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ABSTRACT
Introduction Risk factors of adverse outcomes in 
COVID-19 are defined but stratification of mortality using 
non- laboratory measured scores, particularly at the time 
of prehospital SARS- CoV-2 testing, is lacking.
Methods Multivariate regression with bootstrapping 
was used to identify independent mortality predictors in 
patients admitted to an acute hospital with a confirmed 
diagnosis of COVID-19. Predictions were externally 
validated in a large random sample of the ISARIC cohort 
(N=14 231) and a smaller cohort from Aintree (N=290).
Results 983 patients (median age 70, IQR 53–83; 
in- hospital mortality 29.9%) were recruited over an 
11- week study period. Through sequential modelling, 
a five- predictor score termed SOARS (SpO2, Obesity, 
Age, Respiratory rate, Stroke history) was developed to 
correlate COVID-19 severity across low, moderate and 
high strata of mortality risk. The score discriminated 
well for in- hospital death, with area under the receiver 
operating characteristic values of 0.82, 0.80 and 0.74 
in the derivation, Aintree and ISARIC validation cohorts, 
respectively. Its predictive accuracy (calibration) in both 
external cohorts was consistently higher in patients 
with milder disease (SOARS 0–1), the same individuals 
who could be identified for safe outpatient monitoring. 
Prediction of a non- fatal outcome in this group was 
accompanied by high score sensitivity (99.2%) and 
negative predictive value (95.9%).
Conclusion The SOARS score uses constitutive and 
readily assessed individual characteristics to predict 
the risk of COVID-19 death. Deployment of the score 
could potentially inform clinical triage in preadmission 
settings where expedient and reliable decision- making 
is key. The resurgence of SARS- CoV-2 transmission 
provides an opportunity to further validate and update 
its performance.

INTRODUCTION
Rapid and accurate prediction of the probability of 
adverse clinical outcomes is central to the manage-
ment of global outbreaks of infection.1–3 Stratifica-
tion by predicted risk, most commonly for death, 
can support clinical judgement and potentially assist 

clinicians in community settings to decide how 
urgently to refer patients to hospital. Used appro-
priately, predictive scores can also help inform 
treatment- related decision- making. The pandemic 
caused by SARS- CoV-2 lends itself to predictive 
modelling by having a large at- risk population and 
a high adverse event rate including death.4

Although the recent incidence of COVID-19 has 
decreased in some parts of the world at the time 
of writing, many countries are already experiencing 
a ‘second wave’ of new cases.5–8 An increase in 
incident cases in many localities is already evident 
in the UK. It is widely anticipated that viral trans-
mission will continue to surge in the months 
ahead, particularly with the onset of winter in the 
northern hemisphere. Not all patients infected 
with SARS- CoV-2 will require hospitalisation but 
even among those who initially experience mild 
symptoms, a sizeable proportion remain at risk 
of subsequent life- threatening clinical decline. 
The availability of a practical prehospital predic-
tive tool to triage patients for safe discharge to an 
outpatient (virtual) monitoring system versus direct 
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admission to hospital for observation or treatment would be 
highly advantageous.

Reliable prediction tools to differentiate between levels and 
sites of clinical care already exist and have been successfully 
implemented in prehospital practice. For example, both the 
CURB-65 and the CRB-65 scoring systems for the assessment 
of community- acquired pneumonia include recommendations 
for out- of- hospital care.9 10 Recent research by the ISARIC- 4C 
Consortium has provided an accurate tool to similarly prognos-
ticate for COVID-19- attributed death in hospitalised patients 
but its reliance on laboratory- measured indices limits its applica-
bility outside the institutional environment.11 Prognostic evalu-
ation of individuals with suspected SARS- CoV-2 infection at the 
time of diagnostic testing is potentially achievable but has yet to 
be examined.

