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Abstract: We reveal the analytic relations between a matrix permanent and major nature’s complexities
manifested in critical phenomena, fractal structures and chaos, quantum information processes in
many-body physics, number-theoretic complexity in mathematics, and ]P-complete problems in the
theory of computational complexity. They follow from a reduction of the Ising model of critical
phenomena to the permanent and four integral representations of the permanent based on (i) the fractal
Weierstrass-like functions, (ii) polynomials of complex variables, (iii) Laplace integral, and (iv) MacMahon
master theorem.
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1. Introduction

We find a remarkable explicit connection between the major types of complexity in nature.
They represent the critical phenomena, fractal structures in the theory of chaos, quantum information
processing in many-body physics, cryptography, number-theoretic complexity in mathematics,
and ]P-complete problems in the theory of computational complexity. We show that all of them are
analytically related to a well-known in mathematics matrix permanent via the fractal Weierstrass-like
functions and polynomials or determinants involving complex variables.

The analysis is based on the concept of the ]P/NP-complexity of computations and quantum
information processing and computing (Section 2) as well as on a nontrivial reduction of the critical
phenomena problem to a permanent (Section 3) and new integral representations of the permanent
revealing its deep explicit relation to the fractals and chaos (Section 4), complex stochastic multivariate
polynomials (Section 5), number-theoretical functions (Section 6), asymptotics of a Toeplitz determinant
employed in the Onsager’s solution of Ising model and given by the Szegő limit theorems (Section 7).

The permanent of a n× n matrix (Apq) is defined similar to a determinant [1–4] via a sum running
over permutations σ of 1, 2, ..., n, that is, over the symmetric group Sn,

perA = ∑
σ∈Sn

n

∏
p=1

Apσ(p) , detA = ∑
σ∈Sn

sgn(σ)
n

∏
p=1

Apσ(p). (1)
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2. The Matrix Permanent: Quantum Computing and ]P-Complete Oracle

We start with remarks on the relation of the matrix permanent to the quantum many-body processes
and computing.

2.1. The Permanent’s Complexity of the Quantum Information Processing and Computing

First of all, the permanent gives a result of the boson sampling in a multichannel quantum-optical
network [5–16]—a simple prototype of a many-body quantum simulator. The latter amounts to evaluating
the permanent of a unitary matrix of the channel couplings that could be addressed, for example,
by an interesting method developed recently in Reference [11] on the basis of a complex phase-space
representation. In particular, a possibility of a numerical computation of the permanent of the large-size
(∼100× 100) Fourier-transform matrices with applications in high-precision metrology was demonstrated
in Reference [12].

The class of problems solvable in polynomial time by a quantum computer, BQP, is very wide
and, likely, is not contained in the polynomial hierarchy PH [6]. (PH includes almost all complexity
classes inside PSPACE (the problems solvable with a Polynomial SPACE) such as P, NP, co-NP, and even
probabilistic classes such as BPP .) At the same time, computing of any quantum many-body process
could be polynomial-time reducible to a matrix-permanent oracle. The latter is not proven yet. However,
there is an explicit encoding of a transition amplitude of a quantum circuit in a universal quantum
computer as the permanent of a matrix which is of size proportional to the number of quantum gates
in the circuit [17]. An operator analog of the matrix permanent, a so-called quantum permanent, is directly
related to characterizing an entanglement of a many-body system’s state which is considered as a main
resource for quantum computing [18].

In cryptography, a permanent is capable for establishing a shared secret key via a public insecure
channel [19].

2.2. The Permanent as the ]P-Complete Oracle for the Universal Quantum Computing and the Toda’s Theorem

Computing the permanent is known to be one of the ]P-complete problems [20,21] and, hence,
would lead to a solution of every other ]P- or NP-problem in polynomial time. On this basis, we suggest
to employ the permanent as a convenient ]P-complete oracle for the universal quantum computing if
a specialized quantum simulator of the permanent would be realized. Of course, it requires finding
a problem-specific algorithm of a deterministic polynomial-time Turing reduction to the matrix-permanent
computing problem. Yet, this circumstance is common for any standard universal quantum computing
of a particular problem that also requires finding a related, problem-specific algorithm. The choice of
the permanent as the oracle is justified also by a surprising fact that the ]P-problem of computing the
permanent, contrary to many other ]P-complete problems, corresponds to an easy, linear-time P problem
on accepting paths [20].

The point is that the decision problem on an existence of a perfect matching for a given bipartite
graph is soluble in polynomial time. Yet, the counting problem on the number of perfect matchings for
the given bipartite graph is already ]P-complete. The latter problem is known to be equivalent to the
problem of computing the matrix permanent and was the first counting problem corresponding to an easy
P problem shown to be ]P-complete [20].

Computing the permanent involves a big fraction of hard instances, so that assuming its hardness on
the worst case implies the problem’s hardness on average. The number of operations, ∼n2n, required for
computing the permanent by the best known deterministic algorithms of Ryser [22] or Glynn [23] grows
exponentially with the matrix size n, contrary to only a polynomial number of operations∼n3 in a Gaussian
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elimination method for the matrix determinant. Even the world-fastest supercomputer Tianhe-2 cannot
help to compute the permanent of a matrix with the size ∼60× 60 or larger [8].

The permanent is deeply related to the concepts of the ]P- and NP-complete problems in
computational complexity theory [24] which are thought to require an exponentially long time of
computation and, hence, cannot be solved by a classical computer. The ]P- and NP-complete problems are
those problems in the classes ]P and NP, respectively, to each of which any other ]P- or NP-problem can be
reduced in polynomial time, and whose solution may still be verified in polynomial time. The complexity
class ]P is the class of counting problems on the number of accepting paths of a nondeterministic Turing
machine running in polynomial time. It is different from a well-known NP-class of decision problems.
We refer to the polynomial-time-relative-to-a-]P-oracle class P]P of problems soluble in polynomial time via
an access to instantaneous answers to any counting problem in ]P. The P]P solves all quantum-computer
problems [25], BQP ⊆ P]P.

The Toda’s theorem [26,27] states that the PH is contained in P]P, PH ⊆ P]P, and implies that for any
problem in PH there is a deterministic polynomial-time Turing reduction to a counting problem. In other
words, a polynomial-time machine with the ]P-complete oracle can solve all problems in PH and, hence,
all NP problems. In fact, the polynomial-time machine only needs to make one ]P query to solve any
problem in PH. This is an indication of the extreme difficulty of solving ]P-complete problems exactly,
for example, computing the permanent exactly.

Now we proceed with a reduction (2) of the Ising model to the permanent. A direct involvement of
the Ising model and matrix permanent in the analysis of the many-body quantum-computing systems is
important in view of a remarkable progress in the experimental realization of such systems, in particular,
a programmable Ising-type quantum spin system with tunable interactions based on the reconfigurable
arrays of up to 51 trapped cold atoms with strong interactions enabled by excitation to Rydberg
states [28], a 100-spin Ising machine with all-to-all connections based on a network of optical parametric
oscillators [29], and a proof of a photonic Ising machine [30], as well as due to Ising formulations of many
NP problems [31].

3. Reduction of the Critical Phenomena to Computing a Matrix Permanent

Let us consider a generic model of the critical phenomena - the Ising model. We find the following
analytic solution for the partition function and order parameter (a mean value of the z-component of a spin
operator Ŝr at a site r),

Z =
perA
detg1

, S̄z
r =

per[A]{r}
perA

− 1
2

, (2)

for the Ising model of N spins s = 1
2 located in a cubic lattice via a permanent of a circulant matrix

A = 2 + g−1
1 . Correlation functions and other characteristics of the critical phenomena also can be

expressed in a similar way. The result (2) is based on a bosonization of a many-body constrained system
via a Holstein-Primakoff representation of spins. A matrix g1rr′ is a correlation function g1(r, r′) of
an auxiliary, much simpler system of the related unconstrained bosons and can be found by known
methods. The submatrix [A]{r} differs from A by an absence of one row and one column which intersect
at the entry Arr.

This nontrivial constructive reduction of the Ising model to computing the permanent, that is
a ]P-problem, has been annotated in References [32,33]. It is derived in the present paper. In particular,
it implies that a full analysis of the Ising model by numerical simulations alone is intractable. This fact
stresses an importance of the exact general representation of the solution via a permanent, which unveils
a remarkably canonical analytic structure of statistics and thermodynamics of the critical phenomena
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and guides to the adequate approximations and asymptotics for their computation including the known
mean-field (random-phase) and renormalization-group approximations.

This novel approach can be compared with two other, more formal, plain approaches also pointing to
a connection between the critical phenomena and permanent. One of them is a long known combinatorial
method of obtaining all expansions and formulas of quantum field theory without diagrammatic
expansions [34]. It stems from the basic representation of a many-particle wave function in a system of
N Bose particles as a symmetrized product of the single-particle wave functions that is the Caianiello
permanent. The latter is similar to the Slater determinant which represents a many-particle wave function
in a system of N Fermi particles. The other approach is based on the graph theory. In particular, an ad hoc
counting of all matchings of a bipartite graph representing a monomer-dimer model of phase transitions
allows one to express its partition function via the permanent of a 0-1 matrix adjacent to the bipartite
graph [35]. Importantly, the graph theory and the Markov chain Monte Carlo method provide a fully
polynomial randomized approximation scheme (FPRAS) for numerical computation of the permanent
of nonnegative matrices and a ferromagnetic Ising model [36–39]; for a discussion of a different scheme,
see Reference [40].

For calculating the exact partition function, magnetization, Green’s functions (13), and other
nonpolynomial averages, we employ a nonpolynomial diagram technique and partial operator
contractions [32,41]. The point is that the constrained, true Green’s functions do not obey equations
of a Dyson type due to a presence of the nonpolynomial functions θ(2s− n̂r), and a standard diagram
technique is not suited to deal with them.

3.1. The Constrained Spin Bosons in the Holstein-Primakoff Representation

Let us consider a 3d cubic lattice of N interacting quantized spins s = 1
2 with a period a in a box

with a volume L3 and periodic boundary conditions. (The method is valid for an arbitrary dimensionality
of the lattice d = 1, 2, 3, ...). The lattice sites are enumerated by a position vector r. According to the
Holstein-Primakoff representation [42], worked out also by Schwinger [43], each spin is a system of two
spin bosons, which are constrained to have a fixed total occupation

n̂0r + n̂r = 2s; n̂r = â†
r âr, n̂0r = â†

0r â0r. (3)

The âr and â0r are the annihilation operators obeying the Bose canonical commutation relations:
[âr, â†

r′ ] = δr,r′ , [â0r, â†
0r′ ] = δr,r′ , and all (r)-operators commute with all (0r′)-operators; δr,r′ is a Kronecker

delta. A vector spin operator Ŝr at a site r is given by its components:

Ŝx
r =

â†
0r âr + â†

r â0r

2
, Ŝy

r =
â†

0r âr − â†
r â0r

2i
, Ŝz

r = s− â†
r âr. (4)

A proper reduction of a many-body Hilbert space ensures [41] that this system is isomorphic to
a system of N spin-boson excitations, described by annihilation operators β̂r at each site r and obeying
the Bose canonical commutation relations [β̂r, β̂†

r′ ] = δr,r′ , if we cutoff them by a step-function θ(2s− n̂r);
θ(x) = 1 if x ≥ 0 and θ(x) = 0 if x < 0. This isomorphism is valid on an entire physically allowed Hilbert
space and is achieved by equating the annihilation operators β̂

′
r = β̂rθ(2s − n̂r) of those constrained,

true excitations to the cutoff Holstein-Primakoff’s transition operators:

β̂
′
r = â†

0r(1 + 2s− n̂r)
−1/2 ârθ(2s− n̂r). (5)
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Here and thereinafter we add a prime to a symbol of an unconstrained quantity to denote its cutoff,
constrained counterpart. The vector components of the spin operator are

Ŝx
r =

1
2
(S−r + Ŝ+

r ), Ŝy
r =

i
2
(S−r − Ŝ+

r ), Ŝz
r = s− n̂r, (6)

where the spin raising and lowering operators are equal to

Ŝ+
r =

√
2s− n̂r β̂

′
r, Ŝ−r = β̂

′†
r
√

2s− n̂r; n̂r = β̂
′†
r β̂

′
r. (7)

The aforementioned isomorphism is not trivial since it is not valid outside the constrained,
physically allowed Hilbert space and the commutation relations for the creation and annihilation operators
of the true spin excitations in Equations (5) are not canonical,

[β̂
′
r, β̂

′†
r′ ] = δr,r′(1− (2s + 1)δn̂r ,2s). (8)

A free Hamiltonian of a system of N spins in the lattice

H0 = ∑
r

εn̂r, n̂r = β̂†
r β̂r, ε = gµBBext, (9)

is determined by a Zeeman energy −gµBBextŜz of a spin in an external magnetic field Bext (which is
assumed homogeneous and directed along the axis z) via a g-factor and a Bohr magneton µB = eh̄

2Mc .
We intentionally define the free Hamiltonian in Equation (9) via the unconstrained occupation operators
n̂r = β̂†

r β̂r on a full Fock space generated by a set of the creation operators {β̂†
r}, that is on the extended

many-body Hilbert space without any θ(2s− n̂r) cutoff factors. This makes the free Hamiltonian purely
quadratic which is necessary for a validity of the standard diagram technique. The latter is crucial for
a derivation of the Dyson-type equations, like Equation (15). One is allowed to skip the θ(2s− n̂r) cutoff
factors in H0 in virtue of an equality β̂†

r β̂r = β̂
′†
r β̂

′
r, valid on the physical many-body Hilbert space,

and a fact that the occupation operator n̂r = β̂†
r β̂r leaves that space invariant.

An interaction Hamiltonian of the Ising model [44]

H′ = −∑
r

∑
r′ 6=r

Jr,r′ Ŝ
z
r Ŝz

r′ , (10)

in view of the isomorphism’s Equations (5)–(7), takes a form

H′ = − ∑
r 6=r′

Jr,r′ [s− θ(2s− n̂r)n̂r][s− θ(2s− n̂r′)n̂r′ ]. (11)

Here a coupling between spins is a symmetric function Jr,r′ = Jr−r′ of a vector r− r′, connecting
spins. For a spin at a site r0 there are only the coordination number p of the nonzero couplings Jr0 ,rl 6= 0
with the neighboring spins at sites rl = r0 + l; l = 1, ..., p. The result in Equation (11) generalizes
the Holstein-Primakoff’s one [42] by including the nonpolynomial operator θ(2s− n̂r)-cutoff functions,
which add a spin-constraint nonlinear interaction and are crucially important in a critical region.

Since the Holstein-Primakoff’s paper of 1940, there were many unsuccessful attempts to convert
it into a rigorous and tractable microscopic theory of critical phenomena in magnetic phase transitions.
Note that a well-known Dyson’s theory of spin waves in a ferromagnet [45] is invalid in the critical region
and restricts an analysis to just a well-formed ordered phase. Due to a lack of a proper mathematical
apparatus, in particular, a technique of a partial contraction of operators and a diagram technique for
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the nonpolynomial averages, Dyson thought that “the Holstein-Primakoff formalism is thus essentially
nonlinear and unamenable to exact calculations”.

A total Hamiltonian H = H0 + H
′

defines, for any operator Â, a Matsubara operator Ãτ = eτH Âe−τH

evolving in an imaginary time τ ∈ [0, 1
T ] in a Heisenberg representation. A symbol T denotes a temperature.

A symbol Ãjτ stands for an operator itself Ã1τ = Ãτ at j = 1 and a Matsubara-conjugated operator
Ã2τ = ˜̄Aτ at j = 2.

The unconstrained and true Matsubara Green’s functions for spin excitations are defined by
Tτ-ordering [46]:

G J2
J1
= −〈Tτ β̃ J1

˜̄β J2〉; J = {j, τ, r}, (12)

G
′ J2
J1

= −〈Tτ β̃′ J1

˜̄
β′J2

θ̂〉/Ps; Ps = 〈θ̂〉. (13)

Here an unconstrained thermal average over an equilibrium statistical operator ρ = e−
H
T /Tr{e− H

T } of
the spin-boson excitations is denoted by the angles as

〈. . . 〉 ≡ Tr{. . . e−
H
T }/Tr{e−

H
T } (14)

and a true, constrained thermal average is denoted as 〈. . . θ̂〉/Ps. A partition function Ps = 〈θ̂〉 is equal to
a cumulative probability of all occupations of the spin excitations in the unconstrained Fock space to be
within physically allowed intervals nr ∈ [0, 2s] for all lattice sites r; θ̂ = ∏r θ(2s− n̂r) is a product of all N
cutoff factors.

