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Breast cancer remains a significant female mortality cause. It constitutes a multifactorial

disease for which research on environmental factors offers little help in predicting onset or

progression. The pursuit for its foundations by analyzing hormonal changes as a motive

for disease development, indicates that increased exposure to estrogens associates

with increased risk. A prevalent number of breast cancer cases show dependence on

the increased activity of the classic nuclear estrogen receptor (ER) for cell proliferation

and survival. SIRT1 is a Type III histone deacetylase which is receiving increasing

attention due to its ability to perform activities over relevant non-histone proteins

and transcription factors. Interestingly, concomitant SIRT1 overexpression is commonly

found in ER-positive breast cancer cases. Both proteins had been shown to directly

interact, in a process related to altered intracellular signaling and aberrant transcription,

then promoting tumor progression. Moreover, SIRT1 activities had been also linked to

estrogenic effects through interaction with the G-protein coupled membrane bound

estrogen receptor (GPER). This work aims to summarize present knowledge on the

interplay between SIRT1 and ER/GPER for breast cancer onset and progression. Lastly,

evidences on the ability of SIRT1 to interact with TGFß signaling, a concurrent pathway

significantly involved in breast cancer progression, are reported. The potential of this

research field for the development of innovative strategies in the assessment of orphan

breast cancer subtypes, such as triple negative breast cancer (TNBC), is discussed.
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INTRODUCTION

Breast cancer (BC) is the most frequent tumor in women and a prevailing cause for female
cancer mortality (1). It constitutes a multifactorial disease for which epidemiologic studies over
environmental determinants offer little help in predicting disease onset or progression, thus,
gender, aging, diagnosed first-degree relatives or previous history of BC remain dominant risk
factors (2, 3). The pursuit for BC causes over molecular biology techniques led to the establishment
of few genetic markers, such as BRCA1, BRCA2, or DBC-1, which driver mutation predispose for
disease while also explaining cases of familiar clustering; still, the majority of mutations detected
account for genes of low penetrance and frequently altered across genomes (4). Whilst, concurrent
research efforts tried to find a predictable BCmarker or cause based on hormonal changes.Although
for most of hormonal hypothesis proposed data is still inconclusive (2, 5), it is accepted
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that increased exposure to estrogens associates with higher risk,
while reducing exposure is believed to result in protection (6).
Therefore, factors such as early menarche, nulliparity or late
menopause are associated with enhanced BC likelihood.

Observations on BC incidence are thought to be significantly
contributed by the activities of classic nuclear hormone receptors
for estrogens and progesterone (ER, PR). This is supported
by tumor characterization using microarray techniques, which
allowed to discriminate BC subtypes on the expression of
key molecular markers including classic receptors. Applying
such methods, BC is classified in ascending order indicating
for aggressiveness: luminal-A; luminal-B (HER2–); luminal-
B (HER2+); HER2-enriched; and basal-like. The first three
subtypes share positivity for the expression of ER and/or PR
along with the presence or absence of the human epidermal
growth factor receptor 2 (Erb-B2; HER2), member of the
epidermal growth factor receptor (HER/EGFR/ERBB) family.
At last, the basal-like, which displays worsened prognosis
and develops predominantly in pre-menopausal women, is
characterized for the expression of specific basal-epithelium
markers such as keratins (7). However, in clinical practice,
cost-effective immunohistochemical methods are preferred to
determine receptor presence, as such sub-typing, while providing
prognostic information, also allow setting therapies to target
specific oncogenic markers (Table 1). The anatomopathological
absence of ER, PR, and HER2 led to the expression “triple
negative” (TNBC), discerning cases devoid for all three markers
(15). Worth noting, TNBC is somewhat regarded a surrogate
for basal-like, as 70–80% overlap has been described between
classifications (8, 16). In any case, while BC triage usually allows
for adapted treatments improving prognosis in receptor-positive
categories, that does not apply for TNBC cases, for which
the lack of targeted approaches frequently restrict options to
chemotherapy, with obvious consequences for the prognosis and
lethality of the disease (17).

