Kyoto Encyclopedia of Genes and Genomes [40], the Search Tool for the Retrieval of Inter-

acting Genes/Proteins (STRING) [41], or networks derived from experimental data. With

time, we hope the increasing amount of publicly available data available and a wider selection

of drugged data including newer therapies such as monoclonal antibodies will expand the

applicability and utility of our method, offering personalized treatment regimens as well as

identifying novel treatment avenues for IBD.
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Classifiers for Inflammatory Bowel Disease by Gene Expression Profiling. Calogero RA, editor. PLoS

One. 2013; 8: e76235. https://doi.org/10.1371/journal.pone.0076235 PMID: 24155895

16. Fang K, Bruce M, Pattillo CB, Zhang S, Stone R, Clifford J, et al. Temporal genomewide expression pro-

filing of DSS colitis reveals novel inflammatory and angiogenesis genes similar to ulcerative colitis. Phy-

siol Genomics. 2011; 43: 43–56. https://doi.org/10.1152/physiolgenomics.00138.2010 PMID:

20923862

17. Dohi T, Kawashima R, Kawamura YI, Otsubo T, Hagiwara T, Amatucci A, et al. Pathological activation

of canonical nuclear-factor κB by synergy of tumor necrosis factor α and TNF-like weak inducer of apo-

ptosis in mouse acute colitis. Cytokine. 2014; 69: 14–21. https://doi.org/10.1016/j.cyto.2014.05.001

PMID: 25022957

18. Ducreux J, Durez P, Galant C, Toukap AN, Van Den Eynde B, Houssiau FA, et al. Global molecular

effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014; 66: 15–23.

https://doi.org/10.1002/art.38202 PMID: 24449571

19. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a comprehen-

sive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006; 34: D668–D672.

Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=

16381955&retmode=ref&cmd=prlinks. https://doi.org/10.1093/nar/gkj067 PMID: 16381955

20. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: A database of reactions,

pathways and biological processes. Nucleic Acids Res. 2011; 39: 691–697. https://doi.org/10.1093/nar/

gkq1018 PMID: 21067998

21. Percha B, Altman RB. Learning the Structure of Biomedical Relationships from Unstructured Text.

PLoS Comput Biol. 2015; 11: 1–27. https://doi.org/10.1371/journal.pcbi.1004216 PMID: 26219079

22. Percha B, Altman RB. A global network of biomedical relationships derived from text. Bioinformatics.

2018; 34: 2614–2624. https://doi.org/10.1093/bioinformatics/bty114 PMID: 29490008

23. Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al. Discovery and Preclinical

Validation of Drug Indications Using Compendia of Public Gene Expression Data. Sci Transl Med.

2011; 3: 96ra77–96ra77. https://doi.org/10.1126/scitranslmed.3001318 PMID: 21849665

24. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation

response. Proc Natl Acad Sci. 2001; 98: 5116–5121. https://doi.org/10.1073/pnas.091062498 PMID:

11309499

PLOS COMPUTATIONAL BIOLOGY Modeling drug response using network-based personalized treatment prediction (NetPTP)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008631 February 5, 2021 18 / 19

https://doi.org/10.1038/nrgastro.2016.208
http://www.ncbi.nlm.nih.gov/pubmed/28144028
https://doi.org/10.1126/scitranslmed.3002648
https://doi.org/10.1126/scitranslmed.3002648
http://www.ncbi.nlm.nih.gov/pubmed/21849664
https://doi.org/10.1097/MIB.0000000000000912
https://doi.org/10.1097/MIB.0000000000000912
http://www.ncbi.nlm.nih.gov/pubmed/27753694
https://doi.org/10.1016/j.csbj.2019.01.001
http://www.ncbi.nlm.nih.gov/pubmed/30728920
https://doi.org/10.1093/nar/gng015
http://www.ncbi.nlm.nih.gov/pubmed/12582260
https://doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1371/journal.pone.0007984
http://www.ncbi.nlm.nih.gov/pubmed/19956723
https://doi.org/10.1002/ibd.20342
http://www.ncbi.nlm.nih.gov/pubmed/18069684
https://doi.org/10.1038/ng.203
http://www.ncbi.nlm.nih.gov/pubmed/18758464
https://doi.org/10.1371/journal.pone.0076235
http://www.ncbi.nlm.nih.gov/pubmed/24155895
https://doi.org/10.1152/physiolgenomics.00138.2010
http://www.ncbi.nlm.nih.gov/pubmed/20923862
https://doi.org/10.1016/j.cyto.2014.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25022957
https://doi.org/10.1002/art.38202
http://www.ncbi.nlm.nih.gov/pubmed/24449571
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16381955&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16381955&retmode=ref&cmd=prlinks
https://doi.org/10.1093/nar/gkj067
http://www.ncbi.nlm.nih.gov/pubmed/16381955
https://doi.org/10.1093/nar/gkq1018
https://doi.org/10.1093/nar/gkq1018
http://www.ncbi.nlm.nih.gov/pubmed/21067998
https://doi.org/10.1371/journal.pcbi.1004216
http://www.ncbi.nlm.nih.gov/pubmed/26219079
https://doi.org/10.1093/bioinformatics/bty114
http://www.ncbi.nlm.nih.gov/pubmed/29490008
https://doi.org/10.1126/scitranslmed.3001318
http://www.ncbi.nlm.nih.gov/pubmed/21849665
https://doi.org/10.1073/pnas.091062498
http://www.ncbi.nlm.nih.gov/pubmed/11309499
https://doi.org/10.1371/journal.pcbi.1008631