In the Ising model there is no coherence, 〈βrτ〉 = 0, and the unconstrained Green’s functions obey the
usual Dyson equation with a total irreducible self-energy Σj2x2

j1x1
,

(Gj2x2
j1x1

) = (G(0)j2x2
j1x1

) + Ǧ(0)[Σ̌[Gj2x2
j1x1

]]. (15)

Here the integral operators Σ̌ or Ǧ(0), applied to any function f jx of an index j and a four-dimensional
coordinate x = {τ, r}, stand for a convolution of that function f jx over the variables j, τ, r with the total
irreducible self-energy Σ or the free propagator G(0), respectively, for example,

Σ̌[Gj2x2
j1x1

] ≡
2

∑
j=1

∑
r

∫ 1/T

0
Σjx

j1x1
Gj2x2

jx dτ. (16)

The total irreducible self-energy is defined by an equation

〈Tτ [β̃ j1x1 , H̃
′
τ1
] ˜̄β j2x2〉 = (−1)j1

2

∑
j=1

∫ 1
T

0
∑

r
Σjx

j1x1
Gj2x2

jx dτ. (17)

3.2. The Order Parameter and Correlation Functions via the True Probabilities of Spin-Boson Occupations

The magnetization at a lattice site r, being an order parameter of the Ising model, is equal to a true
average of the spin z-component in Equation (6). For a spin s = 1

2 , it is

S̄
′z
r = 1/2− ρ′nr=1, ρ′nr=n = 〈δn̂r ,n θ̂〉/Ps, (18)

that is determined by a θ̂-cutoff, true probability ρ′nr=1 of a spin boson at site r to have one quantum
of excitation.
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The true, constrained correlation functions of the spin bosons, g′ I2
I1

, where I = {j, r}, can be found as

the Green’s functions G
′ J2
J1

in Equation (13) in the equal-time limit τ1 → τ2 − (−1)j2 × 0. For a spin s = 1
2 ,

we find the exact solution for it,

g′ I2
I1
= −(g−1)I2

I1
(1− δr1 ,r2)ρ

′
nr1=0,nr2=0 − ρ′nr1=0δI1,I2 , (19)

in terms of an unconstrained correlation matrix gJ′
J denoting an unconstrained Green’s function G J′

J

in Equation (12) for τi 6= τi′ and its limit at τi → τi′ − (−1)j′ × 0 for equal times in accord with the
anti-normal ordering of operators β̃ J , ˜̄β J′ . We consider a homogeneous phase, when the Green’s function

Gj2τ2r2
j1τ1r1

depends on r1 and r2 only via r2− r1. It is a Toeplitz matrix with respect to indexes r1, r2. The matrix

g−1, which is inverse to the matrix (gI2
I1
) of unconstrained correlations, can be calculated by a technique of

Toeplitz matrices, known from the theory of the 2d Ising model [44,47–52]. In Equation (19), a quantity

ρ′nr1=n1,nr2=n2
= 〈δn̂r1 ,n1 δn̂r2 ,n2 θ̂〉/Ps (20)

stands for a true probability for two spin bosons at the sites r1, r2 to have nr1 = n1 and nr2 = n2 quanta of
excitations. Namely, Equation (19) involves a true probability for two spin-bosons to have zero quanta of
excitations n1 = n2 = 0 simultaneously.

3.3. The Unconstrained Probabilities of Spin-Boson Occupations via the Unconstrained Correlation Matrix

The next step is finding a joined non-cutoff probabilities of the spin-boson occupations at all N
lattice sites

ρ{nr} ≡ 〈 ∏
r=r1 ,...,rN

δñr ,nr〉. (21)

Actually, for the reduction of the Ising model to a permanent we need to calculate just a particular
joined probability

ρ1{m} ≡ ρ{nr=1:r=r1 ,...,rm ; nr′=0:r′ 6=r1 ,...,rm} = 〈 fm〉 , (22)

fm = ∏
r=rk ,k=1,...,m

δñr ,1 ∏
r′ 6=rk ,k=1,...,m

δñr′ ,0, (23)

of getting unity occupations nrk = 1 for m spin bosons at a subset of sites {m} = {rk, k = 1, ..., m} and zero
occupations for all other N−m spin bosons in the lattice, since the latter probability (22) determines the true
joined statistics of the spin-boson occupations (calculated below in Section 3.4) and enters Equations (18)
and (19) for the true magnetization and true correlation functions.

Also, for the self-energy in Equations (17) and (57), we need a similar joined unconstrained distribution
of the spin-boson occupations at a subset of sites {M} = {rk, k = 1, ..., M},

ρ
{M}
{nr} ≡ 〈 ∏

r=r1 ,...,rM

δñr ,nr〉, M ≤ N, (24)

which admits arbitrary occupations nr′ = 0, 1, 2, ..., ∞, r′ 6= r1, ..., rM, at all other N −M lattice sites, that is,
it is non-cutoff averaged over the latter occupations. Again, we need just a particular joined probability

ρ
{M}
1{m} ≡ ρ

{M}
{nr=1:r=r1 ,...,rm ; nr′=0:r′=rm+1 ,...,rM}

= 〈 f {M}
m 〉, (25)

f {M}
m = ∏

r=r1 ,...,rm

δñr ,1 ∏
r′=rm+1 ,...,rM

δñr′ ,0, m ≤ M ≤ N, (26)
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of getting the unity occupations nrk = 1 for m spin bosons at a subset of sites {m} = {rk, k = 1, ..., m} ⊆
{M}, zero occupations for M−m spin bosons at a subset of sites {M} \ {m} = {rk, k = m + 1, ..., M} ⊆
{M}, and arbitrary occupations for all other N −M spin bosons.

We employ the corresponding characteristic functions

ΘN({ur}) = 〈exp
(

i ∑
r=r1 ,...,rN

urñr

)
〉, (27)

Θ{M}
N ({ur}) = 〈exp

(
i ∑

r=r1 ,...,rM

urñr

)
〉, (28)

the derivatives of which yield those joined probability distributions:

ρ{nr} = ∏
r=r1 ,...,rN

( 1
nr!

∂nr

∂znr
r

)
ΘN

∣∣∣
{zr=0}

, zr = eiur , (29)

ρ
{M}
{nr} = ∏

r=r1 ,...,rM

( 1
nr!

∂nr

∂znr
r

)
Θ{M}

N

∣∣∣
{zr=0}

. (30)

We find the characteristic function ΘN by means of the partial operator contraction within the
nonpolynomial diagram technique [32,33] as follows

ΘN({ur}) =
1√

det(g + ZΘ)
∏

r=r1 ,...,rN

1
1− zr

=
1√
detg

1√
det(1− (1 + g−1)z)

, zI′
I = zrδr,r′δj,j′ . (31)

Here the diagonal matrices ZΘ and z are related as ZΘ = z/(z − 1). The obtained solution in
Equation (31) is normalized to unity at a point {ur = 0}, ΘN({ur = 0}) = 1, as it should be for
a characteristic function of any distribution.

The probability of the unity occupations for m spin bosons and zero occupations for all other spin
bosons, Equation (22), is set by a differentiation of that characteristic function:

ρ1{m} =
∂mΘN

∂zr1 ...∂zrm

∣∣∣
{zr=0}

. (32)

It is a coefficient in front of the multilinear term zr1 ...zrm in a Taylor expansion of the characteristic
function ΘN over the variables {zr} at the zero point {zr = 0}.

In order to evaluate the Taylor expansion, we employ a well-known MacMahon master
theorem [53,54]. It yields a Taylor expansion of a function, inversely proportional to a determinant of
a matrix 1− Ax, over the variables {xi},

1
det(1− Ax)

= ∑
s1,...,sN

per(s1,...,sN)A xs1
1 ...xsN

N , (33)

where si ≥ 0 is a non-negative integer (i = 1, ..., N), x = diag{x1, ..., xN} a diagonal matrix, A a N × N
matrix, and per(s1,...,sN)A a generalized permanent of the matrix A. For the required by Equation (32)
multilinear terms with a subset of unity integers {si = 1; i = 1, ..., m} and the rest of integers being equal
zero, the corresponding permanents are reduced to the standard permanent,

per({si=1;i=1,...,m},{sj=0;j=m+1,...,N})A = perA{m}, (34)
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of the corresponding (m×m)-submatrix A{m}. In order to get the derivatives in Equation (32), one may
compute a multilinear expansion of the characteristic function in Equation (31) by taking into account
(i) a square-root function, additional to the MacMahon master Equation (33), via the corresponding Bell
polynomials of that Faá di Bruno’s formula and (ii) an equality of the variables z1r

1r = z2r
2r = zr in the two

adjacent columns with the same site-index r.
For simplicity’s sake, we consider below a case of vanishing anomalous correlations, g2r′

1r = 0 for
∀r, r′, and non-zero normal correlations g1r′

1r = g2r′
2r , which are real-valued in the homogeneous phases,

when the matrix gj′r′

jr is a circulant Toeplitz matrix in indexes r, r′ and the arbitrary phases of spin-bosons’

annihilation operators β̂r are calibrated properly (for the calculations in a general case, see Reference [33]).
In this case, one has det[g + ZΘ] = [det[(g + ZΘ)

1r′
1r ]]

2 and Equations (31)–(34) yield

ΘN =
1

det[g1 − (1 + g1)z1]
, g1 ≡ (g1r′

1r ), z1 ≡ (zrδr,r′), (35)

ρ1{m} =
perA(1)

{m}
detg1

; A(1)
{m} ≡ [(1 + g−1

1 )r′
r ]; r, r′ = r1, ..., rm.

Here the elements of the (N × N)-matrices g1 and z1 as well as (m× m)-matrix (1 + g−1
1 ){m} are

labeled solely by the site-indexes r, r′. The effect of the normal cross-correlations g1r′
1r 6= 0 between the spin

bosons at different sites on their joined unconstrained statistics, described by Equation (35), remains highly
nontrivial even in that case of vanishing anomalous correlations g2r′

1r = 0 for ∀r, r′.
For the joined unconstrained, non-cutoff distribution of the spin-boson occupations at only a subset

of lattice sites {M} = {rk, k = 1, ..., M}, M ≤ N, defined in Equation (24), a derivation is similar. We just
need to restrict the (2N × 2N)-matrices g, ZΘ, z to the corresponding quasi-diagonal (2M× 2M)-block
matrices g{M}, Z{M}

Θ , z{M};

Z{M}
Θ = diag{(ZΘ)

I
I ; r = r1, ..., rM; j = 1, 2} ≡

z{M}
z{M} − 1

. (36)

The result for the characteristic function

Θ{M}
N ({ur}) =

1√
det(g{M} + Z{M}

Θ )

rM

∏
r=r1

1
1− zr

=
1√

detg{M}

1√
det(1− (1 + g−1

{M})z{M})
(37)

is similar to Equation (31). Obviously, its differentiation,

ρ
{M}
1{m} =

∂mΘ{M}
N

∂zr1 ...∂zrm

∣∣∣
{zr=0}

, (38)

yields the corresponding, similar to Equation (32), unconstrained probabilities for the spin bosons to have
the unity occupations at the subset of lattice sites {m} = {ri, i = 1, ..., m}, m ≤ M ≤ N, zero occupations at
the subset of lattice sites {M} \ {m} = {rk, k = m + 1, ..., M}, and arbitrary occupations, nr′ = 0, 1, 2, ..., ∞,
at the rest N −M sites.

The derived characteristic functions in Equations (31) and (37) immediately yield the probability for
all N or for a subset {M} = {rk, k = 1, ..., M}, M ≤ N, of the spin bosons to have zero occupations:

ρ
{N}
0 ≡ 〈 f0〉 =

1√
detg

, ρ
{M}
0 ≡ 〈 f {M}

0 〉 = 1√
detg{M}

. (39)
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Finally, we present the explicit formulas for the characteristic functions of the joined non-cutoff
probability distributions in the most important cases of the single-site (M = 1) and two-sites (M = 2)
subsets of the spin bosons:

Θ{1}N (ur) =
ρ0√

det(1− (1 + S−1)z{1})
, (40)

Θ{2}N (ur1 , ur2) =
ρ0,0√

det(1− (1 + q−1)z{2})
. (41)

3.4. The Partition Function and the True Probabilities of Spin-Boson Occupations

Here we give the exact analytic formulas for the partition function and true joined probability
distributions ρ′nr , ρ′nr1 ,nr2

, ρ′{nr} of the physically allowable spin-boson occupations nr = 0, 1.

Those distributions are simply the θ̂-cutoff versions of the unconstrained distributions ρnr , ρnr1 ,nr2
, ρ{nr},

restricted to the unity-occupation ones ρ1{m} in Equation (32). Note that the unconstrained occupation
distributions, calculated in the Section 3.3, already contain all effects of the constraints and spin interaction,
except the θ̂-cutoff only, since they were calculated for the exact, constrained and θ̂-cutoff, Hamiltonian (11).

We start the analysis of the true joined distribution of the occupations {nr = 0 or 1} for all N
spin bosons,

ρ′{nr} ≡
1
Ps

〈
∏

r
δn̂r ,nr θ̂

〉
, Ps = 〈θ̂〉, (42)

with an evaluation of the partition function Ps from Equation (13). It is equal to the sum of the probabilities
ρ1{m} in Equation (32) over all occupation configurations {nr = 0 or 1; r = r1, ..., rN}, which can be written
as follows

Ps =
∂N

∂zr1 ...∂zrN

[
ΘN ∏r=r1 ,...,rN

(1 + zr)
]∣∣∣
{zr=0}

= ∂N Θ′
∂zr1 ...∂zrN

∣∣∣
{zr=0}

, Θ′ = 1√
detg

1√
det[1−(2+g−1)z]

. (43)

The second equality in the equation for Ps is due to the fact that the terms with the square, z2
r ,

and higher powers of any variable zr do not contribute to the considered derivative at the zero point
{zr = 0}. Note that the newly introduced function Θ′ differs from the characteristic function ΘN in
Equation (31) only by a substitution of the matrix A = 1 + g−1 with the matrix

A′′ = 2 + g−1. (44)

Thus, an evaluation of the partition function Ps can be done similar to the evaluation of the probability
ρ1{m} at m = N described above. In particular, in the case of the vanishing anomalous correlations g2r′

1r = 0
and non-zero normal correlations g1r′

1r = g2r′
2r , as in Equation (35), we find

Ps =
per(2 + g−1

1 )

detg1
, g1 ≡ g1{N} ≡ [g1r′

1r ]. (45)

A result for the single-site zero occupation probability

ρ′nr1=0 =
1
Ps

∂N−1Θ′

∂zr2 ...∂zrN

∣∣∣
{zr=0}

(46)
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differs from Ps only by an absence of one partial derivative ∂/∂zr1 and by a normalization factor.
In particular, in the case of the vanishing anomalous correlations g2r′

1r = 0 and non-zero normal correlations
g1r′

1r = g2r′
2r , we have

ρ′nr1=0 =
per(2 + g−1

1 ){N−1}

per(2 + g−1
1 )

; (2 + g−1
1 ){N−1} ≡ ((2 + g−1

1 )r′
r ), r, r′ 6= r1. (47)

The true single-site unity occupation probability is equal

ρ′nr1=1 = 1− ρ′nr1=0. (48)

The true two-sites zero occupation probability

ρ′nr1=0,nr2=0 =
1
Ps

∂N−2Θ′

∂zr3 ...∂zrN

∣∣∣
{zr=0}

(49)

differs from the single-site one in Equation (46) only by an absence of one more partial derivative ∂/∂zr2 .
So, in the case of the vanishing anomalous correlations and non-zero normal correlations g1r′

1r = g2r′
2r ,

as in Equation (35), one has

ρ′nr1=0,nr2=0 =
per(2 + g−1

1 ){N−2}

per(2 + g−1
1 )

; (2 + g−1
1 ){N−2} ≡ ((2 + g−1

1 )r′
r ), r, r′ ∈ {r3, ..., rN}. (50)

The true two-sites probabilities for other occupation combinations can be computed from the
probabilities, presented above, as follows

ρ′nr1=0,nr2=1 = ρ′nr1=0 − ρ′nr1=0,nr2=0 ,

ρ′nr1=1,nr2=1 = ρ′nr1=1 − ρ′nr1=1,nr2=0 .
(51)

These equations stem from a fact that the true single-site occupation distribution is equal to the true
two-sites occupation distribution, averaged over the physically allowable occupations nr2 = 0, 1 of a spin
boson at the second site:

ρ′nr1
= ρ′nr1 ,nr2=0 + ρ′nr1 ,nr2=1. (52)

The true three-sites and other multiple-sides occupation distributions are not required for calculating
the true order parameter and correlation functions, but are necessary for the analysis of the true
multiple-sides correlations and statistics. Those m-sides occupation distributions can be computed in
a similar way by an induction:

ρ′nr1=0,...,nrm=0 =
1
Ps

∂N−mΘ′

∂zrm+1 ...∂zrN

∣∣∣
{zr=0}

, m ≤ N, (53)

ρ′nr1 ,...,nrm−1 ,nrm=1 = ρ′nr1 ,...,nrm−1
− ρ′nr1 ,...,nrm−1 ,nrm=0. (54)

In the case of the vanishing anomalous correlations g2r′
1r = 0 and non-zero normal correlations

g1r′
1r = g2r′

2r , one has

ρ′nr1=0,...,nrm=0 =
per(2 + g−1

1 ){N−m}

per(2 + g−1
1 )

; (2 + g−1
1 ){N−m} ≡ ((2 + g−1

1 )r′
r ), r, r′ ∈ {rm+1, ..., rN}. (55)



Entropy 2020, 22, 322 12 of 44

We stress, that the true joined distributions of the spin-boson occupations, even for a subset of lattice
sites {M} = {rk, k = 1, ..., M}, M ≤ N, always are determined by the full (2N × 2N)-matrix g−1, which is
inverse to the 2N × 2N equal-time anti-normally ordered correlation matrix g. This is in contrast with
the unconstrained joined distributions in Equations (37) and (38), which are determined only by the
corresponding quasi-diagonal (2M× 2M)-block g{M} of the full (2N × 2N)-matrix g.

