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ABSTRACT

Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant
fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf
and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m;
these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between
1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from
the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the
Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation
and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths
have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic
invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic
invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at
bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs
at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over
long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been
given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence
indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that
bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects
on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation
rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot
explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated
physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa
invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by
inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity,
or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a
physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to
high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution
response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could
contribute to the unimodal diversity–depth pattern.
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I. INTRODUCTION

Many macroevolutionary patterns display both ecological
and biogeographical components. Clear bathymetric
patterns have been identified in the extant biodiversity of the
deep continental margins, a region covering approximately
40% of the total ocean surface area (Fig. 1) (reviewed by
Merrett & Haedrich, 1997; Levin et al., 2001; Stuart, Rex
& Etter, 2003; Carney, 2005; Menot et al., 2010; Rex &
Etter, 2010). A unimodal diversity–depth pattern has been
indicated by qualitative (Rex, 1981) and quantitative (Etter &
Grassle, 1992) sampling studies in the western North Atlantic,
the most intensively sampled region of the deep sea. Diversity
appears depressed at upper bathyal depths and at abyssal
depths, with a peak in diversity at intermediate depths (Rex
& Etter, 2010), despite the relatively low area represented by
these depths (1000–3000 m represents approximately 13%
of the total ocean surface area; Fig. 1), at a level comparable
to the most diverse ecosystems known (Grassle & Maciolek,
1992; Levin & Dayton, 2009). Almost all organisms are
distributed between a high and a low depth limit (Pradillon
& Gaill, 2007) and geometric constraints models, which
stochastically place bathymetric ranges between boundaries,
have yielded unimodal patterns of diversity similar to
bathymetric gradients observed in the deep sea (Pineda
& Caswell, 1998). However, such models cannot explain
most characteristics of the parabolic bathymetric diversity
pattern, i.e. curvature, or the magnitude and position of the
peak (Pineda & Caswell, 1998; McClain & Etter, 2005). This
unimodal diversity pattern has been attributed to varied
environmental gradients, particularly in productivity and
disturbance (Paterson & Lambshead, 1995; Cosson-Sarradin
et al., 1998; Rex et al., 2005a), and a source–sink hypothesis
has been suggested for abyssal biodiversity where abyssal
populations are regulated by a balance between immigration
from bathyal sources and chronic extinction arising from
vulnerabilities to Allee effects (Rex et al., 2005b). Although
the first test of the source–sink hypothesis strongly suggests
that source–sink dynamics contribute to the unimodal
diversity pattern, it is also clear that species turnover
is more important at bathyal depths (Brault et al., 2012).
However, the mechanisms proposed to drive the unimodal
diversity–depth relationship do not consider the evolutionary

history of the deep-sea fauna. Speciation rates appear to
drive other biodiversity patterns (Allen & Gillooly, 2006);
consequently the unimodal bathymetric diversity pattern
may be influenced by discordance in the environmental
pattern of evolutionary origin (Stuart & Rex, 2009). Whilst
ecological processes tend to dominate over short time
periods and local scales, evolutionary processes are more
important over long time periods and regional or global
scales (Lambshead & Boucher, 2003), and it appears that
species diversity is driven largely by abiotic factors (for
review see Benton, 2009). The importance of considering
evolutionary processes is apparent in analysis of bathymetric
zonation in the deep sea.

Although the unimodal diversity pattern seems typical of
the western North Atlantic and also occurs widely in other
locations, data from some geographical regions suggest that it
may not be ubiquitous, being interrupted by oceanographic
conditions at specific depths such as oxygen minimum zones
(see Levin et al., 2001; Stuart et al., 2003; Menot et al., 2010;
Rex & Etter, 2010). The geological history of regions may also
contribute to the absence of unimodal diversity patterns with
depth. For example, following the Mediterranean Sea des-
iccation event ∼5.5 million years ago (Ma) (Krijgsman et al.,
1999) recolonisation by marine fauna may have been limited
to shallower species by the depth of the Mediterranean
sill, resulting in an impoverished Mediterranean deep-sea
fauna (see Tyler, 2003) without a clear unimodal diversity
pattern (Danovaro et al., 2010). Regardless of the absolute
global validity of the unimodal bathymetric diversity model,
bathymetric patterns of species turnover and zonation in
the deep sea are widespread (see Merrett & Haedrich, 1997;
Carney, 2005; Menot et al., 2010; Rex & Etter, 2010). Rapid
depth-correlated turnover in species composition is consis-
tently indicated at the shelf-slope transition between the shelf
break and 1000 m and at the slope-abyss transition between
2000 and 3000 m. Consequently, the shelf, continental slope,
and abyssal plain faunas are clearly distinct, suggesting that
these transitions are biodiversity bottlenecks (Fig. 1) (Carney,
2005; Menot et al., 2010). It remains uncertain which factors
play a dominant role in these distributional barriers but it
appears that thermal effects may contribute to bathymetric
zonation patterns since temperature-related shifts in the
upper transition zone have been identified, and zonal
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Fig. 1. Conceptual profile of a passive aseismic continental margin (Adapted from Gage & Tyler, 1991). Horizontal bars on the left
indicate percentage of total ocean surface area of each 100 m depth interval (note that this is not restricted exclusively to continental
margins) estimated from figure 9.2 in Mackenzie & Lerman (2006) (black scale bar = 5%; depths greater than 5000 m not shown).
In topographic terms, the continental shelf extends to the shelf break where the topographic gradient increases, characterising the
continental slope. The topographic gradient reduces onto the continental rise, formed by a thick slope-derived sediment wedge, and
reduces further onto the relatively flat abyssal plain. The continental margin comprises continental shelf, slope and rise; the deep
continental margin comprises continental slope and rise. Ecological zones are bathyal (200–4000 m) and abyssal (4000–6000 m).
Conceptual components of bathymetric patterns of diversity (Adapted from Carney, 2005; height = bathymetric range, width =
species richness) are included, representing three groups of species: upper boundary biota (UBB) species extend downwards from
or above the upper boundary of the deep continental margin but do not reach the lower boundary; lower boundary biota (LBB)
species extend upwards from or below the lower boundary of the deep continental margin but do not reach the upper boundary;
inter-boundary biota (IBB) species reach neither boundary. Shaded areas indicate depths of high species turnover consistently
identified in studies of bathymetric diversity (Carney, 2005). A unimodal diversity–depth pattern typically peaks between 1000 and
3000 m despite the relatively low area represented by these depths.

boundaries appear to become less distinct with increasing
latitude (see Carney, 2005). However, bathymetric zonation
persists in isothermal water columns, such as those at high
latitudes or in the Mediterranean Sea (see Carney, 2005).

These diversity patterns suggest that the deep-sea margin
ecosystem may offer novel contributions to ecological theory
(Levin & Dayton, 2009). Here, we relate bathymetric
zonation to the evolutionary history of the deep-sea fauna
and to a proposed physiological mechanism of distributional
limitation by high hydrostatic pressure and low temperature.
We discuss the emerging pattern of hyperbaric limitation
of shallow-water benthic invertebrate species and examine
adaptations of deep-sea fauna to prevailing environmental
conditions, to support the hypothesis that a physiological
bottleneck at bathyal depths is imposed by high pressure
and low temperature, and drives bathymetric zonation. We
review evidence for bathymetric variation in evolutionary
rate and hypothesise that a peak at bathyal depths
contributes to the unimodal diversity–depth pattern over
time. Finally, we hypothesise that this phenomenon may be
explained by a stress–evolution mechanism in response to
physiological effects of hyperbaric and thermal challenges.