Interest on histone deacetylases (HDACs) is expanding
as accumulated findings highlight their impact on regular
physiology and pathological condition, staying SIRT1 the most
studied (18). Sirtuins comprise a family of proteins (SIRT1–
7) described as type III HDACs relying on NAD+ availability
to perform a gatekeeping role in the configuration of the cell
transcriptome, function that appears highly dependent on the
cellular context and has been involved in a variety of biological
processes, from modulating energy metabolism to development
and cellular senescence (19–21). Intriguingly, Sirtuins in general
and SIRT1 in particular display a paradoxical role in cancer, with
histological studies showing increased or decreased expression
patterns upon cancer origin and/or stage (22–24). In that
sense, numerous contributions support the notion that SIRT1
activities influence hormone receptors (HR) actions, expressly
those mediating long-term estrogenic effects in the mammary
gland, namely the classic ERs, for which a relevant degree of
interdependence between these factors has been described with
apparent importance for BC onset and development. Moreover,
interaction between the anew membrane-bound G-protein
coupled estrogen receptor (GPER), which ubiquitously mediates
short-term estrogenic effects, and SIRT1 has been also proposed,

an interplay which could help fostering BC survivability and
progression. Altogether, the conjoint actions of SIRT1 and HRs
pose deep implications for BC onset and progression, which
turn significantly relevant for the case of drug-resistant cases and
conceivably HER2-enriched and TNBC. From that scope, this
review synthetizes current knowledge on this emerging field.

KNOWN IMPLICATIONS OF SIRT1 FOR
CANCER ONSET AND PROGRESSION

Initially described to deacetylate histones H1, H2, and H4
(18), SIRT1 is supposed to contribute to chromatin remodeling
beneficial for tumor progression. However, despite obvious
epigenetic capabilities, HDACs and SIRT1 current relevance for
cancer strive on their now known ability to act on different
substrates. SIRT1 is regarded an established modulator of
significant non-histone nuclear proteins, such as p53, E2F1,
or NF-kB (25, 26). SIRT1 overexpression has been related to
tumor cell survival through the deacetylation and subsequent
degradation of the p53 tumor suppressor (27, 28). Additionally,
SIRT1 is known to deacetylate the FOXO family of transcription
factors, resulting in repression of pro-apoptotic elements (29–
31). In this line, using both hormone-responsive and TNBC
models, MCF-7 and MDA-MB-231 cell lines respectively, SIRT1
has been found to localize to the promoters of silenced tumor
suppressor genes, state reverted upon SIRT1 activity inhibition
(32). Additionally, there is open debate on the ability of
SIRT1 to act over cytosolic targets, with proposed tumorigenic
implications related to PI3K/IGF-1R signaling (33, 34).

Moreover, SIRT1 shows a convoluted role in the regulation
of the epithelial-mesenchymal transition (EMT) process, with
apparent relevance in the case of reproductive tumors such
as prostate and BC (35, 36). Notably, SIRT1 has been found
to upregulate the expression of matrix-metalloproteinases in
BC cells, condition known to promote invasiveness (37, 38).
Moreover, SIRT1 activities seem to coordinate cancer stem cell-
EMT changeover through deacetylation of a complex circuitry of
transcription factors (39). To this regard, SIRT1 has been recently
found to interact with Smad proteins, TGFß signaling canonical
transducers (40). Interestingly, TGFß deregulation is regarded
a cornerstone for EMT and tumor dispersion, among others
markers, affecting the expression of matrix-metalloproteinases
(4). While having a demonstrated role on the degradation of the
inhibitory-Smad Smad7, SIRT1 has been also shown to relate
with receptor-regulated Smads (Smad2 and Smad3), possibly
coactivator-Smad Smad4 as well, in a process linked to altered
transcriptional output (36, 40–42). Consequently, such interplay
prompts for wide implications on cell transformation and tumor
progression/dispersion.

ESTROGEN SIGNALING AND BREAST
CANCER: THE ER PATHWAY

Among steroids, estrogens comprise a set of hormones involved
in the development and maintenance of the female reproductive
system, the main representative of which is 17ß-estradiol (E2),
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TABLE 1 | Breast cancer anatomopathological surrogate definitions based on immunohistochemical subtyping methods.