A detailed analysis of the true spin-boson occupation probability distributions obtained above as well
as the true order parameter and correlation functions in Equations (18) and (19) will be given elsewhere,
since they are not required for finding the self-energy in Section 3.5 and the exact self-consistency equation
in Section 3.6 below.

3.5. The Exact Solution for the Total Irreducible Self-Energy via the Unconstrained Correlation Matrix

In order to find the aforementioned spin-boson occupation probabilities and the correlation matrix
gJ′

J , it is crucial to get an exact solution to Equation (17) for the total irreducible self-energy which allows
one to go beyond standard second-order or ladder approximations. For a given site r0 in a lattice and any
its nearest-neighbor site rl , l = 1, ..., p, we introduce a correlation (4× 4)-matrix

qI′
I (l) ≡ gj′R′

jR = −〈Aβ̂ jR β̂†
j′R′〉, q(l) =

(S | C
C†| S

)
. (56)

Here q = q† is hermitian, R and R′ run over two values {r0, rl}, A means anti-normal ordering,

(2× 2)-matrices gj′

j (l) = gj′rl
jr0

of basis auto- and cross-correlations are denoted as g(0) = S = S† and
g(l 6= 0) = C(l), respectively. An exact solution for the self-energy is a matrix 2(p + 1)-banded in indexes
I0 = {j0, r0} and I = {j, r},

ΣJ
J0
= δ(τ − τ0)

p

∑
l=0

δr,rl Σ
jrl
j0r0

(l), rl = r0 + l, (57)

where the (2× 2)-matrix blocks Σ(l) = (Σjrl
j0r0

(l)) are

Σ(0) = ∑
p
l=1 Jr0 ,rl [ρ1S−1 + ρ0S−2 − 2ρ1,1K− 2ρ0,1K2

−2ρ1,0KCS−2C†K + 2ρ0,0K(KCS−2C† + CS−2C†K)K],
(58)

Σ(l 6= 0) = 2Jr0 ,rl [(ρ1,1 + ρ0,1K + ρ0,0KC
1
S2 C†K)KC

1
S
+ (ρ1,0 − ρ0,0K)KC

1
S2 (1 + C†KC

1
S
)]; (59)

K =
1

S− CS−1C† .

Here ρnr0
= 〈δñr0 ,nr0

〉 and ρnr0 ,nrl
= 〈δñr0 ,nr0

δñrl ,nrl
〉 are the non-cutoff probabilities for the spin bosons

at the sites r0 and rl to acquire nr0 and nrl quanta of excitations. The probabilities of the zero occupations
follow from Equation (39):

ρ0 ≡ ρ
{1}
0 = 1/

√
detS, ρ0,0 ≡ ρ

{2}
0 = 1/

√
detq. (60)

For the single-site probability one has M = 1 and (2× 2)-matrix g{1} = S, Equation (56), so that
Equations (38) and (40) yield

ρ1 ≡ ρ
{1}
1{1} = ρ0

[
1 + (S−1)1r

1r

]
≡ ρ0

[
1 +

g1r
1r

detS

]
. (61)
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For the two-sites probabilities one has M = 2 and (4× 4)-matrix g{2} = q (where hereinafter a matrix

qj′R′

jR is defined similar to Equation (56) with the R and R′ running over arbitrary two sites {r1, r2},
not necessarily neighboring sites), and Equations (38) and (41) yield

ρ1,0 ≡ ρ
{2}
1{1} = ρ0,0

[
1 + (q−1)1r1

1r1

]
≡ ρ0,0

[
1 +

det[q]1r1
1r1

detq

]
, (62)

ρ0,1 ≡ ρ
{2}
1{1} = ρ0,0

[
1 + (q−1)1r2

1r2

]
≡ ρ0,0

[
1 +

det[q]1r2
1r2

detq

]
, (63)

ρ1,1 ≡ ρ
{2}
1{2} = ρ0,0

{[
1 + (q−1)1r1

1r1

][
1 + (q−1)1r2

1r2

]
+ (q−1)1r2

1r1
(q−1)1r1

1r2
+ (q−1)2r2

1r1
(q−1)1r1

2r2

}
, (64)

where [q]I
′

I stands for a I I′-submatrix of q, that is, for the matrix q with the I-th row and I′-th
column deleted.

3.6. The Exact Closed Self-Consistency Equation for the Unconstrained Correlation Matrix

Now we can make a final, crucial step in the exact reduction of the Ising model to the matrix
permanent—find an exact closed self-consistency equation for the nearest-neighbors’, basis normal
and anomalous auto- and cross-correlations g1rl

1r0
= g2rl∗

2r0
, g2rl

1r0
= g1rl∗

2r0
, l = 0, 1, ..., p, in Equation (56).

Indeed, the total irreducible self-energy in Equation (57) and the spin-boson unconstrained occupation
probabilities, Equations (60)–(64), entering formulas for the self-energy, are known exactly via the (1 + p)

basis correlation (2× 2)-matrices g(l), l = 0, 1, ..., p, Equation (56), that is, the matrix S ≡ g(0) = (gj′r0
jr0

) of
the auto-correlations for a spin boson at the site r0 and the coordination number p matrices C(l) ≡ g(l 6=
0) = (gj′rl

jr0
) of the cross-correlations of a spin boson at the site r0 with the nearest-neighbors at the sites

rl = r0 + l. Due to the complex-conjugation relations

g1r0
1r0

= g2r0
2r0

, g2r0
1r0

= g1r0∗
2r0

, g1rl
1r0

= g2rl∗
2r0

, g2rl
1r0

= g1rl∗
2r0

, (65)

there are only two independent, normal g1rl
1r0

and anomalous g2rl
1r0

, correlation parameters per each
basis correlation (2 × 2)-matrix, that is, only 2(1 + p) numbers, which determine all details of the
critical phenomena.

Thus, we can find the self-consistency equation for those 2(1 + p) basis auto- and cross-correlations in
two steps. First, we solve the Dyson-type Equation (15) for the unconstrained Green’s functions in terms
of those basis correlations. Second, we close the loop by expressing the basis correlations themselves via
those Green’s functions.

For the considered stationary homogeneous phases, the Green’s functions, the equal-time correlation
functions, and the self-energy depend only on the differences of their arguments τ = τ1− τ2 and r = r2− r1,
that is,

G J2
J1
= Gj1 j2(τ, r), gj2r2

j1r1
= gj1 j2(r), ΣJ2

J1
= δ(τ)Σj1 j2(r). (66)

Hence, it is straightforward to solve the Dyson-type Equation (15) by means of the Fourier
transformation over the imaginary time τ ∈ [− 1

T , 1
T ] and the discrete Fourier transformation over the

space. The latter has a following form

g(k) = ∑
r

g(r)e−ikr, g(r) =
( a

L

)d
∑
k

g(k)eikr, (67)
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where the sums run over all lattice sites r with a period a and discrete wave vectors k = {ki|i =

1, . . . , d}, ki = 2π
L q with an integer q; ki ∈ [−π

a , π
a ]. We discern the Fourier transform and its inverse

by the arguments k and r. A result for the normal and anomalous Green’s functions is

G11(τ, k) =
2

∑
j=1

(−1)j [iω
(j) + ε + Σ22(k)]eiω(j)(

sign(τ)
2T −τ)

2(ω(2) −ω(1)) sin[ω(j)/(2T)]
, (68)

G12(τ, k) =
2

∑
j=1

(−1)jΣ12(k)eiω(j)(
sign(τ)

2T −τ)

2(ω(1) −ω(2)) sin[ω(j)/(2T)]
, (69)

where the two quasiparticle eigen-energies

iω(1,2) =
Σ11 − Σ22

2
±
[(

ε +
Σ11 + Σ22

2

)2
− Σ12Σ21

] 1
2

(70)

depend on the wave vector k via the self-energies

Σj0 j(k) =
p

∑
l=0

Σj
j0
(l)e−ik(rl−r0), rl = r0 + l. (71)

The latter Fourier transform of the self-energy consists of only 1 + p terms within a neighborhood of
the nearest sites for which there are nonzero couplings Jr0 ,rl 6= 0. This is a consequence of the fact that
the self-energy matrix is a 2(p + 1)-banded matrix. The (2× 2)-matrix blocks Σ(l) are given explicitly in
Equations (57)–(59) representing the exact solution to Equation (17).

The spatial Fourier transforms of the normal and anomalous equal-time correlation functions follow
from Equations (68) and (69) in the limit τ → +0:

g11(k) =
2

∑
j=1

(−1)j[iω(j) + ε + Σ22(k)]
i(ω(1) −ω(2))[1− exp(−iω(j)/T)]

, (72)

g12(k) =
2

∑
j=1

(−1)jΣ12(k)
i(ω(2) −ω(1))[1− exp(−iω(j)/T)]

. (73)

Thus, we derive the equations for the values of the normal and anomalous correlation functions at
(1 + p) difference position vectors l = rl − r0 of the neighboring spins:

g1j(l) =
( a

L

)d
∑
k

g1j(k)eikl, j = 1, 2; l = 0, 1, ..., p. (74)

Their right hand side is determined by the left hand side g1j(l) itself via Equations (57) and (70)–(73).
They constitute an exact closed system of 2(1 + p) self-consistency equations. Its finding is related
to a solution of the Ising problem in the same way as finding of a self-consistency equation in the
mean-field theory is related to a solution of a phase transition problem. However, now the self-consistency
Equation (74) is an exact equation valid in the entire critical region, not just its mean-field approximation.
One can analyze these explicit exact self-consistency equations by the well-known in the mean-field
theory analytic and numerical tools. It is relatively simple for the Ising model with the zero off-diagonal
self-energy Σ12 = 0 and zero anomalous correlations, when only the (1 + p) self-consistency equations
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remain. Moreover, in the isotropic case, when the cross-correlations with all p nearest neighbors are the
same, the system is reduced to just two equations.

Note that the close exact self-consistency equations exist only for the unconstrained, auxiliary basis
normal and anomalous auto- and cross-correlations. When the latter are found, the actual, observable
statistical and thermodynamic quantities can be explicitly expressed in terms of those basis correlations
via the matrix permanent, as is shown in the Sections 3.2–3.4 for the true, constrained partition function,
order parameter, correlation functions, and joined statistics of the spin-boson occupations (in particular,
see Equations (31)–(35), (45) and (55)).

This completes the exact general reduction of the Ising model to computing the matrix permanent
and provides a basis for the calculation of all statistical and thermodynamic characteristics of the critical
phenomena via the permanent of the sub-matrices composed from a relatively simple, unconstrained
spin-boson correlation matrix g.

Next, we proceed with a discussion of other remarkable features and representations of the matrix
permanent ad rem to the analysis of the nature’s complexities.

4. The Permanent and the Fractals

Here and in Section 5 we present a remarkable finding of a direct relation between the permanent and
the fractals and chaos. It is based on the two new integral representations of the n× n matrix permanent
via (i) an analog of the famous Weierstrass function which is known for its fractal structure and nontrivial
Hausdorff dimension and (ii) a mean value of a random multivariate polynomial.

We show that the fractals and chaos are intrinsic to evaluation of the matrix permanent.

4.1. The 1d Integral Representation of the Permanent: A Fractal Integrand and a Weierstrass Function

A move is to find an integral representation of the permanent for any n× n matrix Apq in a form of
a 1d integral. The idea is as follows. Let us form a sum of quasi-harmonics ckeiπtνk at frequencies νk with
amplitudes ck determined by the matrix entries Apq in such a way that one spectral component of a known
frequency ν0 would have the amplitude equal to the permanent, c0 = perA. Then, employ an appropriate
Fourier integral to discriminate this component and find the permanent as its amplitude. So, we introduce
a permanental function PA(z) as a product of the row functions Bp(z),

PA(z) =
n

∏
p=1

Bp(z), Bp(z) =
n

∑
q=1

Apqzbq−1
. (75)

The amplitude of the spectral component at the frequency ν0 = ∑n
q=1 bq−1 = bn−1

b−1 gives the permanent,
c0 = perA, for any base b > 1 if there are no coincidental resonances: ∑n

q=1 nqbq−1 6= ν0 for any partition
{nq ≥ 0|q = 1, ..., n} of n = ∑q nq except the unity one, nq = 1 ∀q. Under this condition, we find the
permanent’s 1d integral representation as follows

perA =
1
2

∫ 1

−1
P̄A(eiπt)dt for an integer base b = 2, 3, ...,

perA = lim
T→∞

1
2T

∫ T

−T
P̄A(eiπt)dt for a non-integer base b > 1.

(76)

Here an integrand is a following function of a complex variable z = eiπt,

P̄A(z) =
n

∏
p=1

B̄p(z); B̄p(z) = z
bn−1

n(1−b)
n

∑
q=1

Apqzbq−1
. (77)
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For an integer base b, this function is a polynomial in z. Its spectrum νk ∈ [n − bn−1
b−1 , nbn−1 −

bn−1
b−1 ] is exponentially broad, with big Hadamard gaps. It was designed so on purpose to make the 1d

representation (76) possible.
At b ≥ 2, Equation (76) remains valid even if the row function Bp is extended from a finite sum of

n terms to an infinite series B̃p(z) = ∑∞
q=1 Apqzbq−1

by adding the higher z-powers with q > n and any,
unrelated to A, factors. The series B̃p is a Weierstrass-type function, like a complex extension

W̃a,b(z) =
∞

∑
k=0

a−kzbk
, z ∈ C, |z| ≤ 1, (78)

of the Weierstrass cosine function Wa,b(t) = ReW̃a,b(eiπt). The Weierstrass functions are famous for being
continuous everywhere but differentiable nowhere. The extension W̃a,b(z) is a lacunary (cf. Hadamard gaps)
complex power series. A fractal (box or, as is believed, Hausdorff) dimension D = 2− α of the Wa,b(t)
graph is determined by the Hurst, or scaling, exponent α = logb a. The dimension is greater than unity,
D > 1, if a ∈ (1, b); see reviews on a fractal geometry of the Weierstrass functions [55,56]. It is known that
an image of the unit circle, |z| = 1, under the complex-valued Weierstrass map W̃a,b(z = eiθ), θ ∈ [−π, π],
of an integer base b covers an open subset of the complex plane, that is, forms a Peano curve, if the amplitude
a is close to 1, that is if the fractal dimension, D = 2− logb a, of Wa,b(t) is close to 2. Moreover, in this case
the complex-valued map W̃a,b(eiθ), θ ∈ [−π, π], as a subset in the 3d space {θ, ReW̃a,b, ImW̃a,b} ∈ R3 is
a fractal of the box dimension D3 = 2D− 1 = 3− 2 logb a close to 3 and almost fully fills in an open subset
of the 3d space as the 3d Peano curve.