II. ORIGIN OF THE DEEP-SEA FAUNA AND THE
COLONISATION OF THE DEEP SEA

The evolutionary origin and antiquity of the extant deep-
sea fauna remains uncertain with the contemporary fauna
appearing to comprise clades, which originated throughout
the ∼541 million years (Myr) of the Phanerozoic (Jablon-
ski et al., 1983; Jablonski & Bottjer, 1991). Over these
geological timescales there have been at least five (Raup
& Sepkoski, 1982; see also Harnik et al., 2012) relatively
sudden (c. 1–10 Myr; Briggs, 1995) major marine extinc-
tions, estimated to have eradicated at least half of marine
species (Briggs, 2003; but see Bambach, 2006). Although
some fauna appear to have survived these events (see e.g.
Thuy et al., 2012), in the most severe case approximately
half of all marine families (Sepkoski, 1986) and more than
95% of marine species (Raup, 1979; Benton & Twitchett,
2003) disappeared. Consequently, it has been suggested that
climate-driven dysoxic extinction events in the deep sea
and subsequent recolonisations have occurred on multiple
occasions (Wignall & Twitchett, 1996; Horne, 1999; Wil-
son, 1999; Rogers, 2000; Kiehl & Shields, 2005; Wignall,
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Newton & Little, 2005). General onshore–offshore patterns
of evolution have been reported from extensive analyses of
the fossil record of shelf communities of the Phanerozoic:
higher taxonomic level innovation occurred predominantly
in nearshore settings before expanding into offshore envi-
ronments, while rates of genera-level evolution appear to
be diversity dependent, shaped by clade-specific bathymet-
ric gradients (Jablonski, 2005, and references cited therein).
For example, scleractinian corals appear to have originated
∼237 Ma in shallow water (see Jablonski & Bottjer, 1991)
before invading the deep sea (Kitahara et al., 2010) perhaps
on several occasions during the last 65.5 Myr (Os’kina, Keller
& Nikolaev, 2010). Similarly, molluscs appear to have made
invasions of the deep sea from multiple shallow-water regions,
although no families or higher groups of mollusc appear to
have originated in the deep sea (Clarke, 1962; Allen, 1978).
Deep-sea fishes, too, appear to have originated in shallow
water before colonising the deep sea during the last ∼70 Myr
(see Merrett & Haedrich, 1997, and references cited therein).
For example, the fossil record of gadoid and macrouroid
fishes suggests origination in a shallow continental shelf envi-
ronment, but with adaptation to deep-water settings early in
their evolution prior to radiation (Merrett & Haedrich, 1997;
Kriwet & Hecht, 2008, and references therein).

Phylogenetic analyses have supported the relatedness of
extant deep-sea and shallow-water species, predominantly
consistent with diversification and invasion of deep-sea
environments from shallow water, albeit over differing
timescales. Bresiliid shrimp from deep-sea vents and seeps are
reported to have radiated less than 20 Ma and from shallow
ancestry (Shank et al., 1999; Tokuda et al., 2006). Similarly,
vesicomyid clams appear to have invaded the deep sea from
coastal habitats between 22 and 44 Ma, occupying cold seep
habitats before colonising hydrothermal vent environments
(Little & Vrijenhoek, 2003; Decker et al., 2012). Indeed,
other vent and seep fauna also originated relatively recently
in geological terms, within the last 100 Myr (see Little &
Vrijenhoek, 2003).

Pagodulid snails appear to have radiated even more
recently, from a shallow-water Antarctic lineage, and
colonised the deep sea approximately 3 Ma (Barco
et al., 2012). However, colonisation of the deep sea by
shallow-water Antarctic fauna is not exclusively recent. The
notothenioid fish species flock also appears to have radiated
in the last ∼21 Myr (Bargelloni et al., 2000), evolving in
Antarctic shallow water before invading the deep sea (see
Clarke & Johnston, 1996, and references therein). Molecular
phylogenetic evidence indicates that a deep-sea octopus lin-
eage invaded from shallow-water Antarctic origin, diverging
around 33 Ma and subsequently radiating 15 Ma (Strugnell
et al., 2008). Similarly, nudipleuran evolution is proposed to
have taken place around the cooling of Antarctica about 40
or 30 Ma prior to invasion of temperate and tropical seas
along northward flowing currents of Antarctic origin (see
Göbbeler & Klussmann-Kolb, 2010). Fossil evidence also
suggests submergence of shallow-water Antarctic bivalves,
gastropods, asteroids, crinoids and decapods into the deep

sea during this period (Zinsmeister & Feldmann, 1984).
Although the timing remains unclear, molecular evidence
indicates that palinurid spiny lobsters originated around
Antarctica, invading deep-sea habitats from shallower rocky
reefs and then radiating (Tsang et al., 2009).

Palaeontological and molecular data indicate that
echinoids have made migrations to the deep sea over
multiple timescales; generalist omnivores migrated to the
deep sea in low numbers over the last 200 Myr in contrast
to the majority of specialist detritivore clades, which made
independent off-shelf migrations between approximately 75
and 55 Ma (Smith & Stockley, 2005). Similarly, deep-sea
asellote isopods originate from at least four major and
independent migrations from shallow water: however, these
isopods are proposed to have invaded the deep sea prior
to the dysoxic events during the end-Permian extinction
event ca. 250 Ma (see Raupach et al., 2009; Lins et al., 2012).
Torquaratorid acorn worms also appear to have colonised
the deep sea prior to ∼250 Ma, invading from shallow water
before demonstrating an extensive radiation in situ (Osborn
et al., 2012). Bivalve molluscs were well represented in the
Ordovician (485–443 Ma) but also show evidence of more
recent radiations (Allen, 1978), e.g. deep-sea bathymodi-
olinid mussels found at hydrothermal vents and cold seeps
represent a recent evolutionary radiation from modern
shallow-water mytilid taxa as organic fall specialists (Distel
et al., 2000; Lorion et al., 2010), estimated to have occurred
21 Ma (Miyazaki et al., 2010). The deep-water lithodid crabs
also appear to have originated recently, with at least three
radiations from North Pacific shallow-water ancestors since
the evolution of the lithodids (Hall & Thatje, 2009) between
13 and 25 Ma (Cunningham, Blackstone & Buss, 1992;
but see McLaughlin, Lemaitre & Sorhannus, 2007). The
potential for depth-range extension and colonisation of the
deep sea by shallow-water species persists; there is evidence
that the echinoid sea urchin Echinus acutus is extending its
bathymetric range, indicating that migrations to the deep
sea are still occurring (Tyler & Young, 1998; Minin, 2012).

Reemergence from the deep sea has also been reported,
e.g. for lithodid crabs (Hall & Thatje, 2009) and possibly
for cylindroleberidid ostracods (Syme & Oakley, 2012; see
their discussion for contrasting conclusions from different
analytical methods). Further, some taxa originated in the
deep sea and ascended to shallow water. Following orig-
ination ∼62 Ma (Bernecker & Weidlich, 1990), molecular
phylogeny indicates stylasterid corals diversified extensively
in the deep sea before making three distinct invasions of
the shallow-water tropics and a single invasion of temperate
shallow water (Lindner, Cairns & Cunningham, 2008).
Similarly, chrysogorgiid soft corals and pennatulid sea pens
appear to have originated in the deep sea before radiating
globally and into shallow water (Dolan, 2008; Pante et al.,
2012). Molecular phylogeny indicates that freshwater
eels also originated in the deep ocean following invasion
from shallow water, reflecting their evolutionary origin in
their catadromous life cycle (Inoue et al., 2010). However,
examples of origination of higher taxonomic levels in the
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deep sea are relatively few, and the extant deep-sea fauna is
considered to result predominantly from both ancient and
more recent radiations of shallow-water lineages into deep
water (Horne, 1999; Wilson, 1999).

Since shallow-water fauna are adapted to relatively warm
conditions currently dominating the upper oceans except
at high latitudes, the low temperatures prevalent in the deep
sea are considered to limit invasion by such fauna (deep-sea
temperature is typically between 4 and −1◦C; Gage & Tyler,
1991). Consequently, it is believed that the colonisation of the
deep sea may have been limited to periods and regions with
an isothermal water column (Tyler, Young & Clarke, 2000).
Warm water columns are currently restricted to isolated
seas, e.g. water temperature is 21.5◦C at 2 km depth in the
Red Sea and is 13◦C at 4 km depth in the Mediterranean Sea
(Gage & Tyler, 1991), but were widespread in some earlier
geological periods. For example, the vertically homogenous
warm ocean of the late Mesozoic and early Cenozoic (with
deep-sea bottom temperatures up to 16◦C; Lear, Elderfield &
Wilson, 2000; Zachos et al., 2001; Cramer et al., 2011) could
have permitted invasion of deep water, later requiring adap-
tation to cold temperatures as the oceans gradually evolved
to the current psycrospheric state (Young, Tyler & Fenaux,
1997; Thatje, Hillenbrand & Larter, 2005). Invasion of the
deep sea by the majority of specialist detritivore echinoids
occurred during this period (Smith & Stockley, 2005). At
other geological times near-isothermal cold water columns
in regions of deep-water formation at high latitudes have
presented an opportunity for deep-sea invasion. Molecular
phylogeny has indicated Antarctic shallow water as the origin
of both deep-sea asellote isopods (>250 Ma; Raupach et al.,
2009) and deep-sea octopus (∼33 Ma; Strugnell et al., 2008)
during periods with low-temperature deep-water formation
at high latitudes (Horne, 1999), prior to deep-sea radiation.