Definition marker Luminal A-like Luminal B-like

(HER2 negative)

Luminal B-like

(HER2 positive)

HER2 positive

(non-luminal)

Triple negative

(ductal)

Erb-B2 –* –* +* +* –*

ER + + + – –

PR + –/↓ + – –

Other relevant Ki-67↓ Ki-67↑ Ki-67 Cytokeratins**

Prevalence 30∼70% 10∼20% 10∼20% 15∼25%

Main treatment strategy Endocrine therapy Endocrine therapy

Cytotoxic

anti-HER2

Cytotoxic

Cytotoxic

Recurrence Risk ↓ ↑ ↓ ↑↑

SIRT1 ∼74% ∼55% ∼42%

Concurrent marker detection is achieved for establishing subtypes. Not mentioned minor special histological types may respond to targeted therapies. Erb-B2, human epidermal growth

factor receptor 2 (HER2); *overexpressed or amplified; ER, Estrogen Receptor; PR, Progesterone Receptor; Ki-67, proliferation marker; Cytokeratins, basal-like marker (8–14). **highly

overexpressed; ↓ low expression/risk; ↑high expression/risk; ↑↑very high expression/risk.

constituting a major hormonal input along the monthly cycle.
For its synthesis, androgens are converted into estrogens on
the action of CYP19A1, known as Aromatase, an enzyme being
mainly expressed in the ovaries but found in other tissues
including the mammary gland (43). ERα and ERß correspond
with the classic HRs responsible for E2 long-term effects (44).
Both receptors, along with PR, integrate into the nuclear receptor
family, which include sex steroids receptors as well as receptors
for corticosteroids (45). Its members mostly localize to the
nucleoplasm, but a minority of isoforms which help fine-
modulating the overall response may also appear at alternate
locations, involving a cytoplasmic-nuclear shuttling mechanism
(46, 47). Although ERα and ERß share significant sequence
homology, both receptors display unique expression patterns
depending on either tissue or organ. ERα signaling comes crucial
for the regulation of mammary gland development and function
(44), also contributing to cancer onset and progression. Elevated
ERα levels expressed in benign breast epithelium correlate with
enhanced BC risk, whereas estrogen-dependent cancers require
of E2 for cell survival and growth (44). Worth noting, PR
positivity can be usually regarded a surrogate of ER positivity, as
PR expression requires proper ER functioning to occur (48).

The principal ER activation mechanism requires E2 binding,
which allows conformational changes promoting receptor
dimerization and nuclear translocation to interact with estrogen
response elements (ERE) present in the DNA to regulate
transcription (44). Additionally, alternate mechanisms for ER
activation and modulation had been described through cross-
linking with signaling pathways like EGFR/PI3K/ERK, based on
changes of ER phosphorylation status (49, 50). Upon landing
on EREs, E2-ER complexes further recruit several co-activator
proteins such as p300, PPARγ, and PGCα, which leads to
histone acetylation and chromatin remodeling necessary for the
regulation of transcription (51).Moreover, active ERα also recruit
members of the FOXO family into transcriptomic complexes,
interplay that has been characterized to greatly influence
transcriptomic outcomes, with implications for mammary
morphogenesis, BC onset and progression to drug resistant states
(52–56).

At the clinic, hormone-responsive BC is usually managed
in a straightforward manner due to the multiplicity of
pharmacological approaches based in the use of Aromatase
inhibitors along with selective ER modulators and
downregulators, like Tamoxifen or Fulvestrant, which diminish
ER-mediated E2-responses at the breast (57). Consequently,
these cases are mostly associated with favorable prognosis. Still,
hormone-responsive tumors frequently transform over time
into an estrogen-independence status, gaining the ability to
proliferate in the absence of hormonal input. This conversion
usually becomes a critical step for BC clinical progression, as it
is related to increased aggressiveness. In that sense, ER-negative
cases at diagnosis are believed to have lost ERα expression over
time due to gene silencing, thus reducing therapeutic options
targeting HRs and thus associating with less favorable prognosis
(58).