Thus, the result in Equation (76) reveals a fractal nature of the permanent discussed in detail below.
For the critical phenomena, in particular, for the Ising model, the matrix Apq is determined by the
correlation function of the unconstrained bosons and evolves from a fast exponential decay, for example,
Apq ∼ b−αq, in the disordered phase to a slower than exponential, for example, power-law Apq ∼ q−η , η >

0, decay in the ordered phase. In terms of the permanental row functions B̃p(z), such an evolution of the
many-body system across the critical region means a transition from (a) the Weierstrass-type function of
a large exponent α ≈ 1 and a trivial, almost non-fractal structure with the dimension D ≈ 1 through (b)
a sequence of the Weierstrass-type functions of a smaller exponent α� 1 and a nontrivial fractal structure
with the dimension D = 2− α larger than unity towards (c) the Weierstrass-type functions of an effectively
zero exponent α ≈ 0 and a fully developed fractal structure with the maximal dimension D ≈ 2.

4.2. A Fractal Nature of the Matrix Permanent

Here we demonstrate phenomenal fractal properties of the permanental function P̄A(z) forming the
1d integral representation in Equation (76). They manifest themselves already in the cases of very simple
n× n matrices Apq ≡ 1, Apq = a−q, and Apq = 1 + aδp,q who’s permanents, perA, are n!, n!/an(n+1)/2,
and eaΓ(n + 1, a) (see Equation (142) below), respectively. In the first two cases the permanental function
can be replaced by the n-th power of the Weierstrass function in Equation (78), P̃A(z) = [W̃a,b(z)]n.

In order to illustrate a fractal nature of the permanent, let us consider the fractal properties of the
integrand and the integral’s accumulation in the permanent’s representation (76) with the integration
range increasing from zero to the ultimate value T = 1 or T = ∞ for the integer or non-integer base b,
respectively:

IA(T) =
1

2T

∫ T

−T
P̄A(eiπt)dt. (79)
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First, we elaborate on the basic case of the n× n matrix with unity entries, Apq ≡ 1, for which the
asymptotics of the permanent is given by the Stirling’s formula,

per(Apq ≡ 1) = n! ∼
√

2πn
nn

en at n→ ∞. (80)

We find that there are two qualitatively different patterns by which the integral (79) approaches the
permanent’s value: IA(T) → perA at T → 1 or ∞. Which of the two patterns is realized depends on
whether the base b of the permanental function P̄A is less or larger than the base of the exponential factor
in the denominator of the permanent’s asymptotics, which is e = 2.718... in the case of Equation (80).
(A factor nn could be eliminated by re-scaling the matrix A, say, to a doubly stochastic one.)

4.3. Permanent’s Fractal: The Case of the Integer Base

The first pattern is illustrated in Figure 1 for the binary base b = 2 < e. In this scenario,
the integral in Equation (79) quickly reaches an exceedingly large maximum value ∼nn/bn � perA at
an exponentially small displacement T ∼ 1/bn � 1 from zero and then gradually, with some oscillations,
decreases by a sequence of fractal, self-similar steps to the actual value of the permanent as the integration
range T tends to unity. (Hereafter, for simplicity’s sake, we skip a logarithmic factor ∼logb n in all of
the order-of-magnitude estimates.)

T

0.5 0.505 0.51
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3.5

4.0

0

5

10

15

20

25

0.0 0.25 0.5 0.75 1.0

P
A
( )de

i t

t !n
π

+T

−T

1
2 ∫

Figure 1. A fractal pattern of an accumulation of the integral in Equation (79) with an increasing range
of the integration, [−T, T], for the n× n matrix Apq = 1 in the case of n = 20 and the integer base b = 2.
At T → 1, the integral converges to the permanent’s exact value, perA = n!, in accord with the permanent’s
integral representation in Equation (76). The insert magnifies a self-similar fractal structure caused by
a hierarchy of extrema of the permanental function P̄A(eiπt) shown in Figure 3 in a vicinity of the primary
extremum t1 = 1

2 .

The second pattern is illustrated in Figure 2 for the ternary base b = 3 > e. In this scenario, the integral
in Equation (79) gradually grows from zero to the permanent’s value perA all the way from T = 0 to T = 1.
This pattern has a fractal, self-similar structure similar to a famous Cantor-Lebesgue function, or Devil’s
staircase [56].
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Figure 2. A fractal, similar to a Cantor-Lebesgue function or Devil’s staircase (dotted curve), pattern of
the accumulation of the integral in Equation (79) (solid curve) with an increasing range of the integration,
[−T, T], for the n × n matrix Apq = 1 in the case of n = 10 and the integer base b = 3. At T → 1,
the integral converges to the exact value of the permanent, perA = n!, as per the permanent’s representation
in Equation (76).

These patterns could be unambiguously understood by taking into account a remarkable fine structure
of the permanental function P̃A = [W̃a,b(eiπt)]n which is neither a smooth function nor a structureless noise,
but a fractal hierarchy of the ultrashort pulses/peaks of a width ∆t ∼ b−n and an amplitude regularly
scaling from one hierarchy level to the next one. Its fractal structure stems from a more elementary fractal
structure of each Weierstrass-function factor. A real part of the function

P̄A = eiπt 1−bn
b−1 [W̃(n−1)

a,b (t)]n, W̃(n)
a,b (t) =

n

∑
k=0

eiπtbk

ak , (81)

involving a truncated version of the Weierstrass function relevant to a matrix of a finite size n, is shown
in Figure 3.

3×10
22

2×10
22

1×10
22

-1×10
22

-2×10
22

-3×10
22

0

0.4999 0.50010.5000 t

Re ( )P t
A

Figure 3. A fractal hierarchy of extrema for the permanental function ReP̄A in Equation (81): Two sequences

of peaks of the secondary series of extrema located at t(s2)
k1,k2

= 1
2k1

+ s2
2k1+k2

, k2 = 1, ..., n − 1− k1, to the

left (s2 = −1) and right (s2 = +1) from the extremum k1 = 1, t1 = 1
2 , of the primary series; cf. Figure 1.

The integer base is b = 2, matrix size n = 20, a = 1.
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A primary series of extrema for the permanental function P̄A consists of the pulses located near
the points tk1 = 2−k1 , k1 = 0, 1, ..., n − 1. At the large matrix size n → ∞, all of them, except a few
(logarithmic number of) pulses located close to the boundary values of the index k1 (say, k1 = 0, 1, 2, 3 and
k1 = n− 4, n− 3, n− 2, n− 1), have equal amplitudes and a universal profile F(∆t),

P̄A(e
iπ(tk1

+∆t)) ≈ ζnnF(∆t), ζ = e∆W(1)−2, (82)

localized within a narrow deviation ∆t ∼ 2−n from the points tk1 and described by a special function

F(∆t) = e∆W(2n∆t)−iπ2n∆t, ∆W(y) =
∞

∑
k=1

(eiπy/2k − 1). (83)

The primary series of extrema is preceded by an exceptionally large, main peak located at the origin
t = 0 and holding the same universal profile of the width ∼2−n,

P̄A(eiπ∆t) ≈ nnF(∆t). (84)

A secondary series of extrema for the permanental function P̄A consists of two sequences of pulses
located to the right (s2 = +1) and to the left (s2 = −1) from each primary extremum tk1 at the points

t(s2)
k1,k2

= 1
2k1

+ s2
2k1+k2

; k2 = 1, 2, ..., n− 1− k1. Namely these two sequences of secondary peaks are shown

in Figure 3 in a vicinity of the primary extremum at the point t1 = 1
2 in the case of a = 1, b = 2, n = 20.

This fractal, self-similar hierarchy of the enclosed into each other extrema’s series continues with the
ternary and higher, r-order series of pulses surrounding each (r− 1)-order extremum at the points

t(s2,...,sr)
k1,k2,...,kr

=
1

2k1
+

r

∑
j=2

sj

2k1+k2+...+kj
; k j+1 = 1, 2, ..., n− 1− k1 −

j

∑
m=2

km , sj = ±1. (85)

At the large matrix size n → ∞, all of the r-order pulses, except a logarithmic number of pulses
located close to the boundary values 1 and n− 1− k1 −∑r−1

j=2 k j of the index kr, have equal amplitudes and
the universal profile:

P̄A(e
iπ(t(s2,...,sr)

k1,k2,...,kr
+∆t)

) ≈ ζrnnF(∆t). (86)

The extrema’s amplitudes in this hierarchy of series exponentially decrease with increasing order r of
the series as the r-th power of the scaling factor defined in Equation (82),

ζ ≈ −e−3.39465+i2.48105 ≈ −0.026495 + i0.020586. (87)

At the same time, the number of pulses in the series grows with increasing order r of the series
roughly as 2r−1Cr

n−2, where a binomial coefficient Cr
n−2 accounts for a number of r-compositions of the

integer n− 1 = ∑r
j=1 k j into a sum of r integers k j ≥ 1 and a factor 2r−1 accounts for a presence of two,

right and left, branches of extrema (sj = ±1) for each j-series in the hierarchy.
For a finite matrix size n, each pulse contributes to the integral in Equation (76), representing the matrix

permanent perA, with the universal factor on the order of the pulse width ∼2−n. Thus, the convergence of
the integral in Equation (79) to the exact permanent’s value, IA(T)→ perA, with the increasing range of
integration T → 1, shown in Figure 1, is a subtle interplay between the effects of decreasing amplitude
(∼ζr) and increasing number (∼Cr

n−2) of pulses in the extrema’s r-series as well as a phase modulation
of their contribution. The IA(T) accumulates only the real part of the complex-valued permanental
function P̄A(eiπt) which contains a phase shift varying with the increasing order r, that is evidenced



Entropy 2020, 22, 322 20 of 44

already by the fact that the factor ζr in Equation (86) holds the complex number (87). This interplay
results in the exponentially small prefactor ∼

√
2πn(2n/en)� 1 in front of the product of the pulse width,

2−n, and normalization, nn, factors in the value of the permanental integral in Equation (79) at T = 1,
IA(T = 1) = perA, as is required by the Stirling’s formula in Equation (80). This observation explains why
for the binary base b = 2 < e the accumulation pattern of the permanental integral in Equation (79), shown
in Figure 1, involves a huge initial growth of the integral to a value ∼nn/2n due to the main peak (84)
and, then, its subsequent almost complete cancellation and fine tuning of the interference contributions
from many extrema’s r-series of different orders r which finally (at T = 1) lead to the actual, exponentially
smaller by the factor ∼

√
2πn(2n/en)� 1, value of the permanent.

A similar analysis could be done for the ternary, b = 3 > e, and other integer bases larger than e.
In this case, the width of the pulses in the hierarchy of the extrema’s series is on the order of b−n that is
much smaller than the exponential factor e−n required by the Stirling’s formula (80). It yields a value that
is much less, by an exponential factor ∼en/(bn

√
2πn)� 1, than the actual value of the permanent and

calls for an accumulation of the contributions from many extrema’s r-series. This observation explains
the fractal pattern of the Cantor-Lebesgue, or Devil’s staircase, type in Figure 2.

These results suggest that, starting from a wide enough range of the integer bases [2, bmax] and
dividing it in halves according to the observed patterns of the permanental integral accumulation shown in
Figure 1 or Figure 2, one could find, in a logarithmic number of steps, an approximation of the exponential
factor nn/bn

A in the permanent’s asymptotics by bounding a true asymptotics’ base bA between the two
neighboring integer bases, b < bA < b + 1, as it was demonstrated above for the case of the Stirling’s
asymptotics in Equation (80) where b = 2 < bA = e < b + 1 = 3.

4.4. Permanent’s Fractal: The Case of the Non-Integer Base

The analysis presented above could be extended to the non-integer bases by switching to the
permanent’s integral representation with the non-integer base b > 1 in Equation (76). It constitutes
an alternative and, probably, more efficient way of computing the true base bA and the pre-exponential
factor in the permanent’s asymptotics, similar to the factor

√
2πn in the Stirling’s asymptotics (80).

For instance, let us illustrate how the permanent’s asymptotics in Equation (80) arises from the
integral representation with the natural-logarithm base b = e in Equation (76).

With increasing range of the integration T, it steadily converges to the matrix permanent’s value, as is
shown in Figure 4. The analysis of the permanental function with the non-integer base is similar to the
binary and ternary ones. Yet, it requires the infinite-limits Fourier integral in Equation (76), instead of the
finite-limits integral, for the evaluation of the permanent via the integral spectral discrimination since the
permanental function (81) is not a periodical function anymore.

For the case of the n× n matrix with unity entries, Apq ≡ 1, the permanental function is given by
Equation (81) with the parameters a = 1 and b = e as follows

P̄A = eiπx 1−en
e−1 [W̃(n−1)

1,e (t)]n, W̃(n−1)
1,e (t) =

n

∑
q=1

eiπtbq−1
. (88)

The hierarchy of its extrema is illustrated in Figure 5 and can be understood in terms of a harmonics’
synchronization as follows. Let us consider a differential counter-clockwise rotation of n unity-length
links (q = 1, ..., n) in the chain representing the sum, W̃(n−1)

1,e (t), of n harmonics of the row-sum function in
Equation (75) on the complex plane of its values. Each subsequent link rotates e = 2.718... times faster than
the preceding one. The beginning of the chain is rotating about the origin of the complex plane. When the
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variable t runs over the interval t ∈ [0, T], the end of the chain, that is the row-sum function W̃(n−1)
1,e (t),

follows a path representing its fractal walk on the complex plane shown in Figure 6.
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0.95
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P
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( )de

i t
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π
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−T

1
2T ∫

Figure 4. Convergence of the permanent’s integral representation in Equation (76) to the exact value of the
permanent, perA = n!, with increasing range of the integration T for the n× n matrix Apq = 1. The circles
show the scaled integral in Equation (79) for T = 1, ..., 80. The dashed line corresponds to the exact scaled
value, perA/n!, of the permanent. The non-integer base is b = e = 2.718..., matrix size n = 11.
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Figure 5. A fractal hierarchy of extrema for the scaled permanental function in Equation (88), ReP̄A(eiπt)/nn.
The insert shows the first ten extrema (m = 1, ..., 10) on a logarithmic scale, log t. The base is b = e = 2.718...,
the matrix size n = 10.
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Figure 6. A fractal walk of the permanental row function W̃(n−1)
1,e (t), Equation (88), on the complex plane

starting from its maximum real value W̃(n−1)
1,e = n at t = 0. The non-integer base is b = e = 2.718...,

the matrix size n = 10, t ∈ [0, 0.04].

The m = 0 extremum is located at the point t0 = 0 where all links (harmonics) have the same
orientation in the east direction: exp(iπt0eq−1) = 1; q = 1, ..., n.

The next, m = 1, extremum sits at the point t1 where the last, q = n, link (harmonic) makes a full
2π rotation plus a little extra rotation at an angle equal to a total rotation of all other links (harmonics)
q = 1, ..., n− 1. The latter condition can be approximately written as a transcendental equation for the
position t1 as follows

πt1 = 2π + arctan
∑n

q=1 sin[πt1eq−1]

∑n
q=1 cos[πt1eq−1]

. (89)

For the case of n = 10 in Figure 5, Equation (89) gives the value t1 ≈ 0.000257 which is very close
to the exact position t1 = 0.000271 of this extremum of the row-sum polynomial in Equation (75). At the
point t = t1, the next to the last link (harmonic) q = n− 1 makes 90o + 55o degrees, that is about 2π/e,
of a counter-clockwise rotation and is directed mainly to the west, while all other links (harmonics) are still
directed mainly to the east at moderate to small angles above the positive real-valued axis on the complex
plane: 35o for q = n, 53o for q = n− 2, 20o for q = n− 3, 7o for q = n− 4, etc.

The other extrema in the primary series located at the positions tm < 1, m = 2, ..., n− 1, can be viewed
and found similarly. Their positions can be approximated as

tm ≈ t1em−1. (90)

All these extrema at t = tm, m = 1, ..., n − 1, correspond to the configurations with just one link
(harmonic of the row-sum polynomial), namely the one labeled by the index q = n−m, directed mainly to
the west and all of the other links (harmonics) directed mainly to the east.

The next extremum, m = n, the first one located at the position, tn ≈ t1en−1 > 1, further away from
the origin than unity, has all links (harmonics) directed mainly to the east. The following, m = n + 1,
extremum in the series (90) has only one, namely the last one with q = n, link (harmonic) directed mainly
to the west, while all other links (harmonics) are east directed. The next three, m = n + 2, n + 3, n + 4,
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extrema in the series (90) have only two (q = 2n−m + 1 and q = 2n−m + 2) links (harmonics) oriented
mainly in the west direction.