Our objective was to develop and evaluate an easy- to- apply 
and accurate prognostic score to predict mortality and aid early 
clinical decision- making by identifying patients infected with 
SARS- CoV-2 who might benefit from an urgent hospital assess-
ment. To develop the initial risk score, we used multivariate 
logistic regression to explore the relationships between a large 
panel of candidate predictors and COVID-19 death. Iterative 
modelling resulted in a pragmatic predictive score based on five 
widely available patient variables. The scoring of patients against 
these selected predictors permitted three distinct risk classes 
to be defined. The performance of the score was then assessed 
against two validation cohorts—a large subgroup of the ISARIC 
study patients and a smaller single- hospital cohort, the latter to 
better reflect local population characteristics and practice.

METHODS
Study design and characteristics of the derivation cohort
All individuals aged 18 or older who tested positive for 
SARS- CoV-2 nucleic acid by real- time reverse transcriptase PCR 
between 1 March and 16 May 2020 after presenting to the emer-
gency department (ED) at Watford Hospital, West Hertfordshire 
NHS Hospitals Trust were prospectively recruited. Baseline 
clinical characteristics and investigation results were collected 
according to a prespecified protocol. Patients were either 
referred to the virtual hospital (VH) for outpatient monitoring 
or admitted to a medical ward.

Laboratory, physiologic and radiographic data
All laboratory tests were performed as part of routine clinical 
care. Nasopharyngeal mucosal swabs for rRT- PCR were couri-
ered to the regional UK Public Health England laboratory. 
Baseline vital observations included all the parameters recom-
mended by the National Early Warning Score.12 Chest radio-
graphs acquired in ED were collated and scored at the end of the 
recruitment period.

Location and level of care
After presentation, patients who were clinically judged to have 
mild illness were referred to the VH for subsequent moni-
toring. To avoid missing early clinical deterioration in the post- 
assessment period, they were observed for up to 24 hours in 
hospital. Patients who remained admitted after the first 24 hours 
but who did not require additional respiratory support beyond 
wall- based oxygen were managed on designated medical wards. 
Where clinically indicated, continuous positive airway pressure 
(CPAP) was provided on such wards or on the intensive care unit 
(ICU); intubation and mechanical ventilation were undertaken 
on the ICU.

Identifying predictors of death in the derivation cohort
The primary outcome of the study was in- hospital death. 
TRIPOD (Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis) recommen-
dations were followed for multivariate model evaluation and 
reporting.13 Seventy- five baseline clinical and non- clinical vari-
ables were initially collected based on their reported association 
with COVID-19 and analysed by univariate and multivariate 
logistic regression with bootstrap resampling.14 15 Of these, vari-
ables with numerically small ORs or a p value of >0.05 were not 
included in the final analysis. Candidate predictors of death were 
assessed for potential clustering effects and missing at random 
values were addressed by multiple imputation with chained 
equations (MICE),16 with 10–20 random draws to account for 
data variability.

Development and external validation of the clinical risk score
The large external cohort comprised a randomly selected 
subpopulation of the ISARIC 4C derivation population 
(N=20 000 provided; 14 231 with complete data for scoring). 
The primary data of these individuals were submitted by 260 
hospitals across England, Scotland and Wales to the prospective 
ISARIC WHO Clinical Characterization Protocol UK (CCP- UK) 
study.11 We also tested our score against a smaller population 
of SARS- CoV-2- positive cases from Aintree Hospital, Liverpool 
(N=303 provided; N=290 with complete data for scoring) as a 
single- setting validation control.

In the initial stages, a preliminary score comprising 12 inde-
pendent predictors of death, including care home residency, was 
developed; to enable external validation against the ISARIC 
cohort (which did not include residential data), care home status 
was excluded as a variable to yield an 11- predictor score. Its 
ability to discriminate for in- hospital mortality was assessed by 
the area under the receiver operating characteristic (AUROC). 
From this score, a condensed version comprising five clinical 
predictors was developed for prehospital application. Mortality 
cut- points at each risk level were assessed to define mild, 
moderate and high risk classes, followed by determination of 
positive and negative predictive values, as well as sensitivity and 
specificity thresholds. Model performance was further assessed 
by calibration using a graphical representation of the Hosmer- 
Lemeshow ‘goodness- of- fit’ test to depict agreement between 
the expected (predicted) and observed (actual) outcome across 
the entire COVID-19 severity range in both validation cohorts.17 
The summary relationship between the dependent variable 
(death) and different levels of disease severity in the external 
ISARIC population was expressed as McFadden’s R2.18