In both warm and cold isothermal water columns the
major limiting factor for range extension into the deep sea
is predicted to be tolerance of high hydrostatic pressure
(Young et al., 1997; Thatje et al., 2005). Phylogenetic and
physiological studies have certainly emphasised thermal
and hyperbaric bottlenecks in an evolutionary context,
with passage to deeper water requiring adaptation to low
temperatures and high hydrostatic pressures (Macdonald,
1972; Menzies & George, 1972; Macdonald & Teal, 1975;
George, 1979; Hall & Thatje, 2009; Mestre, Thatje &
Tyler, 2009; Thatje, Casburn & Calcagno, 2010; Brown &
Thatje, 2011; Oliphant et al., 2011; Smith & Thatje, 2012).
Evidence of critical biological effects of hydrostatic pressure
and temperature could support the imposition of limits on
bathymetric distribution by these factors.

III. PHYSIOLOGICAL LIMITATION BY LOW
TEMPERATURE AND HIGH HYDROSTATIC
PRESSURE

Thermal tolerance is proposed to relate directly to the
physiological ability of an organism to avoid the transition

from aerobic to anaerobic metabolism, with a systemic to
molecular hierarchy of limitation (see Pörtner, 2001, 2002).
Under environmental conditions beyond optimum, the
homeostatic effort required to maintain internal conditions
within physiological tolerance boundaries increases. Low
temperatures have been shown to interrupt protein structure
for numerous proteins (for review see Privalov, 1990;
Kunugi & Tanaka, 2002; Marqués et al., 2003). Molecular
and physiological studies of cold stress suggest that this
can result in elevated protein chaperoning in response
to cold denaturation (Place & Hofmann, 2005; Schmid
et al., 2009). These protein chaperones counteract the
stabilisation of the secondary structures of RNA and
DNA and the consequent reduction in the efficiency of
translation, transcription, and DNA replication (Phadtare,
Alsina & Inouye, 1999), and may be required for ribosome
assembly at suboptimal temperatures (Gualerzi, Giuliodori
& Pon, 2003). Low temperature also decreases the fluidity
of biological membranes, significantly reducing membrane
function (Hazel, 1995). Mitochondrial activity increases
to facilitate the increased homeostatic effort, however
increased mitochondrial oxygen demand is not directly
matched by increased respiratory capacity delivered through
ventilation and circulation (e.g. Frederich & Pörtner, 2000).
Subsequently, a transition from aerobic to anaerobic
mitochondrial respiration occurs at the critical threshold
where mitochondrial oxygen demand exceeds the respiratory
capacity of the animal; survival under such conditions
is time limited. The effects of oxygen limitation on the
cardiac muscle are amplified as mitochondrial oxygen
demand increases ultimately forming a positive feedback
loop (Somero, 2005). Mitochondrial densities and their
functional properties appear to be critical in defining
thermal tolerance windows, e.g. at low temperatures the
aerobic capacity of mitochondria may become limiting for
ventilation and circulation. Adjustments in mitochondrial
densities and functional properties can shift temperature
envelopes tolerated by organisms (Sommer & Pörtner,
2002). However, integrated molecular modifications in
lipid saturation, kinetic properties of metabolic enzymes,
contractile proteins, and transmembrane transporters are
also essential for maintaining higher functions (Pörtner,
2002). Outside the optimal range basic metabolic processes
can be maintained before the critical threshold, but non-
essential processes such as growth, reproduction, feeding,
and voluntary movement are reduced (Cossins & Bowler,
1987; Peck, 1998; Peck, Webb & Bailey, 2004; Pörtner,
2004; Young, Peck & Matheson, 2006; Peck et al., 2007,
2008). At a species level diminished aerobic scope induced
by environmental factors may have significant impacts;
reductions in growth and reproductive output will affect the
survival of species (Pörtner, 2002). Complex animals rely on
ventilation and circulatory systems to supply their cells with
oxygen, and consistent with this oxygen-limitation hypothesis
inter- and intraspecific analyses have indicated that smaller
individuals survive to higher temperatures than larger ones
in marine species and that more active species survive higher
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elevated temperatures (Peck, Pörtner & Hardewig, 2002;
Pörtner, 2002; Peck et al., 2004, 2007, 2009 Pörtner, Peck
& Hirse, 2006; Pörtner, Peck & Somero, 2007). This may
explain the apparent preferential survival of small species
during extinction events (Cardillo, 2003).

There are significant physical effects of hydrostatic
pressure on proteins and lipoprotein membranes (reviewed
by Pradillon, 2012). Relatively moderate pressure increase
may induce protein subunit dissociation, and consequently
denaturing of enzymes (for review see Gross & Jaenicke,
1994; Mozhaev et al., 1996; Boonyaratanakornkit, Park
& Clark, 2002; Winter & Dzwolak, 2005). For example,
macromolecular protein assemblages such as cytoskeleton
tubulin and actin are dissociated by pressure in the range of
a few tens of MPa in shallow-water organisms, affecting basic
cell morphology and organisation (Kennedy & Zimmerman,
1970; Salmon, 1975a,b; Begg, Salmon & Hyatt, 1983;
Swezey & Somero, 1985; Bourns et al., 1988). Synthesis
of proteins is also susceptible to elevated pressure (Gross
& Jaenicke, 1994). Lipid bilayers of biological membranes
appear one of the most pressure-sensitive molecular assem-
blages (Wann & Macdonald, 1980; DeLong & Yayanos,
1985; Somero, 1992; Macdonald, 1997; Winter & Dzwolak,
2005); pressure increase orders structures and reduces
flexibility in lipids, nucleic acids and carbohydrates (Behan
et al., 1992; Balny, Masson & Heremans, 2002). An increase
in pressure of 100 MPa is equivalent to a decrease in temper-
ature of approximately 13–21◦C depending on membrane
composition (Somero, 1992); a temperature increase of
2.8◦C has been reported to reverse the reduction in mem-
brane fluidity imposed by a hydrostatic pressure of 10 MPa
(De Smedt et al., 1979). The effects of reduced membrane
functionality on action potential transmission in nervous cells
(Wann & Macdonald, 1980; Siebenaller & Garrett, 2002)
are clearly visible as a high-pressure neurological syndrome
in organisms exposed to pressures radically different from
those within their natural distribution; signs are motor
coordination impairment, spasm and even paralysis (Men-
zies & George, 1972; Macdonald & Teal, 1975; Wilcock,
Wann & Macdonald, 1978; Yayanos, 1981; Avrova, 1984;
Heinemann et al., 1987; Treude et al., 2002; Oliphant et al.,
2011). The interference can affect cardiac function (Mickel
& Childress, 1982b; Airriess & Childress, 1994), with clear
implications for aerobic scope. Observed respiratory and
cardiac responses to pressure change appear to support the
application of the oxygen-limitation hypothesis to hydro-
static pressure tolerance (George, 1979; Mickel & Childress,
1982a; Robinson, Thatje & Osseforth, 2009; Brown &
Thatje, 2011; Thatje & Robinson, 2011), with further con-
sistent indications that voluntary movement and feeding are
affected by hyperbaric conditions beyond optimum (Thatje
et al., 2010; Thatje & Robinson, 2011). Aerobic scope cer-
tainly appears the crucial factor setting tolerance limits (Peck
et al., 2002, 2004, 2009; Pörtner, 2002; Pörtner et al., 2006,
2007; Brown & Thatje, 2011; Thatje & Robinson, 2011).

Cellular responses to thermal and hyperbaric environ-
mental challenges can contribute directly to biogeographic

limitation (e.g. see Tomanek, 2010). The effects of increases
in pressure and temperature on proteins and lipid bilayers
of biomembranes are largely antagonistic within ecologically
relevant ranges (Balny, Mozhaev & Lange, 1997; Winter
& Dzwolak, 2005), suggesting that low temperatures and
high pressures may act together in limiting bathymetric dis-
tribution of species (e.g. Brown & Thatje, 2011). Cells of
atmospheric-pressure-adapted organisms respond to pres-
sure changes by altering synthetic capacity (Parkkinen et al.,
1993; Lammi et al., 1994; Smith et al., 1996). Analysis of tran-
scription in articular cartilage cells indicates up-regulation
of mRNA of several genes mediating growth arrest (Sironen
et al., 2002), and exposure to high pressure causes cellu-
lar growth arrest (Abe & Horikoshi, 2000; Koyama et al.,
2005) and decreased levels of mRNA of genes involved in
cell-cycle progression (Fernandes et al., 2004). Reduced lev-
els have also been reported for genes involved in protein
synthesis (Fernandes et al., 2004; Elo et al., 2005). However,
cells exposed to continuous high hydrostatic pressure regimes
have also responded by up-regulating several heat shock pro-
teins (Kaarniranta et al., 1998, 2000; Elo et al., 2000, 2005).
This response protects proteins from acute and chronic stress
by stabilising and refolding protein-folding intermediates or
by facilitating protein degradation (Morimoto et al., 1997),
and has recently been reported in atmospheric-pressure-
adapted shrimp exposed to high hydrostatic pressure and
without onset of systemic failure (Cottin et al., 2012). Simi-
larly, cold stress can result in elevated protein chaperoning
in response to cold denaturation (Place & Hofmann, 2005;
Schmid et al., 2009). Expression of cold shock proteins can
also be induced in organisms exposed to increased hydrostatic
pressure (e.g. Welch et al., 1993; Wemekamp-Kamphuis et al.,
2002). Considering the analogous effects of high hydrostatic
pressure and low temperature, such responses may be critical
to colonising the deep sea; the cold shock response of the
microorganism Listeria monocytogenes after exposure to 10◦C
for 4 h following culture at 37◦C, has been reported to result
in a 100-fold increase in survival of exposure to 300 MPa for
20 min (Wemekamp-Kamphuis et al., 2002).