ESTROGEN SIGNALING AND BREAST
CANCER: THE GPER PATHWAY

Despite the fact that classical HRs may be missing for some
BC cases, however, it is now acknowledged that estrogen
stimulation would still play a powerful role for the evolution
of the disease through the actions of membrane-coupled
ERs. Turning into the XXI century, the existence of a
membrane-coupled ER was revealed, that would be responsible
for most of E2 rapid physiological responses which at the
time lacked of proper molecular explanation. This marker
corresponded with a G-protein coupled receptor which could
be located both at the endoplasmic reticulum and the plasmatic
membranes (59, 60). Initial reports indicated that through
its binding to E2, GPER actions resulted in cAMP and
inositol triphosphate production, triggering intracellular calcium
mobilization. However, it was rapidly established that its actions
also resulted in the transactivation of diverse intracellular
signaling cascades including MAP-Kinases, PI3K, or eNOS (61–
63). In this line, further research also found GPER able to attune
E2-mediated transcription regulation. This was established on
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co-expression experiments showing the existence of a functional
cooperation between canonical-ERα-mediated and short-time-
GPER-mediated signaling through a mechanism relying on the
activationMAP-Kinases, capable of promoting post-translational
modifications such as altering ERα phosphorylation status
(64). Moreover, additional studies established GPER to be
ubiquitously expressed through both reproductive and non-
reproductive tissues (65), thus posing new challenges for the
understanding of estrogen physiology. In that sense, it was
not long before GPER was proposed to contribute for cancer
development (61). Still, GPER’s specific role for both neoplastic
transformation and cancer progression remains unclear, as its
actions seem to be highly depend on tissue origin (66). Yet,
although anatomopathological studies on GPER expression are
not included in routine clinical practices, in the case of estrogen-
dependent tumors and especially BC, several works show that
its altered expression can be associated with cancer progression,
supporting a potential prognostic value (67–69).

At the molecular level, diverse studies advocate for GPER’s
ability to affect cancer cell survivability and proliferation, by
influencing a myriad of signaling pathways responsible for cell
cycle regulation or apoptosis control. They also play a role in
the regulation of angiogenesis required for tumor nourishment
and development [reviewed at (66)]. Moreover, GPER signaling
has been proposed to distinctly affect cell migration and cancer
invasiveness. Calpains are non-lysosomal proteases that are
implicated in the regulation of cell adherence to the extracellular
matrix and motility (70). Interestingly, it was reported that
incubation of ER-negative BC cells with GPER agonists G-1
promoted Calpain-1 activity and altered adhesion to matrigel
(71). Also in this line, GPER has been described to adjust
EGFR/PI3K/ERK intracellular signaling, favoring expression
changes of migration markers such as SNAIL or ß1-integrin, as
well as altering plasticity of cellular adhesions by the activation
of the focal adhesion kinase (FAK) (72). Conjointly, these
abilities of GPER to promote viability and motility provide a
molecular framework for estrogen stimulation of cancer cells
despite ER-negativity. Notably, epidemiologic studies would
deem clinical functionality to these capacities, as prevalence for
GPER overexpression is found in HER2-enriched, basal-like and
TNBC cases, also associated with both distant metastasis and
recurrence (67, 73).

ESTROGEN SIGNALING AND BREAST
CANCER: NOTED SIRT1 INFLUENCE

Numerous contributions support the notion that SIRT1 activities
decisively impact HRs actions in relation to disease. With regard
to classic ERs, in cellular models, E2 stimulation has been found
to promote SIRT1 expression under direct influence of ERα

transcriptomic complexes, observation matched by the prevalent
detection of elevated levels for SIRT1manifested formost of ERα-
positive BC samples (74, 75). Interestingly, the ability of SIRT1
to interact with p300, PPARγ, and PGCα, ERα transcriptomic
co-activators, has been proved to affect chromatin remodeling,
disturbing developmental processes (76–78). Following studies
found SIRT1 inhibition resulted in suppressed ERα expression,

interfering with E2-dependent cell growth in healthy as well
as malignant mammary epithelial cells (79, 80). In this line,
inhibition of SIRT1 has been found to lessen ERα mediated
repression of NRF2-dependent detoxifying enzymes in MCF-7
cells (81).

Simultaneously, significant efforts had been put to apprehend
the effects of a less subtle SIRT1-ER interaction mechanism.
Interestingly, ERα has been found to relate to and be a target
for SIRT1. Upon E2-ERα activation, p300 stabilizes receptor
complexes through acetylation in a process that can be reversed
by SIRT1 (82). These findings initially suggested a SIRT1
inhibitory role over estrogen signaling. Still, changes in ERα

acetylation status are considered to have limited effects (83). On
the other hand, as previously mentioned, active ERα recruits
FOXO family members into transcriptomic complexes, factors
which also fall under SIRT1 spectrum of actions. Within the
BC context, a recent report showed FOXN3 to be able to
recruit SIRT1 into ERE-dependent transcriptomic complexes,
promoting reduced transcriptomic output (84). Interestingly,
alterations of FOXM1 and FOXO3a levels had been previously
linked to SIRT1 aberrant activity, especially in TNBC (85).