Statistical analysis
Categorical variables were expressed as frequency (%), with 
significance determined by the χ2 test. Continuous variables 
were expressed as median (IQR) or mean (SD) and analysed 
by the t- test, Kruskal- Wallis or Mann- Whitney U test, as appro-
priate. ORs were assessed as unadjusted and adjusted values with 
respect to in- hospital death, the latter determined by multivar-
iate regression with bootstrapping of 1000 resamples. We used 
this method as internal validation to improve statistical infer-
ence by deriving a better estimate of the sampling distribution. 
Bootstrapping involves randomly drawing repeat samples from 
the core dataset to calculate SEs and CIs for the final regres-
sion analysis. MICE was used to generate valid estimates of 
randomly missing values in the derivation model. A p value 
of <0.05 was considered statistically significant. All statistical 
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analyses including risk modelling calculations were performed 
using STATA, V.16 (Stata, Texas, USA).

RESULTS
Baseline demographic and clinical characteristics of the 
derivation cohort
Nine hundred eighty- three patients (52.5% male) confirmed as 
SARS- CoV-2 rRT- PCR positive were recruited over the 11- week 
study period. Five patients remained in hospital at the time of 
data cut- off on 31 May 2020. The median age of the cohort was 
70 (IQR 53–83; range 23–99); median age was lowest in the 
virtual hospital pathway (53; IQR 43–67) and highest among 
hospitalised patients who did not receive CPAP (77; IQR 61–86) 
(p<0.001) (online supplemental appendix 1).

The most common comorbidities were hypertension (48.4%), 
pulmonary disease (30.0%), cardiac disease (26.6%), diabetes 
mellitus (23.6%), chronic kidney disease (CKD; 20.0%) 
and dementia (15.4%). Obesity, defined as body mass index 
(BMI)>30, was present in 24.7% (243) of the cohort and is asso-
ciated with an unadjusted OR for death of 1.40 (95% CI 1.18 
to 2.68, p<0.05).

Overall, 294 out of 983 (29.9%) patients died in hospital, the 
vast majority (97.3%) aged 50 or older. The mortality rates of 
different age brackets in the cohort (compared with the ISARIC 
and Aintree validation cohorts) are shown in online supplemental 
appendix 2. The univariate OR for death increased with rising 
age, and was 14.86 (95% CI 6.89 to 32.04) for those aged 70–79 
and 20.87 (95% CI 9.93 to 43.86) for those aged 80 or older 
(table 1). When stratified by maximal levels of care, mortality 
rate was lowest in the VH (1.8%) and highest in the ICU group 
(62.1%) (p<0.001) (online supplemental appendix 3).

White Caucasian ethnicity constituted 77.3% (760/983) of 
the whole cohort, while Asian, Black and other minor ethnici-
ties (BAME) represented 16.5%, 4.5% and 1.7%, respectively. 
Overall, white ethnicity was associated with the highest propor-
tion of non- survivors (85.0%); in comparison, patients of Asian 
(OR 0.57, 95% CI 0.38 to 0.85, p<0.01) or black (OR 0.39, 
95% CI 0.17 to 0.88, p<0.05) background in this cohort had 
lower ORs for death from COVID-19. The proportion of non- 
survivors within each ethnic group was also highest in white 
(32.9%), followed by Asian (21.6%), Black (15.9%) and other 
minority groups (17.6%) (p<0.01). Of note, white patients were 
significantly older by median age (74, IQR 58–85) compared 
with Asian (57, IQR 46–71; p<0.0001) or black (58, IQR 
50–72; p<0.001).