Evidently, hydrostatic pressure and temperature both
have significant biological effects perturbing every level of
biological organisation sufficiently to limit biogeographic
range (Table 1). It appears likely that an organism’s capacity
for survival at any given depth is determined by the
sum of hydrostatic pressure and temperature interactions
(Sébert, 2002) in advance of other ecological considerations.
Experimental evidence assessing hyperbaric limitation
across a range of shallow-water benthic invertebrate taxa
at in situ temperatures at bathyal depths could support the
contribution of hydrostatic pressure to bathymetric zonation.

IV. TOLERANCE OF HIGH HYDROSTATIC
PRESSURE AND LOW TEMPERATURE

Recently, attempts to determine potential for invasion of the
deep sea have focused on mollusc and echinoderm propagule
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Table 1. Proposed timescales and known physiological effects of high hydrostatic pressure and low temperature, and responses
across hierarchical levels of organisation (see Sections III and VII)

Process Time scale Level Effects and responses

tolerance of hydrostatic pressure and low temperature in
shallow-water species, with and without close phylogenetic
links to deep-sea species, in order to test the validity of
theories of deep-sea colonisation (Young, Tyler & Emson,
1995; Young, Tyler & Gage, 1996; Young et al., 1997; Tyler
& Young, 1998; Tyler et al., 2000; Benitez Villalobos, Tyler
& Young, 2006; Aquino-Souza, Hawkins & Tyler, 2008;
Mestre et al., 2009; Smith & Thatje, 2012; Mestre, Brown
& Thatje, 2013). In all cases these studies have indicated
impressive pressure tolerances considerably beyond those
experienced in the known adult distributions of the study
species. However, although juveniles of several echinoderm
species are known to settle outside of the adult bathymetric
range these animals do not normally survive; growth in
these individuals is reported to be slower suggesting that
temperature and/or pressure may be important contributing
factors (Gage & Tyler 1981a,b; Sumida et al., 2000;
Sumida, Tyler & Billett, 2001; Howell, Billett & Tyler,
2002). These studies also suggest that hydrostatic pressure
tolerance is influenced by species’ thermal adaptive history.
Experimental evidence assessing tolerance to hydrostatic
pressure indicates that organismal tolerance to the effects
of high hydrostatic pressure can vary through ontogeny
(George, 1984; Young et al., 1997; Tyler & Young, 1998;
Tyler et al., 2000; Aquino-Souza, 2006; Benitez Villalobos
et al., 2006; Yoshiki et al., 2006, 2008, 2011; Aquino-Souza
et al., 2008; Smith & Thatje, 2012; Mestre et al., 2013).

It appears that tolerance increases following early cleavages
and subsequently decreases through further life-history stages
(e.g. Tyler et al., 2000). A mechanistic model has been
proposed to explain this pattern (see Mestre et al., 2013).
The absence of a stress response during embryogenesis, and
associated inability to counteract the effects of high pressure,
may cause early intolerance of pressure. The increasing
ability of larvae to express such a stress response may yield
the subsequent increases in tolerance. Increasing difficulty
in maintaining oxygen supply with greater organismal
complexity and size, in the absence of adaptations to high
hydrostatic pressure, may result in the following decreases in
tolerance. The only investigation of hyperbaric pressure
tolerance through embryonic, larval, juvenile and adult
life-history stages suggests that such differential tolerances can
drive ontogenetic bathymetric migrations in the Antarctic
krill Euphausia superba (George, 1984). Whilst knowledge of
larval tolerance to hydrostatic pressure and/or temperature
may be critical to understanding dispersal pathways and may
contribute, for example, to theories regarding hydrothermal
vent and cold seep colonisation (Tyler & Dixon, 2000;
Brooke & Young, 2009; Arellano & Young, 2011), it is
clear that studies involving adult organisms are also essential
to understanding bathymetric patterns of biodiversity and
evolution. Indeed, adult-specific genes have experienced
greater positive selection than those expressed in larvae
in the urchin Allocentrotus fragilis during adaptation to the
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deep-sea environment (Oliver et al., 2010). Recent studies
have highlighted the importance of holistic investigations
evaluating the physiological effects of pressure in a variety of
routine behaviours. For example, the metabolic requirements
of feeding in the shallow-water crab Maja brachydactyla

appear to be greater under hyperbaric conditions, potentially
critical in restricting bathymetric distributions (Thatje &
Robinson, 2011).

Thorough investigation of both temperature and
hydrostatic pressure tolerances of adult specimens of shallow-
water species are few and focus on crustaceans, but have also
demonstrated tolerance of pressures outside known natural
distributions (Naroska, 1968; Menzies & George, 1972;
Macdonald & Teal, 1975; George, 1979; Thatje et al., 2010;
Oliphant et al., 2011; Thatje & Robinson, 2011; Cottin et al.,
2012). For example, the shallow-water shrimp Palaemonetes

varians tolerates pressures equivalent to 1000 m depth for at
least a month and retains the ability to feed and successfully
moult at this pressure, despite naturally inhabiting depths
of less than 10 m (Cottin et al., 2012). Interaction of
temperature and pressure effects has also been identified
in behavioural and molecular responses of this species,
with lower temperature reducing critical pressure tolerance
and stimulating a significant molecular stress response at
pressure equivalent to 1000 m depth (Oliphant et al., 2011;
Cottin et al., 2012). Only a single organism-level study has
extensively examined the interaction of hydrostatic pressure
and temperature effects on a deep-sea species. Respiratory
measurements suggest that the 2000 m lower bathymetric
limit of the bathyal lysianassoid amphipod Stephonyx biscayensis

is determined by the combination of low-temperature and
high-pressure effects (Brown & Thatje, 2011). Beyond this
maximum depth limit oxygen consumption is significantly
reduced, indicating that oxygen supply is functionally
limited and suggesting that this restricts the bathymetric
range of this species. Seasonal acclimatisation to low
temperature appears to increase tolerance to hydrostatic
pressure (Naroska, 1968) implying that the requirements for
thermal and hyperbaric acclimatisation may be congruent.
Similar variation in hydrostatic pressure tolerance has been
reported for latitudinally distinct populations of a single
species, although genetic variation may contribute to this
pattern (Aquino-Souza, 2006). Surprisingly, however, limited
research has so far indicated that critical pressure tolerance
is unaffected by hydrostatic pressure acclimation (Mickel &
Childress, 1982a; Brown & Thatje, 2011).

Existing studies of hyperbaric pressure tolerance of
shallow-water benthic invertebrates consistently indicate
limitation at bathyal depths (Fig. 2; Table 2), coinciding
with regions of high species turnover. This pattern is
constrained by studies on larval molluscs and echinoderms
and adult crustaceans, demanding caution in adopting this
as a model for other taxa. However, this model suggests
that a physiological bottleneck for colonising shallow-
water organisms may contribute to establishing bathymetric
zonation. Since the onset of hyperbaric effects can occur
at lower pressure at low temperature (Thatje et al., 2010;

Brown & Thatje, 2011; Oliphant et al., 2011) this may
explain decreasingly distinct and blurring bathymetric zonal
boundaries with increasing latitude, despite the persistence
of such boundaries even in the Antarctic (e.g. Kaiser et al.,
2011). It is recognised that challenges across biological scales
can drive evolution over variable timescales (e.g. Peck,
2011), and adaptive traits appear to define the limits of
species distributions and to affect demographic dynamics
significantly (Carnicer et al., 2012). It therefore appears likely
that invasion of the deep sea by shallow-water taxa must
promote adaptation to the effects of the high-hydrostatic-
pressure and low-temperature environmental conditions.
Evidence of such adaptation would provide further support
for the role of these environmental factors in establishing
bathymetric zonation.