This pattern continues in the series (90) as following. The next three, m = n + 5, n + 6, n + 7,
extrema have already three (q = 2n−m + 1, 2n−m + 2, and q = 2n−m + 5) links (harmonics) oriented
mainly in the west direction. The next two, m = n + 8, n + 9, extrema have already four (q = 2n−m +

1, 2n−m + 2, 2n−m + 5, 2n−m + 7) links (harmonics) oriented mainly in the west direction. The next
two, m = n + 10, n + 11, extrema have already five links (harmonics) oriented mainly in the west direction.
Then the pattern becomes more complicated but still can be followed via the picture of differential rotation
of links in the chain of harmonics. Of course, a similar picture is valid for any n, not only for n = 10.

Obviously, there are many higher-order series of extrema in the fractal hierarchy of extrema of the
permanental function (88). All of them correspond to the local extrema of the row-sum polynomial in
Equation (75), that is, the function W̃(n−1)

1,e (t). In fact, at large n, there exist exponentially many closely
located local extrema of the row polynomial that makes extremely difficult to numerically differentiate
a particular m-order extremum from other series’ extrema. Such a Weierstrass fractal structure is globally
homogeneous, ergodic along the t axis since this property is required for the asymptotically linear growth
of the permanental integral in Equation (76) with an increasing range limit T → ∞.

We find that, with increasing range of the variable t ∈ [−T, T], T → ∞, the path of the scaled first-row
permanental function for the n× n matrix Apq = 1,

B̄1(eiπt)

A1
=

eiπt en−1
n(1−e)

A1

n

∑
q=1

A1qeiπteq−1
, A1 =

n

∑
q=1

A1q, (91)

introduced in Equation (75) and additionally scaled by its maximum value n, fully covers a finite 2d region
in the complex plane enclosed by a hypocycloid,

z(θ) =
n− 1

n
eiθ
(

1 +
1
n

e−inθ
)

, θ ∈ [0, 2π]. (92)

A number of its cusps is equal to the size n of the matrix. Remarkably, in the limit n → ∞,
the hypocycloid perimeter, Pn, remains longer than the unit circle perimeter, 2π, by a finite amount,

Pn = 8
(

1− 1
n

)
→ 8 > 2π, (93)

although its area, Sn, tends to the area of the unit circle,

Sn = π
(

1− 1
n

)(
1− 2

n

)
→ π. (94)

So, the related scaled permanental function entering the permanent’s integral representation in
Equation (76), P̄A/nn = [B̄1(eiπt)/n]n, fully covers a finite 2d region in the complex plane enclosed by the
n-th power of the hypocycloid that acquires a teardrop shape at n� 1,

[z(θ)]n → 1
e

( 1
n− 1

+ eiθ
)

ee−iθ
at n� 1, θ ∈ [0, 2π]. (95)

This fractal property of the row and entire permanental functions is reminiscent of the properties of
the Peano and similar fractal curves and illustrated in Figure 7.
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Figure 7. A fractal walk of the scaled row-sum function (91) (the two left insets) and the scaled permanental
function, P̄A/nn = [B̄1(eiπt)/n]n, (the right insert) on the complex plane with the independent variable t
running over an indicated interval t ∈ [−T, T] for the matrix Apq = 1 of the sizes n = 3 (a), n = 5 (b) and
n = 6 (c). The fractal support’s border is the hypocycloid (92) with n cusps enclosed with the unit circle.
With increasing range of walk, T → ∞, the fractal fully covers the support. The base is b = e = 2.718....

As a result, the row and entire permanental functions, B̄p and P̄A, possess a nontrivial ergodic fractal

measures (i.e., 2d probability density functions ρ
(p)
1 (u, v) and ρ1(u, v), respectively) with a support on

the aforementioned finite region of the complex plane z = u + iv. For the row function of the matrix
Apq = 1, it is shown in Figure 8 for the matrix size n = 5, 6, 8. The distribution function ρ1(u, v) for the
entire permanental function is shown in Figure 9.

The analysis of the fractal properties of the permanental functions entering the permanent’s integral
representation in Equation (76), that was presented above for the case of the matrix Apq = 1, could be easily
extended to the matrices Apq = a−q and Apq = 1+ aδp,q, who’s permanents n!/an(n+1)/2 and eaΓ(n + 1, a),
as per Equation (142), are known, as well as to other circulant matrices with still unknown permanents.
We skip it here.

We only state that the related row and entire permanental functions possess the similar fractal
properties and point to some of their typical modifications due to a variation of the matrix entries.
For instance, Figure 10 shows the 2d probability density function ρ

(1)
1 (u, v) of the scaled fractal first-row

function (91), B̄1/A1, for the n × n circulant matrix with a power-law decay of its first-row entries,
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A1q = q−2, and n = 7. A comparison with Figure 8 clearly proves that the aforementioned fractal
behavior in the present case of the circulant matrix with varying entries qualitatively remains the same
as in the case of the constant matrix Apq = 1 discussed above. Just its sharp features become smoother,
that is, less pronounced, and the borders and topology of the fractal support region on the complex
plane are modified. In particular, an increasing variation of the matrix entries results in an appearance of
a no-support, empty region emerging in the central part of the fractal’s support as is shown in Figure 10 and
also in Figure 12 below (cf. Figure 7). The inner and outer borders of the permanent’s fractal support could
be found analytically, via a method of the Lagrange multipliers, for any complex matrix A. The related
results will be presented elsewhere.

Figure 8. The 2d probability density function ρ
(p)
1 (u, v) of the fractal row function in Equation (91) for the

n× n matrix Apq = 1 with n = 5 (a), n = 6 (b) and n = 8 (c). The border of the fractal is clearly visible as
the hypocycloid (92) enclosed with the unit circle. The non-integer base is b = e = 2.718....
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Figure 9. A scaled logarithm, log(1 + 103ρ1), of the 2d probability density function ρ1(u, v) of the fractal
permanental function in Equation (76), P̄A/nn, for the n× n matrix Apq = 1. The base is b = e = 2.718...,
the matrix size n = 8.

Figure 10. The 2d probability density function ρ
(1)
1 (u, v) of the scaled fractal first-row function (91), B̄1/A1,

(gray contour) closely reproduced by the zeroth-order approximation (104) of its multivariate counterpart

ρ
(1)
n (u, v) (black contour) for the n× n circulant matrix with a power-law decay of its first-row entries,

A1q = q−2; n = 7. The base is b = e = 2.718....

At last, we illustrate a convergence of the integral representation in Equation (76) to the exact value
of the permanent in Equation (142), perA = eaΓ(n + 1, a), with increasing range of the integration T
for the circulant n× n matrix Apq = 1 + aδp,q with varying entries by plotting the relative value of the
integral in Equation (79), IA(T)/perA, with the base b = e = 2.718... as a function of T in Figure 11.
The convergence is stable, similar to that in Figure 4.



Entropy 2020, 22, 322 27 of 44

0 20 40 60 80
0.90

0.95

1.00

1.05

T

P
A
( )de

i t

t Per A
π

+T

1
2T ∫

T

−T

Figure 11. A steady convergence of the permanent’s integral representation in Equation (76) to the exact
value of the permanent, perA = eaΓ(n + 1, a), with increasing range of the integration T for the circulant
n× n matrix Apq = 1+ aδp,q: The scaled integral in Equation (79), IA(T)/perA, as a function of T. The base
is b = e = 2.718..., the matrix size n = 11, a = 1.

5. Multivariate Representations of the Matrix Permanent

Here we find a relation of the permanent to complex random polynomials and determinants of
many variables.

5.1. The Integral Representation of the Permanent via a Multivariate Polynomial of Complex Variables:

perA =
∫ π

−π
...
∫ π

−π
P̄A({zq})

n

∏
k=1

dθk
2π

, P̄A =
n

∏
p=1

B̄p({zq}). (96)

Here B̄p({zq}) = 1
z̃ ∑n

q=1 Apqzq, zq = eiθq , z̃n = ∏q zq. A validity of the formula (96) stems from
the construction of the permanental function P̄A in such a way that all the terms in Equation (96) which
are present in the perA do not depend on the phases θq in virtue of the imposed phase-locking factor
∏n

q=1
zq
z̃ = 1 and, hence, are not affected by the integration. All the other terms contain, at least, one factor

zq = eiθq and, hence, vanish after the integration.

5.2. Discrete Analogs of the Permanent’s Integral Representations: BBFG Formula & Its Generalization

The method that we employed for the derivation of the permanent’s integral representations
in Equations (76) and (96) immediately yields also their discrete analog—a formula of Balasubramanian [57],
Bax–Franklin [58] & Glynn [23]

perA = ∑
{δq=±1|q 6=n}

∏n
k=1 δk

2n−1

n

∏
p=1

n

∑
q=1

δq Apq, (97)

where δq=n = 1. Namely, it suffices to replace the complex variables zq = eiθq running over the unity circle
in Equation (96) by the discrete variables δq running over two values ±1 and then, instead of imposing
the condition ∏n

q=1
zq
z̃ = 1 that selects all summands constituting the permanent to be independent

on the variables zq and hence not to vanish after applying the integration, multiply the product of the
matrix-row sums by the factor ∏n

k=1 δk. The latter does the same job of selecting all summands constituting
the permanent to be sign independent on the discrete variables δq = ±1, while making any summand
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irrelevant to permanent the antisymmetric function of those variables δq′ = ±1 the column’s index q′ of
which is missing in that summand. As a result, the summation ∑{δq} in Equation (97) nullifies all these
irrelevant summands and yields the exact value of the permanent.

The proof of Equation (97) presented above immediately allows us to conclude that there is an entire
series of different discrete-sum representations of the permanent

perA =
n−1

∑
q=1

∑
δq∈Rm

∏n
k=1 δm−1

k
mn−1

n

∏
p=1

n

∑
q′=1

δq′Apq′ (98)

for any integer m = 2, 3, ..., where the variables δq run over the set Rm of all m-th roots of unity, that is
δm

q = 1 but ∑δq∈Rm δq = 0. The BBFG formula (97) is a particular case of the result in Equation (98) at m = 2.

5.3. Permanent vs. Determinant: The MacMahon Master Theorem

Note that we employed in Section 2 another novel representation of the permanent – via a determinant
and the MacMahon master theorem. Here it is given in the integral and discrete forms.

Namely, we can rewrite a well-known MacMahon master theorem [54] as an integral representation
of the permanent of any matrix A via a n-dimensional Fourier integral

perA =
1

(2π)n

∫ π

−π
...
∫ π

−π

∏n
k=1 e−iθk dθk

det(1− Az)
, (99)

where z = diag{zk|k = 1, ..., n} is a diagonal matrix with the entries zk = eiθk . The discrete sum
representation is

perA = lim
x→0

1
(2x)n ∑

{δq=±1|q=1,...,n}

1
det(δ− xA)

, (100)

where the diagonal matrix δ = diag{δq|q = 1, ..., n} has the entries δpq = δqδp,q determined by a set of the
integers {δq = ±1|q = 1, ..., n} and the Kronecker delta δp,q. The result (100) stems from the MacMahon
master theorem written in a form of the n-dimensional partial derivative

perA =
∂n

∂z1...∂zn

1
det(1− Az)

∣∣∣
{zk=0|k=1,...,n}

(101)

taken at the zero values of the variables zk, k = 1, ..., n.

5.4. Permanent’s Fractal vs. Complex Stochastic Multivariate Polynomial

The chaotic fractal behavior of the permanental function can be analyzed and understood via the
multivariate polynomial of the complex variables comprising the permanent’s integral representation
in Equation (96). Here we illustrate this method by two examples.

First, we show that the support region of the fractal associated with the row function in Equation (75)
(cf. Equation (91)) on the complex plane is given by a range of the row-sum multivariate polynomial
B̄p({zq|q = 1, ..., n}) in Equation (96) for any n× n matrix Apq. The row polynomial is a complex-valued
stochastic variable given by the function of n random phases θq, q = 1, ..., n, uniformly distributed over
their domains θq ∈ [−π, π],

B̄p({zq}) =
1
z̃

n

∑
q=1

Apqzq, zq = eiθq , z̃n =
n

∏
q=1

zq. (102)
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A fact is that mapping the n-dimensional domain of variation of a multivariate random vector
{θ1, ..., θn}, that is, the n-dimensional direct sum of the n intervals [−π, π], or [−π, π]n, to the complex
plane via the row function B̄p({zq}) in Equation (102) yields the support of the fractal B̄p(eiπt)

in Equation (77), which is a function of just one real variable t. This is shown in Figure 12.

+1
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0

−1 0
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(a) (b)

Figure 12. (a) A fractal walk of the scaled row-sum function (91) with the independent variable running
over the interval t ∈ [−T, T], T = 7, and (b) the range of the scaled row-sum multivariate polynomial
B̄1({zq|q = 1, ..., n})/(∑n

q=1 A1q) in Equation (96) on the complex plane for a circulant matrix with the
power-law varying entries of the first row A1q = q−2. The base is b = e = 2.718..., matrix size n = 3.

Second, it is possible to find the ergodic measure of the permanental-function fractal in Equation (77)
by calculating the 2d probability density function, ρn(u, v), of the multivariate polynomial in Equation (96),
P̄A({zq}) = ∏n

p=1 B̄p({zq}). The latter can be found by mapping a distribution of the product of n random
row functions B̄p({zq}), p = 1, ..., n, from the uniform distribution of the multivariate random phase vector
{θ1, ..., θn} in the n-dimensional cube [−π, π]n to the complex plane of the values of P̄A({zq}) = u + iv.
For instance, for a n× n matrix A of a large size n � 1 and a moderate variation of entries, we find its
reasonable zeroth-order approximation analytically as follows

ρn(u, v) ≈
∫ ∞

0

RJ0(Rr1/n)

2πnr2−2/n

n

∏
q=1

J0(ApqR) dR. (103)

It is obtained as a distribution function of the n-th power of one row function B̄1({zq}) by neglecting
correlations between different row functions B̄p({zq}) as well as correlations imposed by the phase factor
z̃n. The zeroth-order approximation for the distribution function of the row function B̄p({zq}) is

ρ
(p)
n (u, v) ≈ 1

2π

∫ ∞

0
RJ0(Rr)

n

∏
q=1

J0(ApqR) dR. (104)

Here J0 is a Bessel function, r =
√

u2 + v2. Equations (104) and (103) approximate the main,
independent on a polar angle, part of the distributions ρ

(p)
n (u, v) and ρn(u, v) quite well. They are shown

in Figures 10 and 13 along with the 2d probability density functions ρ
(p)
1 (u, v) and ρ1(u, v) of the fractal

row and entire permanental functions in Equation (76), B̄p(eiπt) and P̄A(eiπt), respectively. In the left three
quarters of Figure 13, the approximation (103) (light gray) is a bit larger and, hence, shields the actual
distribution (dark gray). In the right quarter, the actual distribution is larger and shields the surface (103).
Importantly, we verified that the fractal’s distributions ρ

(p)
1 (u, v) and ρ1(u, v) coincide with the distributions

ρ
(p)
n (u, v) and ρn(u, v) of the multivariate row and entire permanental functions in Equation (96), B̄p({zq})

and P̄A({zq}), respectively.
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Figure 13. Equal each other distribution functions, ρ1(u, v) = ρn(u, v), of the scaled fractal permanental
function in Equation (76), P̄A(eiπt)/An

1 , and scaled complex multivariate polynomial in Equation (96),
P̄A({zq|q = 1, ..., n})/An

1 , (dark gray) as well as their zeroth-order approximation in Equation (103) (light
gray) for the circulant n× n matrix with a varying first row A1q = q−1/2; n = 8. The base is b = e = 2.718....

Thus, the matrix permanent could be calculated as a mean value of the stochastic permanental
function or polynomial by averaging their values over the complex plane with the weight given by the
distribution function ρ1(u, v) or ρn(u, v), respectively:

perA =
∫
(u + iv)ρ1(u, v)dudv =

∫
(u + iv)ρn(u, v)dudv. (105)

So, finding the next-to-zeroth and higher-order approximations for the distribution function ρ1(u, v)
of the permanent’s fractal for the 1d integral representation in Equation (76) or ρn(u, v) for the permanent’s
n-dimensional integral representation in Equation (96) allows one to compute the permanent via
Equation (105).