Regarding the interaction between SIRT1 and GPER,
knowledge is scarce. Nonetheless, using ER-negative HER2-
enriched BC cells, it was recently described that E2 actions via
GPER can result in SIRT1 overexpression through activation
of the EGFR/ERK/c-fos/AP-1 transduction pathway (86).
Interestingly, such induction contributed specifically to
enhanced cancer cell survival and proliferation, as it was reversed
by the use of SIRT1 inhibitors or GPER silencing as well. Notably,
these effects were also observed in cancer associated fibroblast
obtained from BC patients (86), posing challenging questions for
this interplay in BC progression.

PRESENT AND FUTURE CLINICAL VALUE
OF THE ESTROGEN SIGNALING/SIRT1
INTERPLAY

Finding ways to better screen and characterize BC, especially
drug-resistant cases and TNBC, constitutes a standing challenge
of cancer research. Efforts to establish a SIRT1 prognostic value
for BC are increasing, as its overexpression can be commonly
detected (9). Recent meta-analysis gathering non-connected data
sources, while finding association with higher tumor stage, failed
to detect correlation between SIRT1 expression levels and BC
overall survival; however, these works addressed statistics letting
out BC subtyping (87). Notwithstanding, a single retrospective
study incorporating 822 BC patients found SIRT1 expression
to correlate with tumor aggressiveness and reduced disease-
free-survival (DFS) (88). Interestingly, when BC subtyping is
considered, SIRT1 overexpression associates with ER-positivity
and likely shortened DFS (9). Moreover, while not associated
with HER2-enriched or TNBC status, concomitant SIRT1
overexpression successfully dictates for lymph-node metastasis
likelihood (9), observation which has been linked to the ability of
SIRT1 to promote an altered expression of key EMTmarkers such
as E-Cadherin, Vimentin, and SNAIL-1 (89). Hence, although
data so far may be considered insufficient or poorly curated,
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FIGURE 1 | Sirt1 overexpression contributes to Breast Cancer onset and progression. In breast cancer cells Sirt1 overexpression can be achieved independently

through either nuclear (ERα) or membrane bound G-protein coupled estrogen receptor (GPER) signaling. Total activity is also modulated by phosphorylation status.

Increased Sirt1 activities and interaction with diverse factors result in pleiotropic effects supporting cell survival and transformation for cancer onset. Continued activity

contributes to cell de-differentiation and epithelium to mesenchyme transition (EMT).

the accumulated evidence allows to consider SIRT1 histological
detection as a valuable marker for assessing BC status, also
providing hints on metastasis and relapse odds.

Per BC tumor progression, it is speculated whether SIRT1
has a role in determining tumor conversion to a drug-
refractory phenotype. It has been reported that SIRT1 activity
helps increasing expression of drug-resistance genes (90), in a
process that involves FOXO1 deacetylation and reverts upon
SIRT1 suppression (91, 92). Noteworthy, SIRT1 activity is
mainly regulated by upholding absolute protein levels with
little variation overtime (35), although modulation of its
actions depending on MAPK-mediated phosphorylation has
been also described (93). To this extent, two considerations

should be made. Firstly, it ought to be reminded that
estrogen signaling via either HR can augment SIRT1 levels
(74, 86). Interestingly, elevated SIRT1 levels has been reported
to promote increased Aromatase activity both in ER-positive
and TNBC cell lines (94), thereby allowing for local E2
production. Secondly, it should be noted that MAP-kinases
signaling can be activated by overexpressed HER2 subunits
dimerizing with EGFR and triggering the PI3K/ERK pathway
(95). Consequently, a SIRT1 potential role assisting evolution
to ER-independence turns reasonable, as deleterious abilities,
including aberrant modulation of p53 and FOXO or expression
of drug-resistance genes, could be maintained via SIRT1
overexpression depending on GPER signaling, perhaps also
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through MAP-kinases dependent activation. In that sense, recent
reports showing linkage between SIRT1 overexpression and
enhanced SRC and AKT activities in different TNBC cell lines
would support the latter notion (96, 97). Worth considering as
well, classic ERs and GPER display dissimilar behavior upon
exposure to pharmaceutical modulators like Tamoxifen and
Fulvestrant, which in the case of GPER appear to have an
agonistic function (66). Moreover, in cellular models, GPER
activation has been described to negatively affect ERα protein
levels (71), perhaps fostering the transition. Hence, considering
that solid tumors are composed by a clones plethora subject
to selective pressure, it is tempting to propose the monitoring
of SIRT1 expression/activity as source of information on the
efficiency of treatments related to tumor evolution at the
cellular scale. To this regard, procedures based on liquid-biopsy
techniques would offer an appropriate framework for such
approach (98).