V. ADAPTATIONS TO HIGH HYDROSTATIC
PRESSURE AND LOW TEMPERATURE

The oxygen requirements of cold and deep-living
species do not appear to be elevated (Childress et al.,
1990; Peck & Conway, 2000; Drazen & Seibel, 2007;
Seibel & Drazen, 2007) suggesting they are functionally
adapted to high hydrostatic pressure and low temperature
(Childress, 1995). Adaptation to environmental conditions
can be demonstrated through comparison of natural
populations of related taxa (see Franks & Hoffman,
2012). Increased mitochondrial concentration, enzyme
concentration, adoption of enzymes with greater efficacy
at low temperatures, and inclusion of modulator compounds
that facilitate enzyme reactions, are all strategies identified
in successful adaptation to cold habitats (Hazel, 1995;
Clarke, 1998). Enzyme adaptation and modulation has
increased in importance in updated cold-adaptation models
(Clarke, 1998; Hochachka & Somero, 2002; Somero,
2003). In vitro evidence indicates that critical enzyme
functionality can be maintained under different pressure
and temperature regimes by changes of relatively few
amino acids at critical positions in a protein chain, or by
the inclusion of stabilizing compounds in the intracellular
matrix (Carney, 2005). Indeed, positive selection of genes
involved in metabolism is reported in the deep-sea urchin
Allocentrotus fragilis, in contrast to selection in the shallow-
water urchin Stronglyocentrotus purpuratus (Oliver et al., 2010).
Three categories of dehydrogenases have shown functional
depth adaptation (Somero, 1998) and the importance of
enzyme-stabilising compounds has been confirmed for the
osmolyte trimethylamine N-oxide, which counteracts the
effects of pressure by increasing cell volume (Yancey &
Siebenaller, 1999; Samerotte et al., 2007). Low molecular
weight compounds mediating pressure effects have been
reported from a variety of deep-sea fish, invertebrates and
microbes (Kelly & Yancey, 1999; Yancey & Siebenaller,
1999; Yin et al., 1999, 2000; Yancey et al., 2000, 2004; Yin
& Yancey, 2000; Fiess et al., 2001, 2002; Martin, Bartlett
& Roberts, 2002; Siebenaller & Garrett, 2002; Yancey,
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Fig. 2. Experimentally determined hydrostatic pressure tolerances (white bars) and reported adult bathymetric distributions of
shallow-water benthic invertebrate species (black bars). Tolerances presented are for the most developmentally advanced stage
examined at ecologically relevant temperatures and are determined by a variety of measures (see Table 2 for details). Studies
using coarse measures or temperatures not ecologically relevant are excluded. Asterisks indicate tolerance of the highest hydrostatic
pressure assessed. ◦, Note that the slight discrepancy in hydrostatic pressure tolerance and adult bathymetric distribution of Anonyx
nugax is likely to result from the resolution of pressure treatments used to assess hydrostatic pressure tolerance. Maximum tolerance
is consistently identified at bathyal pressures, indicating that temperature and pressure equating to these depths may impose a
physiological bottleneck at bathyal depths on shallow-water fauna colonising the deep sea following mass extinctions. This coincides
with high bathymetric turnover of species, suggesting that the hyperbaric and thermal physiological bottleneck contributes to
bathymetric zonation.

Blake & Conley, 2002; Yancey, 2005). Similarly, functional
depth adaptation has been identified in cytoskeletal actin
and tubulin filaments (Morita, 2003, 2004; Koyama et al.,
2005), with associated increase in thermal stability (Swezey
& Somero, 1982). Positive selection of genes involved in
skeletal development in the deep-sea urchin Allocentrotus

fragilis contrasts with selection in the shallow-water urchin
Stronglyocentrotus purpuratus and may reflect adaptation to
environmental effects of the deep-sea (Oliver et al., 2010).

The reduced fluidity of bio-membranes under increased
hydrostatic pressure and decreased temperature necessitates
homeoviscous adaptations in membrane structure and com-
position (Hazel & Williams, 1990; Balny et al., 2002). Accu-
mulation of higher levels of lipid and an increased proportion
of unsaturated fatty acids have also been observed, counter-
acting pressure- and temperature-induced decrease in mem-
brane fluidity (White & Somero, 1982; Avrova, 1984; Cossins
& Macdonald, 1984; Macdonald, 1984; DeLong & Yayanos,
1985, 1986; Phleger & Laub, 1989; Hazel, 1995; Sébert,
Theron & Vettier, 2004). Membrane fluidity may also be
maintained by adjusting concentration of sterols or proteins
(Winter & Dzwolak, 2005). Protein adaptations similar to
those proposed in Somero’s (2003) descriptive model have
been identified in the protein component of membranes,

where shifts in pressure induce changes in transmembrane
signalling (Siebenaller & Garrett, 2002; Campanaro, Treu
& Valle, 2008). Positive selection of genes involved in endo-
and exocytosis in the deep-sea urchin Allocentrotus fragilis is
in contrast to selection in the shallow-water urchin Strong-

lyocentrotus purpuratus and may indicate that membranes or
membrane-related functions have undergone environmental
selection (Oliver et al., 2010). Linear relationships between
such adaptations and the depth of capture in marine fish,
from shallow to > 4500 m, have been interpreted as causal
evidence for pressure adaptations (Cossins & Macdonald,
1986; Samerotte et al., 2007). Theoretical calculations of
homeoviscous adaptation in hadal organisms indicate that
this is not simply temperature compensation (Somero, 1992).

Adaptations to high pressure can result in near pressure
insensitivity, e.g. in malate dehydrogenases (see Somero,
1992), but it is not necessarily the case that all adaptations
confer this effect. Although it is clear that some bathyal
fauna can tolerate recovery from ∼2000 m and even flourish
at surface pressures for up to several years (e.g. Brown &
Thatje, 2011; Smith et al., 2013), low-pressure intolerance
has been reported for deeper bathyal and abyssal fauna
(e.g. Yayanos, 1981; Treude et al., 2002). This suggests that
deeper living fauna may display upper bathymetric limits

Biological Reviews 89 (2014) 406–426 © 2013 Natural Environment Research Council. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Explaining bathymetric diversity patterns 415

Table 2. Shallow-water benthic invertebrate species assessed for elevated hydrostatic pressure tolerance, indicating the most
developmentally advanced ontogenetic stage assessed, pressure treatment (pressures assessed, rate of pressurisation and duration of
exposure), tolerance measure (B, behaviour; R, respiration; D, development), and maximum pressure treatment tolerated (P tol) at an
ecologically relevant temperature (T ) determined from bathymetric profiles presented by Locarini et al. (2010). Studies using coarse
measures or temperatures not ecologically relevant are excluded

Taxon Stage Pressure treatment (MPa) Measure P tol (MPa) T (◦C) Reference

Crustacea
Crangon crangon Adult 0.1–20 stepwise (1 6 m−1) B 3.4 8 Wilcock et al. (1978)
Palaemonetes varians Adult 0.1–30 stepwise (1 5 m−1) B 10 5 Oliphant et al. (2011)
Sesarma reticulatum Adult 0.1–207 ramped (0.98 s−1) B 15 10 Menzies & George (1972)
Uca pugilator Adult 0.1–207 ramped (0.98 s−1) B 16.7 10 Menzies & George (1972)
Pagurus cuanensis Adult 0.1, 2, 5, 10 acute; 1 h R 5 10 Thatje et al. (2010)
Anonyx nugax Adult 0.1, 6, 14, 20, 25 ramped (0.4 m−1), 4 h B, R 14 −1 George (1979)
Marinogammarus marinus Adult 0.1–40 stepwise (5 5 m−1) B 10 3 Macdonald (1972)
Talorchestia sp. Adult 0.1–207 ramped (0.98 s−1) B 23.2 10 Menzies & George (1972)
Tmetonyx cicada Adult 0.1–50 stepwise (5 5 m−1) B 33.5 6 Macdonald & Gilchrist (1978)
Mollusca
Crepidula fornicata Larva 0.1, 5, 10, 15, 20, 25, 30, 35, 40 B 15 10 Mestre et al. (2013)
Buccinum undatum Juvenile 0.1, 10, 20, 30, 40 acute; 4 h R 20 6 Smith & Thatje (2012)
Patella ulyssipoensis Larva 0.1, 5, 10 acute; 24 h B 10 10 Aquino-Souza (2006)
Patella vulgata Larva 0.1, 5, 10 acute; 24 h B 5 10 Aquino-Souza (2006)
Mytilus edulis Embryo 0.1, 10, 20, 30, 40, 50 acute; 24 h D 20 10 Mestre et al. (2009)
Echinodermata
Asterias rubens Larva 0.1, 5, 10, 15, 20 acute; 24 h B 20 5 Benitez Villalobos et al. (2006)
Marthasterias glacialis Larva 0.1, 5, 10, 15, 20 acute; 24 h B 20 5 Benitez Villalobos et al. (2006)
Arbacia lixula Larva 0.1, 5, 15, 25 acute; 20 h B 25 10 Young et al. (1997)
Echinus acutus Larva 0.1, 10, 20, 25 acute; 24 h B 20 4 Tyler & Young (1998)
Echinus esculentus Larva 0.1, 10, 20, 25 acute; 24 h B 10 4 Tyler & Young (1998)
Paracentrotus lividus Larva 0.1, 5, 15, 25 acute; 20 h B 25 10 Young et al. (1997)
Psammechinus miliaris Larva 0.1, 5, 10, 15, 20 acute; 24 h B 20 5 Aquino-Souza et al. (2008)
Sphaerechinus granularis Larva 0.1, 5, 15, 25 acute; 20 h B 15 10 Young et al. (1997)
Sterechinus neumayeri Larva 0.1, 5, 10, 15, 20, 25 acute; 24 h B 10 0.9 Tyler et al. (2000)