6. Manifestation of a Number-Theoretic Complexity in the Permanent of Schur/Fourier Matrices

Let us relate the complexity of the critical phenomena in physics of many-body systems to the
number-theoretic complexity in mathematics via the permanent of a n× n Schur matrix Spq = e2πipq/n,
employed in a fast Fourier transform, or the degenerate Schur matrices Sν, which differ from S by
a replication or deletion of some columns.

6.1. Permanent’s Representation via Laplace Integrals

Applying the Binet-Cuachy expansion to a circulant n× n matrix A = PSΛS†P−1/n, like the one
in Equation (2), written via the diagonal matrices of phases P = diag(e2πip/n) and A’s eigenvalues
Λ = diag(λp), p = 1, ..., n, we find [59] the permanent of its any (n−m)× (n−m) submatrix [A]{ik} via
a sum over the related degenerate Schur submatrices Sν{ik},

per[A]{ik} = ∑
ν

λν1
1 ...λνn

n

ν1!...νn!
|perSν{ik}|

2

nn−m ,
n

∑
j=1

νj = n−m. (106)
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For the perSν, we get the Laplace integral representation

perSν = η
Qmax

∑
Q=1

∫ ∞

0

n

∑
m1,...,mQ=1

f̃Q({qk, mk})
Q

∏
k=1

e−qk dqk
qk

, (107)

where a coefficient η and a polynomial f̃Q of Q variables qk and integers mk (k = 1, ..., Q) defined via
a generalized multivariate q-Pochhammer symbol [60,61] are specified right after Equation (110).

The results (106) and (107) yield many links between the number theory and permanents. Say,
a number of the degenerate Schur matrices with nonzero permanent and a number of terms in the
permanent of the generic circulant matrix, both equal ∑d|n ϕ( n

d )
(2d−1)!

d!(d−1)!n , are related to the Euler’s totient
function ϕ(k). The permanent of the Schur matrix of the odd order n [62], perS = ∑d|n un(d)¯( n

d ), is related
to the Möbius function µ(k) and a cardinality un(d) of a subset of permutations {π ∈ Sn|∑n

l=1 lπ(l) =
d mod n}. A contribution of the first two orders (Q = 1, 2) in Equation (107) to this permanent, perS =

n(n− 2)!(Hn−2 − 2 + Dn) + {terms of order Q ≥ 3}, includes the harmonic number Hm = ∑m
k=1 1/k and

another number-theoretic function Dn involving the greatest common divisor (n, m). The latter is related to
the Euler’s totient function and Ramanujan’s sum via a discrete Fourier transform. At last, Equation (107)
is equivalent to a sum over multiset partitions, a major focus of the number theory and combinatorics.

More links between the number theory and the permanent could come from Equation (98) which,
like the Möbius function and the Ramanujan’s sum, involves a sum over the roots of unity.

Thus, the complexity of the major number-theoretic functions is closely related to the complexity of
the permanent.

6.2. The Permanent of the Schur/Fourier and Circulant Matrices vs. the Number Theory

Here we brief on the details of the rigorous definitions and properties of the circulant and
Schur/Fourier matrices, polynomials and number-theoretic functions relevant to the permanent’s
representations in Equations (106) and (107).

The n× n circulant matrix A with the p-th row and q-th column entries Apq is a Toeplitz matrix [51]
with rows obtained via the consecutive cyclic permutations of the elements of the first row. It is given by
the discrete Fourier transform of the set of its eigenvalues {λl | l = 1, ..., n},

Apq =
1
n

n

∑
l=1

λle2πi(q−p)(l−1)/n. (108)

A submatrix [A]{ik |k=1,...,m} of the matrix A is a (n−m)× (n−m) matrix obtained from A by deletion
of m rows and m columns which intersect at the diagonal entries Aik ik specified by m integers ik ∈ [1, n].
The Schur matrix Spj = e2πipj/n is employed in the fast Fourier transform and sometimes is called the
Fourier matrix. A n× n degenerate Schur/Fourier matrix Sν is the Schur matrix (Spj) each, j-th column of
which is replicated νj times,

(Sν)pq = e
2πip fν(q)

n , fν(q) = 1 +
n−1

∑
t=1

θ(q− 1−
t

∑
j=1

νj). (109)

(The multiplicities, νj ≥ 0, are integers; j = 1, ..., n.) It is specified by a n-tuple ν =

(ν1, ..., νn), ∑n
j=1 νj = n; θ(x) is a step-function. All J + 1 different columns j = j(i) of Sν are enumerated in

the increasing order j(0) < j(1) < ... < j(J) by an index i = 0, 1, ..., J; J > 0. Sν{ik} is the (n−m)× (n−m)

matrix obtained from Sν by deleting m rows with indexes p = ik (k = 1, ..., m) and truncating the
column-index range to q = 1, ..., n−m.
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The Laplace integral representation of the permanent of the degenerate Schur/Fourier matrix in
Equation (107) involves a symmetric homogeneous polynomial in Q variables qk of degree n− νj(0) with
Q parameters mk,

fQ =
(−1)Q

Q!

J

∏
i=1

[ Q

∑
k=1

qkxj(i)−j(0)
k

]νj(i)
, xk = e

2πimk
n , (110)

—actually, its reduced counterpart f̃Q({qk, mk}) which is built from the polynomial fQ({qk, mk}) by keeping
only those monomials which simultaneously depend on all Q variables qk; η = (−1)(n+1)j(0)+n−νj(0)(νj(0)!).
The polynomial (110) can be written in terms of a special function,

fQ({qk, mk}) =
(−1)Qqn

Q

Q!(∑Q
k=1 qk)

νj(0)

(
{− qk

qQ
;

xk
xQ
}
){νj}

n
, (111)

that is, a multivariate ν-generalized q-Pochhammer symbol

({ak; qk})
{νj}
n = ∏

j

(
1−

Q−1

∑
k=1

akqj−j(0)
k

)νj
. (112)

A normal q-Pochhammer symbol of q-analysis [60,61] is

(a; q)n =
n

∏
j=1

(1− aqj−1). (113)

The number Q of variables qk in the polynomials f̃Q({qk, mk}) contributing to perSν in Equation (107)
depends on the n-tuple ν of the degenerate Schur/Fourier matrix Sν but, in any case, is bounded from
above by an inequality Q ≤ Qmax ≤ ∑n

j=1 jνj/n− j(0), (n− νj(0))/2. Equation (107) proves that only very
few degenerate Schur/Fourier matrices have the nonzero permanent perSν 6= 0, namely, the matrices Sν

satisfying the following Diophantine equation ∑n
j=1 jνj = 0 mod n.

The number-theoretic functions discussed above in conjunction with the permanent perSν are related
to the prime numbers, namely, the numbers coprime to n/d, where d is a divisor of the matrix size n.
The Euler’s totient function ϕ(k) counts the number of positive integers j up to a given integer k that
are relatively prime: j ≤ k and the greatest common divisor (j, k) = 1 is unity. The Möbius function
µ(k) = ∑k

j=1;(j,k)=1 e2πij/k is the sum of the primitive k-th roots of unity and takes on the three values

µ(k) = −1, 0, 1. Similarly, the Ramanujan’s sum ck(m) = ∑k
j=1;(j,k)=1 e2πimj/k is the sum of the m-th powers

of the primitive k-th roots of unity. The Euler’s totient function and the Ramanujan’s sum can be calculated
via the Möbius function as the following sums

ϕ(k) = ∑
d|k

µ
( k

d

)
d, ck(m) = ∑

d|(k,m)

µ
( k

d

)
d, (114)

and are related to the greatest common divisor (j, n) via the discrete Fourier transform:

ϕ(k) =
k

∑
j=1

(j, k)e
2πij

k , (j, n) =
n

∑
m=1

e
2πimj

n ∑
k|n

ck(m)

k
. (115)

These facts explain why a close relation between the number-theoretic functions and the permanent [1–4]
of the degenerate Schur/Fourier matrices is so natural. It is known that a computational complexity of the
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Euler’s totient function is that of a factoring of an integer into a product of prime numbers. It is believed
that the latter problem belongs to a NP-intermediate class, that is, it is much harder than any polynomial,
P-class problem, but it is not one of the hardest, NP-complete problems. The factoring of large numbers
constitutes a basis for a famous RSA public-key cryptosystem and as such had been studied in detail for more
than four decades. There is no efficient, polynomial-time algorithm for solving this problem, although the
running time of the best known algorithm, the general number field sieve (GNFS) algorithm, for factoring
a b-bit number is sub-exponential ∼O(exp{4[b(log b)2/9]1/3}).

Apparently, the computational complexity of the number-theoretic functions contributes to the
permanent’s computational complexity. At the same time, the latter includes also other factors. Even for
the quite special Schur/Fourier matrix S, computing the permanent [62], perS = ∑d|n un(d)¯( n

d ),
requires computing a cardinality uk(d) of a subset of permutations {π ∈ Sn|∑n

l=1 lπ(l) = d mod n},
along with the Möbius function µ(n/d). Moreover, even a contribution of the first two orders (Q = 1, 2)
in Equation (107), perS = n(n− 2)!(Hn−2 − 2 + Dn) + {terms of order Q ≥ 3}, includes the nontrivial
number-theoretic functions: A harmonic number Hm = ∑m

k=1 1/k and a new function [59]

Dn =
1

2(n− 1) ∑
1<m<n;(n,m) 6=1

(n,m)−1

∑
k=1

Ck
(n,m)

Ckn/(n,m)−1
n−2

, (116)

involving the greatest common divisor (n, m) via the binomial coefficients Cq
p = p!/(q!(p− q)!) and shown

in Figure 14 in the logarithmic scale. (Note a remarkable series of branches emerging at increasing values
of the argument n.)
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Figure 14. The function Dn in Equation (116) in a logarithmic scale, log10 D2k+1, for the non-prime odd
values of the integer variable n = 2k + 1 in the interval k = 4, ..., 130; Dn = 0 for prime n.

For the degenerate Schur/Fourier matrices Sν specified by the n-tuples {ν1, ..., νn} or the circulant
matrices specified by the eigenvalues {λ1, ..., λn} (see Equation (106)), the permanent’s computational
complexity greatly increases due to a necessity to compute perSν for a very large number r(n) =

∑d|n ϕ( n
d )

(2d−1)!
d!(d−1)!n of the different n-tuples ν generating the nonzero permanents [63] perSν, even though

this number is much less than the total number of all degenerate Schur/Fourier matrices Tn =

(n + 1)Cn/2, where Cn = (2n)!/[(n + 1)!n!] is the Catalan number. This additional complexity is
encrypted into the polynomial (110) of the permanent’s integral representation (107) via the other special
function—the multivariate ν-generalized q-Pochhammer symbol (112).
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An overall complexity of the degenerate Schur/Fourier matrix permanent can be understood as
a combinatorial, number-theoretic complexity of the multiset partitions νQ = {ν(k)|k = 1, ..., Q} of the
n-tuple ν = {ν1, ..., νn} which constitute the matrix’s discrete representation [59]

perSν =
η ∏n

j=1 νj!

νj(0)!

Qmax

∑
Q=1

∑
νQ

(−n)Q

∏L
l=1(dl !)

Q

∏
k=1

(Mk − 1)!

∏J
i=1(ν

(k)
j(i)!)

. (117)

Here Q submultisets ν(k) = {ν(k)j(1), ..., ν
(k)
j(J)} partition the multiset ν′ = {νj(1), ..., νj(J)} of all, except νj(0),

nonzero multiplicities νj(i) of a given n-tuple ν = {ν1, ..., νn} into Q summands, that is, νj(i) = ∑Q
k=1 ν

(k)
j(i).

They are naturally ordered, ν(k) � ν(k+1), in accord with the decreasing order ν
(k)
j(i) ≥ ν

(k+1)
j(i) of their

components. The lengths dl (l = 1, ..., L) of the intervals of equal consecutive submultisets ν(kl) =

ν(kl+1) = ... = ν(kl+dl−1) are called the degeneracy factors of the multiset partition νQ. Each submultiset
ν(k) covers a total number Mk = ∑J

i=1 ν
(k)
j(i) ≤ ∑J

i=1 νj(i) = n− νj(0) of columns in the matrix Sν. The sum in

Equation (117) runs over those multiset partitions νQ for which all submultiset partitions ν(k) have a span
σ(ν(k)) = ∑J

i=1(j(i)− j(0))ν(k)j(i) divisible by n, that is, σ(ν(k)) = 0 mod n ∀ k = 1, ..., Q.
Thus, the permanent, perSν, of the degenerate Schur/Fourier matrix, both in the form of the Laplace

integral representation in Equation (107) and in the equivalent form of the discrete representation in
Equation (117), is the sum over the multiset partitions which constitute a major focus in the number theory
and combinatorics.

In addition to the aforementioned functions related to perSν, the other combinatorial and
number-theoretical functions enter the scene when one calculates the permanent of the circulant matrix
via the power expansion over the matrix eigenvalues in Equation (106). This happens because the latter
includes the sum over the n-tuples ν = {ν1, ..., νn} specifying the degenerate Schur/Fourier matrices, in
addition to the aforementioned sum over the multiset partitions. In particular, the number of terms with
a given value of the exponent ν1 in λν1

1 is equal to the well-known rencontres (encounter) numbers [53]

Dn,ν1 = (!(n− ν1))C
ν1
n =

n!
ν1!

n−ν1

∑
k=0

(−1)k

k!
, !n ≡

⌈n!
e

⌋
; (118)

dxcmeans rounding x up for even n and down for odd n.

7. Asymptotics of the Permanent and the Szegő Limit Theorems

The result (2) points to a fundamental open problem of finding the permanent’s asymptotics for
the case of the large-size circulant matrix and its analogy with the Szegő limit theorems on the Toeplitz
determinant employed in the Onsager’s exact solution of the 2d Ising model [47–52].

A starting point for finding this asymptotics could be the expansion (106) of perA in powers of the
A’s eigenvalues.

An interesting example of an asymptotic reduction of the permanent of a doubly stochastic n× n
matrix A, with a moderate variation of its entries, to the determinant,

per(nA) ∼ n!
/√

det(I + J − A′A) at n→ ∞, (119)
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was found in Reference [64]; Ipq = δp,q, Jpq = 1/n, A′ stands for the transpose of A. It works quite well,
for example, for the nonnegative circulant matrices with a power-law, aq ∼ q−ξ , or similar moderate
variation of entries. Other ways to estimate the permanent have been recently reviewed in Reference [4].

For the symmetric circulant matrix A, the matrix under the determinant in Equation (119) is
circulant, that is Toeplitz. Below we show that the permanent’s asymptotics (119) is directly related
to the Toeplitz-determinant asymptotics.

7.1. The Circulant Determinant vs. the Toeplitz Determinant

Finding the permanent’s asymptotics for the large-size circulant matrix remains an open problem
who’s solution would be the key to a practical application of the permanents in the theory of critical
phenomena and quantum many-body processes as well as related studies of the nature’s complexities.
An analogous problem of finding the asymptotics of the Toeplitz determinant was the key to the Onsager’s
solution of the 2d Ising model [47–52]. The latter problem had been solved by the first and second Szegő
limit theorems on the asymptotics of the Toeplitz determinant. Here we elaborate on this analogy in
view of the McCullagh permanent’s asymptotics [64] in Equation (119) applied to the symmetric circulant
matrix A. In this case the problem is reduced to finding the determinant’s asymptotics of the circulant and,
hence, Toeplitz matrix I + J − A′A where A′ is the transpose of A. This fact sets a direct relation between
the permanent’s asymptotics and the Szegő limit theorems.

This relation is based on an important fact that the determinant of the n× n circulant matrix Cn =

(cq−p mod n) can be explicitly computed as a product of its eigenvalues

λl =
n−1

∑
k=0

cke−2πikl/n, l = 0, 1, ..., n− 1, (120)

given by a discrete Fourier transform of the first row of the circulant matrix, (Cn)1q = cq−1, q = 1, ..., n.
Assuming that all of the eigenvalues are not zero, one has

det Cn = exp
[ n−1

∑
l=0

log λ(n)(e−2πil/n)
]
; λ(n)(z) =

n−1

∑
k=0

ckzk. (121)

Here an associate polynomial λ(n)(z) of the circulant matrix Cn is taken on the unit circle in the
complex plane, z = e−2πix, at the discrete, homogeneously distributed values of a polar angle 2πx
corresponding to the values xl = l/n, l = 0, 1, ..., n− 1 of a real variable x ∈ [0, 1].