25. Scheiffele F, Fuss IJ. Induction of TNBS Colitis in Mice. Curr Protoc Immunol. 2002;Chapter 15: 1–14.

https://doi.org/10.1002/0471142735.im1519s49 PMID: 18432874

26. Te Velde AA, Verstege MI, Hommes DW. Critical appraisal of the current practice in murine TNBS-

induced colitis. Inflamm Bowel Dis. 2006; 12: 995–999. https://doi.org/10.1097/01.mib.0000227817.

54969.5e PMID: 17012970

27. Ploner C, Kofler R, Villunger A. Noxa: at the tip of the balance between life and death. Oncogene. 2008;

27 Suppl 1: S84–92. https://doi.org/10.1038/onc.2009.46 PMID: 19641509

28. Huang WY, Yang PM, Chang YF, Marquez VE, Chen CC. Methotrexate induces apoptosis through

p53/p21-dependent pathway and increases E-cadherin expression through downregulation of HDAC/

EZH2. Biochem Pharmacol. 2011; 81: 510–517. https://doi.org/10.1016/j.bcp.2010.11.014 PMID:

21114963

29. Leech M, Lacey D, Xue JR, Santos L, Hutchinson P, Wolvetang E, et al. Regulation of p53 by macro-

phage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum. 2003; 48: 1881–1889.

https://doi.org/10.1002/art.11165 PMID: 12847682

30. Idrus E, Nakashima T, Wang L, Hayashi M, Okamoto K, Kodama T, et al. The role of the BH3-only pro-

tein Noxa in bone homeostasis. Biochem Biophys Res Commun. 2011; 410: 620–625. https://doi.org/

10.1016/j.bbrc.2011.06.040 PMID: 21689638

31. Pintao MC, Ribeiro DD, Bezemer ID, Garcia AA, de Visser MCH, Doggen CJM, et al. Protein S levels

and the risk of venous thrombosis: results from the MEGA case-control study. Blood. 2013; 122: 3210–

3219. Available: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2013-04-499335. PMID: 24014240

32. Reuter S, Prasad S, Phromnoi K, Ravindran J, Sung B, Yadav VR, et al. Thiocolchicoside exhibits anti-

cancer effects through downregulation of NF-κB pathway and its regulated gene products linked to

inflammation and cancer. Cancer Prev Res. 2010; 3: 1462–1472. https://doi.org/10.1158/1940-6207.

CAPR-10-0037 PMID: 20978115

33. Rahgozar M, Pazokitoroudi H, Bakhtiarian A, Djahanguiri B. Diazoxide, a KATP opener, accelerates

restitution of ethanol or indomethacin-induced gastric ulceration in rats independent of polyamines. J

Gastroenterol Hepatol. 2001; 16: 290–296. https://doi.org/10.1046/j.1440-1746.2001.02433.x PMID:

11339420

34. Yamanishi H, Murakami H, Ikeda Y, Abe M, Kumagi T, Hiasa Y, et al. Regulatory Dendritic Cells Pulsed

with Carbonic Anhydrase I Protect Mice from Colitis Induced by CD4+CD25- T Cells. J Immunol. 2012;

188: 2164–2172. https://doi.org/10.4049/jimmunol.1100559 PMID: 22291189

35. Mizoguchi E, Xavier RJ, Reinecker HC, Uchino H, Bhan AK, Podolsky DK, et al. Colonic epithelial func-

tional phenotype varies with type and phase of experimental colitis. Gastroenterology. 2003; 125: 148–

161. https://doi.org/10.1016/s0016-5085(03)00665-6 PMID: 12851880
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