imposed by reduced hydrostatic pressure. These limited data
appear to offer further support for a physiological bottleneck
at bathyal depths.

Hyperbaric and thermal effects do appear to have made
significant adaptive demands on shallow-water organisms
colonising the deep sea, further supporting the influence of
these factors in establishing bathymetric zonation patterns.
However, it is not immediately clear how the physiological
effects of hydrostatic pressure or low temperature could
contribute to the unimodal pattern of diversity with depth,
despite diversity typically peaking at similar depths to the
proposed physiological bottleneck even though the area
represented by these depths is relatively low. Is there other
evidence suggesting a cause for this bathymetric diversity
phenomenon?

VI. BATHYMETRIC VARIATION IN EVOLUTION

Variation in the production of novel taxa has been
identified as causative of another, somewhat analogous,
evolutionary pattern in biodiversity. A meta-analysis of
nearly 600 latitudinal biodiversity gradients assembled
from the literature has corroborated the high generality of

the latitudinal diversity decline, including for the marine
environment of both hemispheres (Hillebrand, 2004a,b), a
phenomenon which has prompted much discussion (e.g. see
Rohde, 1992). Mid-domain effects have been shown to be
inconsistent with these broad-scale patterns of species rich-
ness (Currie & Kerr, 2008). Recent assessment of the global
patterns and predictors of marine biodiversity identified sea
surface temperature as the only environmental predictor
related to diversity across all taxa examined (Tittensor et al.,
2010), in agreement with the ‘out of the tropics’ dynamic
(Jablonski, Roy & Valentine, 2006) and the time hypotheses
(Mittelbach et al., 2007). Since biodiversity patterns appear
to be driven by speciation rates (Allen & Gillooly, 2006),
kinetic effects of temperature on rates of genetic divergence
and speciation have been proposed as the mechanism by
which temperature plays a fundamental role in structuring
cross-taxon marine biodiversity (Allen, Brown & Gillooly,
2002; Brown et al., 2004; Allen et al., 2006; Tittensor et al.,
2010). These are likely manifested through the effects of
metabolic rate on generation time (Thomas et al., 2010) and
mutation rate (Gillooly et al., 2001, 2005; Savage et al., 2004;
but see Held, 2001; Lanfear et al., 2007), two fundamental
variables influencing the rate of evolution (Kimura, 1983).
Studies of incipient speciation and microevolution have
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shown faster rates of microevolution in marine foraminifer-
ans, plants and mammals occupying low latitudes (Allen
et al., 2006; Wright, Keeling & Gillman, 2006; Gillman
et al., 2009); phylogenetic and palaeontological evidence
on rates of diversification and origination also support this
hypothesis (Mittelbach et al., 2007). It has been argued
that tropical diversification is further increased by positive
feedback from sympatric speciation once standing diversity
reaches a particular threshold (Briggs, 2003, 2007). Despite
the complex Cenozoic history of the marine environment,
tropical origination rates have left a permanent mark on the
taxonomic and biogeographic structure of the modern biota
(Krug, Jablonski & Valentine, 2009), including the deep
sea (e.g. Macpherson et al., 2010). Clearly, although it may
have some bearing on latitudinal gradients that have been
reported in deep-sea species diversity (Rex et al., 1993), such
a temperature-dependent evolutionary-rate mechanism is
unlikely to explain the unimodal bathymetric pattern of
diversity alone since temperature typically decreases with
increasing depth. Other factors have been suggested to
influence speciation rates that may be ecologically relevant
in a deep-sea context (see McClain, Rex & Etter, 2009),
however little consideration has been made of the potential
role of hydrostatic pressure. Despite depth often being the
best predictor of diversity, and apparently contributing to an
evolutionary biodiversity bottleneck, it is generally believed
that depth is not itself a primary driver of diversity (Levin &
Dayton, 2009).

Although evolutionary rates reflect the interplay of muta-
tion with selection and genetic drift (Kimura, 1983; Baer,
Miyamoto & Denver, 2007), molecular and morphological
analyses across a range of invertebrate taxa have indicated
that there is greater potential for population differentiation
and speciation at bathyal depths between ∼500 and
∼3300 m (France & Kocher, 1996a,b; Chase et al., 1998;
Etter et al., 1999, 2005, 2011; Kojima et al., 2001; Quattro
et al., 2001; Oliver et al., 2010; Syme & Oakley, 2012). For
example, speciation in cylindroleberidid ostracods living
deeper than 1000 m is estimated to be twice as rapid as in
cylindroleberidids living shallower than 1000 m (Syme &
Oakley, 2012). There are persistent suggestions of cryptic
speciation, which may be consistent with directional selection
on ecological traits and is suggested to be non-random with
regard to biome (Bickford et al., 2007), in addition to reports
of strong genetic variation over relatively small distances,
consistently associated with differences in depth (Doyle,
1972; Siebenaller, 1978; Bucklin, Wilson & Smith, 1987;
France, 1994; France & Kocher, 1996a,b; Creasey et al.,
1997, 2000; Chase et al., 1998; Creasey & Rogers, 1999;
Etter et al., 1999, 2005, 2011; Morita, 1999; Kojima et al.,
2001; Quattro et al., 2001; France & Hoover, 2002; Goffredi
et al., 2003; Rogers, 2003; Weinberg et al., 2003; Howell
et al., 2004; Le Goff-Vitry, Rogers & Baglow, 2004; Held
& Wägele, 2005; Zardus et al., 2006; Raupach et al., 2007;
Brandão, Sauer & Schön, 2010; Cho & Shank, 2010; White,
Stamford & Hoelzel, 2010; Boyle, 2011; Ingram, 2011;
Miller et al., 2011; Morrison et al., 2011; Schüller, 2011;

White, Fotherby & Hoelzel, 2011; Baco & Cairns, 2012;
Knox et al., 2012; Quattrini et al., 2013). Although many shelf
fauna appear to penetrate to great depth in the Antarctic
(Brey et al., 1996), it has been suggested recently (Rogers,
2007) that cryptic species with distinct bathymetric ranges
(e.g. Held & Wägele, 2005; Raupach et al., 2007; Brandão
et al., 2010; Schüller, 2011) may challenge the concept of
extended eurybathy reported for Antarctic fauna (Brey
et al., 1996). Indeed, as genetic analyses proliferate cryptic
speciation is increasingly reported in the Antarctic fauna
(e.g. Allcock et al., 1997; Rogers, Clarke & Peck, 1998; Page
& Linse, 2002; Held, 2003; Raupach & Wägele, 2006; Linse
et al., 2007; Raupach et al., 2007; Wilson et al., 2007; Hunter
& Halanych, 2008; Lörz et al., 2009; Krabbe et al., 2010)
on the depressed continental shelf (average depth 450 m,
extending, in places, to over 1000 m; Clarke & Johnston,
2003). It has been suggested that Antarctica may be a
hotspot for this phenomenon (Grant et al., 2011). By contrast,
extremely low genetic diversity has been identified in abyssal
organisms (Bisol, Costa & Sibuet, 1984; France & Kocher
1996a,b; Etter et al., 2011). Similar trends have been reported
in phenotypic variation (Etter & Rex, 1990; Rex & Etter,
1990, 1998; Rex et al., 1999). There are also suggestions of
low mutation rates in the deep-sea lithodid crab sub-family,
Lithodinae (Hall, 2010). This pattern has prompted the
proposition that the continental margins may be the primary
site of adaptive radiation in the deep sea (Etter et al.,
2005) and the establishment of the ‘depth-differentiation
hypothesis’ focusing on spatial and temporal environmental
heterogeneity as the primary driver of evolution (Etter
et al., 2011). Links have been proposed between genetic
diversity and species diversity with congruent patterns of
phenotypic and genetic divergence (see Rex & Etter, 2010,
and references therein). The implied elevation in speciation
rate at bathyal depths between ∼500 and ∼3000 m would
subsequently lead to higher diversity (Mittelbach et al.,
2007), consistent with the unimodal bathymetric biodiversity
pattern reported for, for example, the lithodid king crabs
(Zaklan, 2002; Hall & Thatje, 2009; McLaughlin et al., 2010),
and notothenioid (Clarke & Johnston, 1996) and macrourid
fishes (Merrett & Haedrich, 1997, and references therein).