The exact Equation (121) is a discrete analog of the first Szegő limit theorem [51]. The latter gives
a leading term of the determinant’s asymptotics for the Toeplitz n× n matrix Tn = (tq−p) at n→ ∞ via
a mean value of the logarithm of its associate polynomial, symbol t(z), on the unit circle:

lim
n→∞

(det Tn)
1
n = e

∫ 1
0 log t(e−2πix)dx; t(z) =

∞

∑
k=−∞

tkzk. (122)

This leading asymptotic behavior corresponds to the homogeneous distribution of the eigenvalues on
the unit circle.



Entropy 2020, 22, 322 36 of 44

The next-to-leading term in the Toeplitz-determinant asymptotics, namely, the independent-on-n
pre-factor in front of the leading term (that, according to Equation (122), has an exponent growing linearly
with n) is given by the second (strong) Szegő limit theorem as follows

lim
n→∞

det Tn

en
∫ 1

0 log t(e−2πix)dx
= exp

[ ∞

∑
k=1

k(log t)k(log t)−k

]
, (123)

where (log t)k =
∫ 1

0 e−2πikx log[t(e2πix)]dx is the k-th Fourier coefficient of the logarithm of the symbol t(z)
associated with a limit Toeplitz matrix T = limn→∞ Tn.

On the one hand, an appearance of the nontrivial factor (123) due to the strong Szegő theorem
manifests a more complex structure of the Toeplitz matrices in the general case compared to the structure
of a special subset of the Toeplitz matrices - the circulant matrices. Essentially, a product of two circulant
matrices is always the circulant matrix, while the Toeplitz matrices in the general case lack this property
of a multiplicativity, that is, do not form a multiplicative group [65]. On the other hand, among the
Toeplitz matrices there is a wide subset of matrices for which the symbol t(z) is well defined, for instance,
when a well-known sufficient condition for a convergence of its series in Equation (122), ∑k |tk| < ∞,
is satisfied due to a relatively fast decrease of the entries t±k at k → ±∞. The Szegő limit theorems are
directly applicable only to this subset of the Toeplitz matrices.

For the circulant matrices Cn, a definition of the associate Toeplitz symbol employed in Equation (122)
is not appropriate since a series t(C)n (z) = c0 + ∑n−1

k=1 (ckzk + cn−kz−k) is not convergent at n → ∞.
The definition of the symbol,

λ(z) =
∞

∑
k=0

ckzk, (124)

based on the associate polynomial λ(n)(z) introduced in Equation (121) could be used, but only if the
sequence ck is decreasing so that, for instance, the convergence condition ∑k |ck| < ∞ is satisfied. However,
it would exclude from consideration the basic case of the periodic boundary conditions for the phase
transition problem when the first row of the circulant matrix, that is, the correlation function, has the same
values at the symmetrically located positions, |ck| = |cn−k|. In the latter case, let us define a circulant-matrix
symbol λ̄(z) via a modified associate polynomial which monomials zk acquire a shift −n of the exponent k
if it is greater than an integer part of n/2,

λ̄(z) = lim
n→∞

λ̄(n), λ̄(n)(z) =
[n/2]

∑
k=0

ckzk +
n−1

∑
k=[n/2]+1

ckzk−n. (125)

The latter preserves the circulant determinant (121):

det Cn = exp
[ n−1

∑
l=0

ln λ̄(n)(e−2πil/n)
]
. (126)

The most interesting, nontrivial situation of passing the critical region of a phase transition
corresponds to the case when the related circulant matrix entering the result in Equation (2) and discussed
in Section 2 above ceases to have a convergent symbol, neither λ(z) nor λ̄(z). This occurs in the critical
region of parameters when the correlation function representing the first row of this circulant matrix
experiences a transition from an abrupt exponential decay to spreading over an entire macroscopic volume
of the system. In this case computing the asymptotics of the circulant determinant amounts to finding
the asymptotics of the series in the exponent of Equation (121) or Equation (126). Note that even then
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this series could be represented sometimes as an integral from a smooth function over the unit interval
x ∈ [0, 1]. The latter function may be different from the logarithm of the polynomial λ(n)(z) or λ̄(n)(z)
associated with the circulant matrix as per Equation (121) or Equation (126) since this polynomial is
strongly oscillating, ill-defined at n→ ∞. An example is given below.

The aforementioned nontrivial, complimentary relation between the asymptotics of the circulant
determinant in terms of the explicit exact formula in Equation (121) or Equation (126) and the asymptotics of
the Toeplitz determinant in terms of the Szegő limit theorems could be clarified by considering a typical case
of the circulant matrix being represented as a sum of two Toeplitz matrices, Cn = Tn + T̄n, who’s entries
t±k or t̄±k generally decrease in value with increasing k or n − k from 1 to n − 1, respectively. Then,
the determinant of the circulant matrix Cn differs from the determinant of the Toeplitz matrix Tn by
a factor:

det Cn = det Tn det(1 + T̄nT−1
n ). (127)

Let’s consider a symmetric circulant matrix with the entries ck = cn−k decreasing in absolute value
when k runs from 1 to [n/2]. Let the Toeplitz matrix Tn contains the central (1 + 2[n/2])-band of the
circulant matrix Cn and zero entries in the complimentary to this band upper and lower triangular
parts, that is, tk = ck for k = 0, 1, ..., [n/2], tk = cn+k for k = −1, ...,−[n/2], and tk = 0 for |k| > [n/2].
Suppose ∑k |tk| < ∞, so that the Toeplitz symbol t(z) in Equation (122) exists and the Szegő limit theorems
in Equations (122) and (123) apply. Then, since the Toeplitz-matrix symbol t(z) coincides with the
circulant-matrix symbol λ̄(z) as per Equations (125) and (126), the circulant determinant in the left hand
side of Equation (127) coincides with the leading term of the Toeplits-determinant asymptotics given by
the first Szegő theorem (122). Obviously, the second (strong) Szegő theorem (123) gives the pre-factor
1/ det(1 + T̄nT−1

n ) that accounts for a fact that computing the Toeplitz determinant cannot be reduced to
computing a mean value of the logarithm of the symbol over the homogeneous distribution of eigenvalues
on the unit circle and, hence, is more complex than computing the circulant determinant. Only in the case
when a contribution due to the complimentary Toeplitz matrix T̄n becomes negligible, the strong Szegő
theorem (123) is reduced to just a trivial, unity factor and, hence, the Toeplitz determinant is reduced to
a value given by the first Szegő theorem and coinciding with the exact result in Equation (121) or (126) for
the circulant determinant.

7.2. McCullagh Asymptotics of the Permanent and Two Opposite Limits for the Circulant Determinant

Now we are ready to unfold the permanent’s asymptotics (119) at large n for the doubly stochastic
matrix An = Cn/λ1 with a moderate variation of its entries,

nnperAn

n!
∼ 1√

det(I + J − A′n An)
. (128)

The eigenvalues of the matrix An = Cn/λ1 differ from that of the matrix Cn, Equation (120), only
by the scaling factor ∑n−1

k=0 ck = λ1. Each eigenvalue of the matrix I + J − A′n An entering the McCullagh
asymptotics equals to the sum of the eigenvalues of matrices I, J, and−A′n An since all of these matrices are
circulant in the case of the symmetric circulant matrix A considered here and, hence, can be diagonalized
by the same discrete Fourier transformation. Thus, the determinant of the matrix I + J − A′n An is given by
the product of its eigenvalues:

det(I + J − A′n An) =
n

∏
k=2

(
1−

λ2
k

λ2
1

)
, An =

Cn

λ1
. (129)
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Here we implemented the fact that only the first eigenvalue of the matrix J is not zero, namely, it equals
unity. As a result, calculating the product in Equation (129) via the exact eigenvalues in Equation (120),
we get the explicit asymptotics of the permanent by means of Equation (128). Since the entries ck and the
eigenvalues λl of a sequence of the circulant matrices {Cn} constitute two counterparts of the discrete
Fourier transform as per Equation (120), there are two opposite limiting cases. Namely, either

(i) the matrix entries given by the function ck of the integer variable k enumerating matrix columns
are well localized and do not spread over an entire range of the column index k with increasing matrix size
n, for example, when the conversion condition ∑k |ck| < ∞ is satisfied, or

(ii) the eigenvalues λl are similarly well localized and do not spread over an entire range of the
eigenvalue index l with increasing matrix size n.

In the first case, the limiting distribution of the eigenvalues λl could be described by a smooth,
well-defined function, say, λ(e2πix) or λ̄(e2πix), of the variable x = l/n ∈ [0, 1]. In the second case,
the limiting distribution of the entries ck could be described by a smooth, well-defined function of the
variable x = k/n ∈ [0, 1].

This alternative is a manifestation of the uncertainty principle: The more concentrated a function
is, the more spread out its Fourier transform must be. In the application to the critical phenomena in
a spontaneous symmetry breaking, a transition from the first case to the second case corresponds to the
transition from a disordered phase with a strongly localized correlation function to an ordered phase
with the correlation function spread out over an entire, macroscopic dimension of a many-body system.
The complexity of the critical phenomena revealed by the matrix permanent’s complexity arises due to
a simultaneous absence of such smooth, well-defined functions in the both dual domains of the matrix
entries and the eigenvalues that takes place in the central part of the critical region of phase transitions.

Let us illustrate a related transition in the behavior of the permanent’s asymptotics by considering
a sequence of the symmetric circulant n × n matrices {Cn} who’s first rows ck are given by smooth
functions c(n)(x) of the continuous variable x ∈ [0, 1] at the discrete points x = k/n. In accordance with
the Poisson summation formula for a discrete-time Fourier transform (DTFT), the eigenvalues are given by
Equation (120) as a periodic summation of Fourier coefficients c̃(n)(j) of the function c(n)(x) as follows

λl = n
∞

∑
j=−∞

c̃(n)(l + nj), c̃(n)(l) =
∫ 1

0
c(n)(x)e−2πilxdx. (130)

The determinant of the matrix Cn equals their product:

det Cn = nn
n−1

∏
l=0

+∞

∑
j=−∞

c̃(n)(l + nj). (131)

In a class of the functions c(n)(x) = h(βnx) which are given by one and the same smooth function
h(x), x ∈ [0, ∞), and depend on the matrix size n only via a scaling factor βn, the first of the two opposite
limiting cases discussed above can be illustrated by the following typical case of the scaling βn = n.
If the function h(x) is decreasing fast enough at large values of |x|, then, in the limit of large n, the matrix Cn

becomes essentially a relatively narrow band matrix and the entries ck ≡ c(n)(x = k/n) = h(k) constitute
the Fourier coefficients of the well-defined symbol λ̄(z), Equation (125). So, the associated polynomials
λ̄(n)(z) of the matrices Cn could be considered as projections of the symbol λ̄(z) onto a subspace of
polynomials spanned by the finite-power monomials zk, k ∈ [[ n

2 ] + 1− n, [ n
2 ]]. If the symbol λ̄(z) is

a smooth positive function, so that the projections λ̄(n)(z) tends to λ̄(z) with increasing n, then the
eigenvalues λl tend to λ̄(e2πil/n) in a dense and homogeneous set of points on the unit circle. In this
case, the leading contribution to the determinant in Equation (130) is provided solely by the Fourier
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coefficients within the central n-period of harmonics, l + nj ∈ [−n + 1 + [ n
2 ], [

n
2 ]], and the asymptotics of

the determinant is given by the integral of the logarithm of the symbol over the unit circle:

lim
n→∞

det Cn = exp
[
n
∫ 1

0
ln λ̄(e2πix)dx

]
. (132)

This formula for the determinant of circulant matrices has the same form as the first Szegő limit
theorem in Equation (122). Note, however, that the analogous asymptotics of the Toeplitz determinant
includes an additional nontrivial pre-exponential factor given by the strong Szegő theorem, Equation (123).
The reason for this difference was discussed above, after Equation (127), and stems from the fact that
the circulant and Toeplitz matrices are close to each other only in terms of the weak or Hilbert-Schmidt
norm, but differ significantly in terms of the strong norm [51]. Hence, their determinants have different
limiting values.

The second of the two opposite limiting cases discussed above can be illustrated by the case of the
unity scaling factor βn = 1. Now, with increasing n, the entries ck ≡ c(n)(x = k/n) = h(k/n) of the
circulant matrices Cn tend to the values of the smooth function h(x) on a dense homogeneous set of
points {k/n} within the unit interval x ∈ [0, 1]. In virtue of the uncertainty principle, it implies that the
eigenvalues λl determined by the entries’ Fourier transform as per Equation (130) appear to be strongly
localised in the dual, frequency domain. In the case of the symmetric doubly-stochastic matrix An = Cn/λ1

with the entries ck decreasing from the side columns k = 0 and k = n towards the central column k = [n/2],
which corresponds to the problem of phase transition in a system with the periodic boundary conditions
and is relevant to the McCullagh permanent’s asymptotics, the generating function h(x) is real-valued
and positive. So, at n→ ∞, all of the significant eigenvalues are concentrated only near the boundaries
l = 1 and l = n, that is, at l � n and n − l � n, as the symmetric pairs λl = λn−l . In the leading
order, their asymptotics is given by just one relevant term c̃(n)(l) = c̃(n)(n− l) in the periodic summation
in Equation (130). The rest of the eigenvalues, spanning the entire central part of the range of Fourier
harmonic numbers l between these boundary layers, tend to zero. As a result, the McCullagh permanent’s
asymptotics in Equations (128) and (129) acquires the following simple form

lim
n→∞

nn perAn

n!
=

∞

∏
l=2

1
1− [c̃(n)(l)/c̃(n)(1)]2

. (133)

7.3. An Example of the Permanent’s Asymptotics: Circulant Matrix with Exponentially Varying Entries

As an example, let us consider the circulant matrices Cn who’s first row,

ck = cosh(α− 2αk/n), k = 0, 1, ..., n− 1, (134)

corresponds to an exponential decay of correlations described by a nonnegative parameter α and
the periodic boundary conditions. In this case the discrete Fourier transform (120) yields the
eigenvalues explicitly:

λk =
sinh(α) sinh(2α/n)

cosh(2α/n)− cos(2π(k− 1)/n)
, k = 1, 2, ..., n. (135)
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A straightforward calculation of the product in Equation (129) yields the explicit asymptotics of the
permanent via Equation (128) for the large finite values of n. Here we present it only for n� 1 + α when
the determinant gets to the limit

lim
n→∞

det(I + J − A′n An) =
α2 sinh2(α

√
2)

2 sinh4(α)
(136)

and the leading term of the permanent’s asymptotics is

lim
n→∞

nnperAn

n!
=

√
2 sinh2(α)

a sinh(α
√

2)
. (137)

The latter result follows from Equation (133), that is, calculation of the product in Equation (129) as
(∏r

k=2)
2 for r = [n/2]→ ∞, by means of the integration over a parameter p ∈ [0, 1],

r

∏
k=1

(
1 +

u
v + π2k2

)
= exp

∫ 1

0

r

∑
k=1

u dp
pu + v + π2k2 , (138)

via a sum given by a digamma function ψ(z) = d[ln Γ(z)]
dz ,

r

∑
k=1

1
x2 + k2 =

πx coth(πx)− 1
2x2 − ψ(r + ix)− ψ(r− ix)

2ix
. (139)

Dependence of the permanent on the matrix size n (the exact values calculated numerically and
shown by dots) and its McCullagh asymptotics (128) (shown by crosses) are illustrated in Figure 15 for
the doubly stochastic circulant matrix An = Cn/λ1 specified in Equation (134) in the case of the relatively
large correlation decay parameter, α = 2.5. This parameter sets a scale of the entries’ variation from
the maximum value ck=0 = cosh(α) � 1 at the main diagonal to the minimum value at a half way
to the matrix edge ck=[n/2] that is 1 for even n and about 1 for odd n > α. The fact that this scale of
variation is a fixed, independent on n quantity makes the matrix An resemble the matrix J at n→ ∞ and,
hence, justifies McCullagh asymptotics which approximates the permanent quite well starting already
from n ∼ 20. At the same time, for relatively small n, a steep, exponential decay of matrix entries with
a deviation from the main diagonal makes the matrix An resemble the narrow band matrix that validates
an opposite-type approximation of the permanent as the product of the diagonal entries,

perAn ≈
( c0

λ1

)n
=
[ tanh(α/n)

tanh(α)

]n
, (140)

associated with a random phase approximation [33].
Thus, the example shown in Figure 15 simultaneously illustrates both opposite limiting cases (i)

and (ii) of the circulant permanent behavior discussed above and a nontrivial transition between them.
An unambiguous agreement of the exact numeric calculations with corresponding analytic results in
Equations (140) (a dashed-dotted curve) and (137) (a dashed line) at small (n < 5) and large (n > 20)
matrix sizes n, respectively, is remarkable.
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Figure 15. The scaled permanent, nnperAn/n!, of the doubly stochastic circulant n× n matrix An = Cn/λ1

specified in Equation (134) as a function of the matrix size: the dots—an exact numerical calculation, the
crosses—the McCullagh asymptotics in Equation (128), the dashed-dotted curve—the diagonal (random
phase) approximation in Equation (140), the dashed line—the leading asymptotics in Equation (137); α = 2.5.