On the aspect of treatments, many efforts had tried to assess
the potential of suppressing SIRT1 activities. However, after
several years, effects described on the many inhibitors discovered
and interference studies do not agree with each other. This
is regarded as the result of dissimilar mechanistic involved
in knocking-out or knocking-down the enzymatic activity and
also on the specificity of inhibitors used (99). Yet, modulators
of SIRT1 activity may still retain potential as co-adjuvant
treatments, due to sensitizing capabilities useful at specific BC
environments (100). In this sense, sirtuins in general, and
SIRT1 in particular, have been shown to interact with numerous
signaling pathways which decisively affect different aspects of
the cell physiology. That is the case with the recently described
interaction of SIRT1 with TGFß canonical-signaling-transducers,
the Smad proteins. SIRT1 has been found incorporated into
Smad-mediated transcriptomic complexes, its activity linked to
reduced Smad acetylation and decreased nuclear half-life (36,
40–42). Lack of proper TGFß response is considered a major
mechanism for EMT through regulating the expression of key
cell adherence and migration markers (4). Interestingly, this
TGFß dependent regulation involves the participation of FOXO
factors (101, 102). Hence, the overexpression of SIRT1 in BC
cells has the potential to facilitate aberrant regulation through
these system, thus contributing for the EMT process and cancer
progression. Moreover, as signaling via GPER and HER2 are
known to trigger MAP-Kinases activation, and activated MAP-
Kinases had been related to SIRT1 augmented activity, this
interplay provides an additional framework for the promotion of
both tumor ER-independence and EMT progression, potentially
offering opportunity to develop tailored strategies, which would
come particularly useful for the case of TNBC. Perhaps, next-
generation inhibitors, with better specificity and increased
potency, may provide advancements in this field.

Finally, a brief but necessary mention should be made on
non-coding RNAs. Increasing efforts attempt to discriminate
the relevance of both long-non-coding and micro-RNAs
in BC pathogenesis and progression, due to their dual
role as an additional prognostic information source and
potential therapeutic targets (103, 104). Not surprisingly, distinct
signatures could be found in BC depending ER status (105).

In that sense, exposure to either estrogens or selective ER
modulators had been shown extensively affect through classic
ERs the microRNA profile of different mammary cell lines (106).
Interestingly, within the BC context, SIRT1 activity appears to
be highly conditioned by the non-coding-RNA environment,
with several long- and microRNA species affected by endocrine
signaling being able to promote or downregulate its expression
(107, 108). Further research in this area may again probe helpful
for the development of strategies targeting intrinsic BC subtypes.

CONCLUDING REMARKS

The accumulated evidence prompts to consider SIRT1 as an
integrated player into the transduction network activated by
estrogens, both through ERs and GPER, in the mammary
tissue (Figure 1). This tight cooperation conceptualizes and
supports a SIRT1 promoting role in mammary tumorigenesis,
with meaning for both disease onset and progression. These
implications are to be considered both in the case of signaling
triggered upon endogenous estrogens exposure, also in the case
of exposure to environmental pollutants like xenoestrogens,
phytoestrogens, and other synthetic compounds; let aside for
the response to BC treatments based on estrogen modulators.
Consequently, SIRT1 detection has potential to become a
powerful prognostic indicator for tumor evolution and response
to chemotherapeutics. Moreover, a better understanding at the
molecular level of its cooperation and impact in the signaling
through connected pathways may provide opportunity for the
development of innovative therapy approaches in the assessment
of BC and particularly TNBC cases.
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