Over time a bathyal peak in evolutionary rate clearly could
result in a unimodal pattern of diversity peaking at these
depths, despite the relatively low area they represent. Conse-
quently, it appears a distinct possibility that an evolutionary
role for high hydrostatic pressure and low temperature
may have been neglected. Indeed, reanalysis of existing
diversity–depth data using quadratic depth and temperature
functions may offer evidence for such a role. But how could
these factors stimulate the rate of evolution at bathyal depths?

VII. THE STRESS-INDUCED EVOLUTIONARY
MECHANISM IN THE DEEP SEA

Existing evidence suggests that adaptive radiation is the pre-
dominant mode of biological diversification (see Glor, 2010,
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and references therein). It seems apparent from species
invasions that adaptive change can occur rapidly and that
severe population bottlenecks do not preclude rapid adapta-
tion (Sax et al., 2007). Links between evolutionary innovation
and environmental stress have been proposed several times
(see Jablonski, 2005) and molecular evidence has suggested
potential mechanisms for such a stress–novelty link. Intrage-
nomic site-specific mutation rates can vary across orders
of magnitude and it has subsequently been suggested that
mutation rates may be higher in sequences critical for adapta-
tion, leading to rapid divergence even among closely related
species (King & Kashi, 2009). It has been proposed that the
absence of a stress response during embryogenesis and subse-
quent increased mutation in germ cells resulting from DNA
damage may accelerate evolutionary processes (Epel, 2003).
Although adaptation can arise due to a new mutation (see
Rosenberg, 2001, and references therein), most adaptive alle-
les among identified adaptive loci seem to have been present
as standing genetic variation (see Stapley et al., 2010, and ref-
erences therein). Bathymetric macroecological patterns may
also derive from the stress–novelty link through inactiva-
tion of a canalisation system by physiological stresses during
embryonic or larval development, induced by the effects of
high hydrostatic pressure and low temperature around the
suggested physiological bottleneck at bathyal depths (Tables
1 and 2; Fig. 2). This adaptive canalisation has been suggested
to occur in extreme environments (Eshel & Matessi, 1998);
the physiological effects of bathyal hydrostatic pressures and
temperatures suggest that the deep sea constitutes such an
environment for shallow-water species (Hall & Thatje, 2009;
Thatje et al., 2010; Brown & Thatje, 2011).

The ubiquitous cellular stress response affords cells a tran-
sient increase in tolerance to any form of damage-inflicting
environmental challenge in larval and adult organisms,
allowing time for stressor-specific adaptation to re-establish
cellular homeostasis (Kültz, 2003, 2005). Such adaptive vari-
ation may be achieved by a single amino acid substitution
in a protein and in response to only moderate environ-
mental change (Somero, 2012). Exposure to high pressure
has been shown to trigger an increase in the expression of
stress proteins in organisms adapted to atmospheric pres-
sure (Welch et al., 1993; Takahashi et al., 1997; Kaarniranta
et al., 1998, 2000, 2003; Elo et al., 2000, 2003, 2005; Sironen
et al., 2002; Wemekamp-Kamphuis et al., 2002), apparently
as a sustained response (Cottin et al., 2012). It has also been
suggested that molecular chaperones such as these stress
proteins, expressed when an organism is exposed to envi-
ronmental extremes (Feder & Hofmann, 1999), can act as
evolutionary capacitors regulating hidden variation or muta-
genic activity, occasionally resulting in adaptive phenotypes
(e.g. Rutherford & Lindquist, 1998; Bergman & Siegal, 2003;
Madlung & Comai, 2004; Sangster, Lindquist & Queitsch,
2004; Jarosz & Lindquist, 2010; Chen et al., 2012; for review
see Jarosz, Taipale & Lindquist, 2010; Taipale, Jarosz &
Lindquist, 2010). Although the absence of a heat shock
response has been reported for some Antarctic marine inver-
tebrates in response to temperature (Clark, Fraser & Peck,

2008c), this is not a universal phenomenon (Clark, Fraser
& Peck, 2008b; Clark et al., 2008d, 2011) and has been
attributed to constitutively high levels of inducible isoforms
(Place, Zippay & Hofmann, 2004; Place & Hofmann, 2005;
Clark et al., 2008a) maintaining the possibility of contribution
to a stress–evolution mechanism in that habitat. Indeed,
given the unusually deep Antarctic continental shelf, the
stress–evolution mechanism induced by high pressure and
low temperature may also contribute to the high diversity and
cryptic speciation among the taxa present in the Southern
Ocean relative to latitudinal trends (Brandt et al., 2007; Grant
et al., 2011), perhaps in concert with frequent fluctuation in
the extent of the grounding line of the continental ice sheet
across the continental shelf during Late Cenozoic glacial
periods (Clarke & Crame, 1997; Thatje et al., 2005). Envi-
ronmental stress may also activate or release transposable
elements and it has been argued that these represent a source
of significant evolutionary innovation (e.g. McClintock, 1984;
McDonald, 1990, 1995; Kidwell & Lisch, 1997, 2001;
Shapiro, 1999, 2005; Lisch, 2009; Casacuberta & González,
2013). Exposure of organisms to high pressure has resulted
in such mobilisation of transposable elements (Aertsen &
Michiels, 2005; Lin et al., 2006), and alteration of methy-
lation patterns of mobile elements has also been reported
following hydrostatic pressurisation (Long et al., 2006).

Mutation in germ cells, adaptive canalisation during
embryonic or larval development, release of hidden genetic
variation or mutagenic activity, or activation or release
of transposable elements in larvae or adults, increase
genetic or phenotypic variation. Elevated variation unrelated
to hydrostatic pressure tolerance may promote increased
parapatric or sympatric speciation into vacant niches,
whilst taxa remain bathymetrically constrained (Fig. 3).
Models of range restriction by gene flow along gradients,
in the absence of sharp environmental boundaries, suggest
increased adaptation in peripheral populations in the absence
of competition, as may have been the case during colonisation
of the deep sea following mass extinctions (see Carney, 2005,
and references therein). By contrast, variation that results
in increased tolerance of hydrostatic pressure may promote
parapatric or peripatric speciation past the high hydrostatic
pressure and low temperature induced bottleneck at bathyal
depths, simultaneously reducing environmental stress and
the subsequent evolutionary response, returning speciation
to the background rate or perhaps even constraining it
further. These varied forms of evolution constitute important
sources for marine biodiversity (Briggs, 2006). Affected genes
may represent speciation genes (see Nosil & Schluter, 2011).
Such speciation would be consistent with the ecological
hypothesis of speciation (Schluter, 2001). Under such
circumstances elevated rates of evolution may occur at
genus and species level at bathyal depths. This is consistent
with elevated origination observed on the deep continental
margin (Fig. 3), yielding a unimodal pattern of diversity
with depth. High incidence of cryptic repeated elements
in regions flanking microsatellites, which are associated
with transposable elements, has been reported in examined
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genomes of deep-sea galatheid squat lobsters (Bailie, Fletcher
& Prodöhl, 2010), hinting at recent elevated transposable
element activity or mutation. Analysis of the genus Paramunida
suggests a period of rapid diversification following origination
between 17 and 21 Ma (Cabezas et al., 2012), and the deep-
sea galatheids of the Pacific Ocean continental slope display
a unimodal pattern of diversity peaking at around 650 m
(Macpherson et al., 2010). Stress-protein-regulated genetic
variation appears to preserve phenotypic robustness in
addition to providing a broad conduit to diversification
(e.g. Jarosz & Lindquist, 2010), and this mechanism may also
offer an explanation for lower production of ordinal-level
novel taxa in the deep sea. Although the stress effects of high
pressure and low temperature could be compounded by other
factors, e.g. deep-water hypoxia in oxygen minimum zones,
it is unlikely that stress-induced variation alone is responsible
for bathymetric macroecological patterns. Any effects on
variation could be enhanced by e.g. the vicariance-mediated
speciation effect proposed for transient oxygen minimum
zones (White, 1987; Rogers, 2000; Levin & Sibuet, 2012),
amongst other potential barriers to gene flow on continental
margins (see Rex & Etter, 2010).