7.4. The Permanent’s Asymptotics for the Circulant Matrices with the Power-Law Varying Entries

A similar analysis of the permanent for the circulant matrices with a power-law variation of
the entries, which is characteristic for emergence of the ordered phase in the critical region within
the renormalization-group approach and is significantly less steep than the exponential variation
in Equation (134) discussed above, also confirms the aforementioned two opposite types of the permanent
behavior. Here, for the sake of room, we skip it along with an illustrative plot of the n-dependence of the
permanent which is similar to the one shown in Figure 15.

7.5. An Example of the Exact Analytic Solution for the Permanent of the Doubly Stochastic Circulant Matrix

Finally, we elaborate on one more interesting example of the permanent’s asymptotics. Let us consider the
circulant n× n matrix all entries of which are equal to c1 except the main diagonal filled with the other entry c0,

Cn = (c0 − c1)I + c1 J. (141)

Its first eigenvalue is λ1 = c0 − c1 + nc1. All other eigenvalues are equal to λk = c0 − c1, k = 2, ..., n.
We find its permanent analytically using combinatorics and the well-known rencontres number !k of the
derangements (118), that is, the permutations of the set {1, 2, ..., k} without fixed points:

perCn =
n

∑
k=0

Ck
n(!k)c

n−k
0 ck

1 = cn
1 e

c0
c1
−1Γ

(
n + 1,

c0

c1
− 1
)

, (142)

where Γ is an upper incomplete gamma function. Introducing a relative variance of the diagonal and
off-diagonal entries, αn = c0

c1
− 1, which plays a part similar to that of the correlation decay parameter α

in Equation (134), we find the exact analytic formula for the permanent of the related doubly stochastic
circulant matrix An = Cn/λ1,

perAn =
eαn Γ(n + 1, αn)

(n + αn)n , (143)

and its McCullagh asymptotics in Equations (128) and (129),

perAn ∼
n!
nn

[
1− 1

(1 + n/αn)2

](1−n)/2
at n→ ∞. (144)
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Again, there are two opposite limiting cases. If the entries’ variance parameter an is very large,
then the matrix An is close to the diagonal matrix and its permanent is given by the diagonal
(random phase) approximation

perAn ≈
( c0

λ1

)n
=
[ αn + 1

αn + n

]n
. (145)

In the opposite case of small values of the variance parameter αn, the matrix An is of the J type and
the McCullagh asymptotics in Equation (144) applies. A transition between these two limit regimes occurs
at the moderate values of αn. It is described by the exact analytic result in Equation (143) and is similar to
the one discussed in Figure 15. Importantly, the exact solution in Equation (143) allows one to analytically
obtain all of the permanent’s asymptotics and limits for the matrix (141) via the known asymptotics and
limits of the incomplete gamma function.

A comparative analysis of various permanent’s asymptotics will be presented elsewhere.

8. Conclusions

We infer that the method of a matrix permanent can be employed as a universal tool for analyzing and
measuring complexity in nature. A nontrivial reduction of the critical phenomena, fractals, many-body
processes in quantum systems and computing of NP- and ]P-problems to the permanent as well as the
permanent’s integral representations presented above clearly demonstrate the power and capability of the
permanent-based analytic technique for the unification of the nature’s complexities.

Of course, there are other functions, different from the matrix permanent, which are also involved
into various ]P- or NP-complete problems [66]. However, in view of a number of the aforementioned
results and facts, the permanent is marked by its universal and central role in describing complexity both
in physics and mathematics.

Author Contributions: All coauthors, V.K. (Vitaly Kocharovsky), V.K. (Vadimir Kocharovsky) and S.T., contributed equally
to deriving the results and writing the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (grant 18-72-00225). The research related to Section 3
was funded by the state task for the Institute of Applied Physics, Russian Academy of Sciences (the project 0035-2019-0002).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Minc, H. Permanents (Encyclopedia of Mathematics and Its Applications); Addison - Wesley: Reading, MA, USA,
1978; Volume 6.

2. Minc, H. Theory of Permanents 1982–1985. Linear Multilinear Algebr. 1987, 21, 109–148. [CrossRef]
3. Stanley, R.P. Enumerative Combinatorics; Cambridge University Press: Cambridge, MA, USA, 2012; Volume 1.
4. Barvinok, A. Combinatorics and Complexity of Partition Functions. Algorithms and Combinatorics; Springer International

Publishing: Berlin/Heidelberg, Germany, 2016; Volume 30.
5. Scheel, S. Permanents in linear optical networks. arXiv 2004, arXiv:0406127v1.
6. Aaronson, S.; Arkhipov, A. The computational complexity of linear optics. Theory Comput. 2013, 9, 143–252. [CrossRef]
7. Kalai, G. The quantum computer puzzle (expanded version). arXiv 2016, arXiv:1605.00992v1.
8. Wu, J.; Liu, Y.; Zhang, B.; Jin, X.; Wang, Y.; Wang, H.; Yang, X. Computing Permanents for Boson Sampling on

Tianhe-2 Supercomputer. arXiv 2016, arXiv:1606.05836v1.
9. Wang, H.; Qin, J.; Ding, X.; Chen, M.; Chen, S.; You, X.; He, Y.; Jiang, X.; You, L.; Wang, Z.; et al. Boson Sampling

with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 2019,
123, 250503. [CrossRef] [PubMed]

10. Drummond, P.D.; Opanchuk, B.; Rosales-Zárate, L.; Reid, M.D.; Forrester, P.J. Scaling of boson sampling
experiments. Phys. Rev. A 2016, 94, 042339. [CrossRef]

http://dx.doi.org/10.1080/03081088708817786
http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.1103/PhysRevLett.123.250503
http://www.ncbi.nlm.nih.gov/pubmed/31922765
http://dx.doi.org/10.1103/PhysRevA.94.042339


Entropy 2020, 22, 322 43 of 44

11. Opanchuk, B.; Rosales-Zárate, L.; Reid, M.D.; Drummond, P.D. Simulating and assessing boson sampling
experiments with phase-space representations. Phys. Rev. A 2018, 97, 042304. [CrossRef]

12. Opanchuk, B.; Rosales-Zárate, L.; Reid, M.D.; Drummond, P.D. Robustness of quantum Fourier transform
interferometry. Opt. Lett. 2019, 44, 343–346. [CrossRef]

13. Shchesnovich, V.S. Partial distinguishability and photon counting probabilities in linear multiport devices. arXiv
2017, arXiv:1712.03191v2.

14. Chin, S.; Huh, J. Generalized concurrence in boson sampling. Sci. Rep. 2018, 8, 6101. [CrossRef] [PubMed]
15. Yung, M.-H.; Gao, X.; Huh, J. Universal bound on sampling bosons in linear optics and its computational

implications. Natl. Sci. Rev. 2019, 6, 719–729. [CrossRef]
16. Kim, Y.; Hong, K.-H.; Kim, Y.-H.; Huh, J. Connection between BosonSampling with quantum and classical input

states. Opt. Express 2020, 28, 6929–6936. [CrossRef]
17. Rudolph, T. Simple encoding of a quantum circuit amplitude as a matrix permanent. Phys. Rev. A 2009, 80, 054302.

[CrossRef]
18. Gurvits, L. Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 2004, 69, 448–484. [CrossRef]
19. Dolev, S.; Fandina, N.; Gutfreund, D. Succinct permanent is NEXP-hard with many hard instances. In Algorithms

and Complexity: 8th International Conference, CIAC 2013, LNCS 7878; Spirakis, P.G., Serna, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 183–196.

20. Valiant, L.G. The complexity of computing the permanent. Theor. Comput. Sci. 1979, 8, 189–201. [CrossRef]
21. Aaronson, S. A linear-optical proof that the permanent is ]P-hard. Proc. R. Soc. A 2011, 467, 3393–3405. [CrossRef]
22. Ryser, H.J. Combinatorial Mathematics, The Carus Mathematical Monographs, No. 14; The Mathematical Association

of America: Washington, DC, USA, 1963.
23. Glynn, D.G. The permanent of a square matrix. Eur. J. Combinatorics 2010, 31, 1887–1891. [CrossRef]
24. Goldreich, O. P, NP, and NP-Completeness: The Basics of Complexity Theory; Cambridge University Press: Cambridge,

MA, USA, 2010.
25. Bernstein, E.; Vazirani, U. Quantum complexity theory. SIAM J. Comput. 1997, 26, 1411–1473. [CrossRef]
26. Toda, S. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 1991, 20, 865–877. [CrossRef]
27. Basu, S. A complex analog of Toda’s theorem. Found. Comput. Math. 2012, 12, 327–362. [CrossRef]
28. Bernien, H.; Schwartz, S.; Keesling, A.; Levine, H.; Omran, A.; Pichler, H.; Choi, S.; Zibrov, A.S.; Endres, M.; Greiner, M.;

et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 2017, 551, 579–584. [CrossRef] [PubMed]
29. McMahon, P.L.; Marandi, A.; Haribara, Y.; Hamerly, R.; Langrock, C.; Tamate, S.; Inagaki, T.; Takesue, H.;

Utsunomiya, S.; Aihara, K.; et al. A fully-programmable 100-spin coherent Ising machine with all-to-all
connections. Science 2016, 354, 614–617. [CrossRef] [PubMed]

30. Pierangeli, D.; Marcucci, G.; Conti, C. Large-scale photonic Ising machine by spatial light modulation.
Phys. Rev. Lett. 2019, 122, 213902. [CrossRef]

31. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 1–15. [CrossRef]
32. Kocharovsky, V.V.; Kocharovsky, V.V. Towards an exact solution for the three-dimensional Ising model: A method

of the recurrence equations for partial contractions. Phys. Lett. A 2015, 379, 2520–2523. [CrossRef]
33. Kocharovsky, V.V.; Kocharovsky, V.V. Exact general solution to the three-dimensional Ising model and

a self-consistency equation for the nearest-neighbors’ correlations. arXiv 2016, arXiv:1510.07327v3.
34. Caianiello, E.R. Combinatorics and Renormalization in Quantum Field Theory. Frontiers in Physics; W. A. Benjamin Inc.:

Reading, PA, USA; London, UK; Amsterdam, The Netherlands, 1973.
35. Huo, Y.; Liang, H.; Liu, S.-Q.; Bai, F. Computing the monomer-dimer systems through matrix permanent. arXiv

2007, arXiv:0708.1641v2.
36. Jerrum, M.; Sinclair, A. Approximating the permanent. SIAM J. Comput. 1989, 18, 1149–1174. [CrossRef]
37. Jerrum, M.; Sinclair, A. Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 1993,

22, 1087–1116. [CrossRef]
38. Jerrum, M.; Sinclair, A.; Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix

with nonnegative entries. J. ACM 2004, 51, 671–697. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.97.042304
http://dx.doi.org/10.1364/OL.44.000343
http://dx.doi.org/10.1038/s41598-018-24302-5
http://www.ncbi.nlm.nih.gov/pubmed/29666423
http://dx.doi.org/10.1093/nsr/nwz048
http://dx.doi.org/10.1364/OE.384973
http://dx.doi.org/10.1103/PhysRevA.80.054302
http://dx.doi.org/10.1016/j.jcss.2004.06.003
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1098/rspa.2011.0232
http://dx.doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1007/s10208-011-9105-5
http://dx.doi.org/10.1038/nature24622
http://www.ncbi.nlm.nih.gov/pubmed/29189778
http://dx.doi.org/10.1126/science.aah5178
http://www.ncbi.nlm.nih.gov/pubmed/27811274
http://dx.doi.org/10.1103/PhysRevLett.122.213902
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1016/j.physleta.2015.07.026
http://dx.doi.org/10.1137/0218077
http://dx.doi.org/10.1137/0222066
http://dx.doi.org/10.1145/1008731.1008738


Entropy 2020, 22, 322 44 of 44

39. Goldberg, L.A.; Jerrum, M. A complexity classification of spin systems with an external field. Proc. Nat. Acad. Sci. USA
2015, 112, 13161–13166. [CrossRef] [PubMed]

40. Huber, M.; Law, J. Simulation reduction of the Ising model to general matchings. Electron. J. Probab. 2012, 17, 1–15.
[CrossRef]

41. Kocharovsky, V.V.; Kocharovsky, V.V. Microscopic theory of a phase transition in a critical region: Bose–Einstein
condensation in an interacting gas. Phys. Lett. A 2015, 379, 466–470. [CrossRef]

42. Holstein, T.; Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev.
1940, 58, 1098–1113. [CrossRef]

43. Schwinger, J. Quantum Theory of Angular Momentum; Academic Press: New York, NY, USA, 1965.
44. Kadanoff, L.P. Statistical Physics: Statics, Dynamics and Renormalization; World Scientific: Singapore, 2000.
45. Dyson, F.J. General theory of spin-wave interactions. Phys. Rev. 1956, 102, 1217–1230. [CrossRef]
46. Abrikosov, A.A.; Gorkov, L.P.; Dzyaloshinskii, I.E. Methods of Quantum Field Theory in Statistical Physics;

Prentice-all: Englewood Cliffs, NJ, USA, 1963.
47. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 1944, 65, 117–149.

[CrossRef]
48. Montroll, E.W.; Potts, R.B.; Ward, J.C. Correlations and spontaneous magnetization of the two-dimensional Ising

model. J. Math. Phys. 1963, 4, 308–322. [CrossRef]
49. Wu, T.T.; McCoy, B.M.; Tracy, C.A.; Barouch, E. Spin-spin correlation functions for the two-dimensional Ising

model: Exact theory in the scaling region. Phys. Rev. B 1976, 13, 316–374. [CrossRef]
50. Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: London, UK, 1989.
51. Gray, R.M. Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2006, 2, 155–239. [CrossRef]
52. Deift, P.; Its, A.; Krasovsky, I. Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model:

Some history and some recent results. Commun. Pure Appl. Math. 2013, 66, 1360–1438. [CrossRef]
53. Percus, J.K. Combinatorial Methods; Springer: New York, NY, USA; Heidelberg/Berlin, Germany, 1971.
54. Louck, J.D. Unitary Symmetry and Combinatorics; World Scientific: Singapore, 2008.
55. Baranski, K. Dimension of the Graphs of the Weierstrass-Type Functions. In Fractal Geometry and Stochastics

V, Progress in Probability; Bandt, C., Falconer, K., Zahle, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; Volume 70, pp. 77–91.

56. Falconer, K.J. Fractal Geometry. Mathematical Foundations and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003.
57. Balasubramanian, K. Combinatorics and Diagonals of Matrices. Ph.D. Thesis, Department of Statistics, Loyola

College, Indian Statistical Institute, Calcutta, India, 1980.
58. Bax, E.; Franklin, J. A finite-difference sieve to compute the permanent. In Caltech-CS-TR-96-04; California

Institute of Technology: Pasadena, CA, USA, 1996.
59. Kocharovsky, V.V.; Kocharovsky, V.V. On the permanents of circulant and degenerate Schur matrices.

Linear Algebra Appl. 2017, 519, 366–381. [CrossRef]
60. Ernst, T. A Comprehensive Treatment of Q-Calculus; Springer: Basel, Swizerland, 2012.
61. Exton, H. Q-Hypergeometric Functions and Applications; Halsted Press: New York, NY, USA, 1983.
62. Graham, R.L.; Lehmer, D.H. On the permanent of Schur’s matrix. J. Austral. Math. Soc. A 1976, 21, 487–497. [CrossRef]
63. Thomas, H. The number of terms in the permanent and the determinant of a generic circulant matrix.

J. Algebr. Comb. 2004, 20, 55–60. [CrossRef]
64. McCullagh, P. An asymptotic approximation for the permanent of a doubly stochastic matrix. J. Stat.

Comput. Simul. 2014, 84, 404–414. [CrossRef]
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