It is clear that understanding marine evolutionary
dynamics demands increased knowledge of links between
continental margin fauna (Clarke & Crame, 2010). Demon-
stration of intrinsic or emergent tolerance to high pressure
and low temperature in taxa with well-constrained radiation
and speciation from shallow water into the deep sea may
ultimately help to explain the evolution of bathymetric
biodiversity patterns in the deep sea. Given that we may be
within a sixth mass extinction (Barnosky et al., 2011) better
understanding of the evolutionary impact of stress-driven
adaptation is of paramount importance for assessing both
the potential resilience and recovery of marine biodiversity.

VIII. CONCLUSIONS

(1) Following climate-driven dysoxic mass extinctions in
the deep sea, shallow-water organisms have recolonised
the deep sea and the extant deep-sea fauna appears
predominantly to comprise both ancient and more recent
radiations of shallow-water lineages. The physiological effects
of high hydrostatic pressure and low temperature across
hierarchical levels of biological organisation appear capable
of limiting the distribution of such shallow-water species.
Experimental assessment of hyperbaric limitation across
a range of shallow-water taxa supports the proposition
of a physiological bottleneck at bathyal depths, imposed
by the combined effects of high hydrostatic pressure
and low temperature. Organisms inhabiting the deep sea
appear to be functionally adapted to the high-pressure
and low-temperature conditions that prevail, suggesting
that hyperbaric and thermal effects have made significant
adaptive demands on shallow-water organisms colonising
deeper water. Together this supports the hypothesis that

UBB

IBB

LBB

Time

Fig. 3. Scenario for colonisation of the deep sea following
dysoxic mass extinction. An enduring upper boundary biota
(UBB) species extends its distribution downslope to a taxon-
specific maximum depth at the physiological bottleneck
determined by interacting effects of high hydrostatic pressure
and low temperature (solid line). At this limit hyperbaric and
thermal stress increases mutation in germ cells, inactivates
canalisation during embryonic or larval development, releases
hidden genetic variation or increases mutagenic activity, or
activates or releases transposable elements in larval or adult
organisms, increasing genetic or phenotypic variation. Greater
variation unrelated to hydrostatic pressure or temperature
tolerance results in significantly increased parapatric or
sympatric speciation of UBB species or inter-boundary biota
(IBB) species into niches left vacant by mass extinction
(dotted lines). These remain bathymetrically constrained by
the combined effects of high hydrostatic pressure and low
temperature. Species remain under stress promoting continuing
elevated variation, and speciation rate remains increased.
Variation increasing tolerance of high hydrostatic pressure or
low temperature instead results in parapatric or peripatric
speciation of lower boundary (LBB) species (dashed lines).
Increased tolerance of high hydrostatic pressure or low
temperature diminishes the stress effect and returns variation
to background rate. The differential rates of speciation over
time result in the unimodal pattern of biodiversity with
depth. Experimental evidence indicates consistently that critical
pressure and temperature conditions for shallow-water benthic
invertebrate species equate to the bathyal environment, and
the unimodal diversity–depth pattern typically peaks at these
depths.

a hyperbaric and thermal bottleneck at bathyal depths
contributes to bathymetric zonation.

(2) A unimodal pattern of diversity with depth typically
peaks at similar depths to the proposed physiological
bottleneck. It is recognised that speciation rates contribute
to a similar latitudinal pattern in shallow-water diversity.
Existing molecular and morphological evidence supports
the proposition that bathyal depths are the primary site of
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adaptive radiation in the deep sea. We hypothesise that a
peak in speciation rates at bathyal depths could establish the
unimodal bathymetric biodiversity pattern over time.

(3) We hypothesise that demonstrated physiological
effects of high hydrostatic pressure and low temperature
may promote a stress–novelty evolutionary mechanism,
increasing mutagenic activity in germ cells, inactivating
canalisation during embryonic or larval development,
releasing hidden variation or mutagenic activity, or activating
or releasing transposable elements in larvae or adults.
In this scenario speciation rate is increased at bathyal
depths resulting in production of novel taxa. Adaptation
that increases tolerance to high hydrostatic pressure and
low temperature allows colonisation of abyssal depths
and reduces the stress–evolution response, consequently
returning speciation in deeper taxa to the background rate.
Over time this mechanism could contribute to the unimodal
diversity–depth pattern.
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3–32. Cambridge University Press, Cambridge.

Clarke, A. & Crame, J. A. (1997). Diversity, latitude and time: patterns in the shallow
sea. In Marine Biodiversity: Patterns and Processes (eds R. Ormond, J. D. Gage and M.
V. Angel), pp. 122–147. Cambridge University Press, Cambridge.

Clarke, A. & Crame, J. A. (2010). Evolutionary dynamics at high latitudes: speciation
and extinction in polar marine faunas. Philosophical Transactions of the Royal Society of

London, Series B: Biological Sciences 365, 3655–3666.
Clarke, A. & Johnston, I. A. (1996). Evolution and adaptive radiation of Antarctic

fishes. Trends in Ecology & Evolution 11, 212–218.
Clarke, A. & Johnston, N. M. (2003). Antarctic marine benthic diversity.

Oceanography and Marine Biology: An Annual Review 41, 47–114.
Cossins, A. R. & Bowler, K. (1987). Temperature Biology of Animals. Chapman and

Hall, London.

Cossins, A. R. & Macdonald, A. G. (1984). Homeoviscous theory under pressure
II. The molecular order of membranes from deep-sea fish. Biochimica et Biophysica

Acta 776, 144–150.
Cossins, A. R. & Macdonald, A. G. (1986). Homeoviscous adaptation under

pressure. III. The fatty-acid composition of liver mitochondrial phospholipids of
deep-sea fish. Biochimica et Biophysica Acta 860, 325–335.

Cosson-Sarradin, N., Sibuet, M., Paterson, G. L. J. & Vangriesheim, A.
(1998). Polychaete diversity at tropical Atlantic deep-sea sites: environmental effects.
Marine Ecology Progress Series 165, 173–185.

Cottin, D., Brown, A., Oliphant, A., Mestre, N. C., Ravaux, J., Shillito, B.
& Thatje, S. (2012). Sustained hydrostatic pressure tolerance of the shallow-water
shrimp Palaemonetes varians at different temperatures: insights into the colonisation
of the deep sea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative

Physiology 162, 357–363.
Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. (2011). Late

Cretaceous-Neogene trends in deep ocean temperature and continental ice volume:
reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with
sea level history. Journal of Geophysical Research 116, C12023.

Creasey, S. S. & Rogers, A. D. (1999). Population genetics of bathyal and abyssal
organisms. Advances in Marine Biology 35, 1–151.

Creasey, S., Rogers, A., Tyler, P., Gage, J. & Jollivet, D. (2000). Genetic and
morphometric comparisons of squat lobster, Munidopsis scobina (Decapoda: Anomura:
Galatheidae) populations, with notes on the phylogeny of the genus Munidopsis. Deep

Sea Research Part II: Topical Studies in Oceanography 47, 87–118.
Creasey, S., Rogers, A. D., Tyler, P., Young, C. & Gage, J. (1997). The population

biology and genetics of the deep-sea spider crab, Encephaloides armstrongi Wood-Mason
1891 (Decapoda: Majidae). Philosophical Transactions of the Royal Society of London, Series

B: Biological Sciences 352, 365–379.
Cunningham, C. W., Blackstone, N. W. & Buss, L. W. (1992). Evolution of king

crabs from hermit crab ancestors. Nature 355, 539–542.
Currie, D. J. & Kerr, J. T. (2008). Tests of the mid-domain hypothesis: a review of

the evidence. Ecological Monographs 78, 3–18.
Danovaro, R., Company, J. B., Corinaldesi, C., D’Onghia, G., Galil, B.,

Gambi, C., Gooday, A. J., Lampadariou, N., Luna, G. M., Morigi, C., Olu,
K., Polymenakou, P., Ramirez-Llodra, E., Sabbatini, A., Sardà, F., Sibuet,
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Sébert, P. (2002). Fish at high pressure: a hundred year history. Comparative Biochemistry

and Physiology Part A: Molecular & Integrative Physiology 131, 575–585.
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