Care home residency (204/983; 20.8%) was more common 
among non- survivors (p<0.001) and was associated with 
an unadjusted OR for death of 3.14 (95% CI 2.28 to 4.32, 
p<0.001). Based on data from 644 patients aged 65 or older, 
the univariate OR of frailty for death was 2.52 (95% CI 1.73 to 
3.69; p<0.001) in those with a group 1 frailty score and 2.56 
(95% CI 1.62 to 4.06; p<0.001) in those with a group 2 frailty 
score (table 1).

The median time from symptom onset to presentation for the 
derivation cohort was 6 days (IQR 2.0–11.0), with no difference 
between survivors and non- survivors. The four most common 
reported symptoms were fever (61%), breathlessness (57.9%), 
cough (52.8%) and myalgia (21.7%). Tachypnoea (respiratory 
rate>24/minute) and hypoxia (SpO

2≤92% on  ambient  air) 
were evident in 35.9% and 31.4% of patients, respectively, and 
is associated with crude OR for death of 2.15 (95% CI 1.63 
to 2.84, p<0.001) and 3.74 (95% CI 2.73 to 5.12, p<0.001), 
respectively. C reactive protein>50 mg/L was more frequently 

documented in non- survivors (76.7% vs 58.5%; p<0.001) and 
associated with an unadjusted OR for mortality of 2.40 (95% 
CI 1.73 to 3.32, p<0.001). Lymphopenia was similarly more 
common in non- survivors (44.7% vs 29.1%; p<0.001), with 
an unadjusted OR for death of 1.97 (95% CI 1.47 to 2.64; 
p<0.001). A baseline chest radiograph (CXR) was available in 
91% (895/983) patients; abnormalities in ≥4 radiographic zones 
were evident in 338 (37.8%) of cases and was associated with 
increased mortality on univariate analysis (OR 1.89, 95% CI 
1.42 to 2.52, p<0.001).

Multivariate regression for independent risk factors of 
mortality
The bootstrapped multivariate regression analysis included 
the whole derivation cohort of 983 patients comprising 689 
(70.1%) survivors and 294 (29.9%) non- survivors with complete 
or multiply imputed values for data. Older age, CKD stage 5, 
baseline hypoxia, elevated BMI, tachypnoea, leucocytosis and a 
history of stroke were identified as the strongest independent 
predictors of mortality (table 1).  In  particular,  age  ≥70 had 
the highest OR for death over the other individual variables. 
Following multivariate regression, care home residency no 
longer independently predicted mortality.

Iterative modelling to construct an 11-predictor and 
5-predictor risk prediction scores
ORs and their respective p values from the multivariate logistic 
regression model were used to identify constituent variables for 
developing risk prediction scores. We began by constructing an 
initial 11- predictor score that ranged from 1 to 18 points, using 
data from 770 patients in the derivation cohort with a complete 
dataset (online supplemental appendix 4). The lowest score of 
1 point reflected the KDIGO (kidney disease improving global 
outcomes) categorisation of CKD.19 In this score, the correla-
tion between increasing COVID-19 severity and in- hospital 
mortality followed a linear dose–response relationship, particu-
larly between a score of 3 (below which no deaths occurred) and 
12 (above which no patient survived), and an accuracy (AUROC) 
of 0.84 (figure 1). A shorter five- predictor score based solely 
on clinical parameters and scaled from 0 to 8 points was also 
developed (table 2; figure 1). This short score, abbreviated as 
SOARS (SpO2, Obesity, Age, Respiratory rate, Stroke history), 
demonstrated an AUROC of 0.82 and was retained for further 
evaluation as a practical prehospital risk stratification tool.

External validation and performance of the SOARS score
The performance metrics of the long 11- predictor and 5- predictor 
(SOARS) scores were assessed by their ability to discriminate 
for in- hospital mortality against both the ISARIC and Aintree 
validation cohorts (table 3). The longer score showed higher 
discrimination in the Aintree (AUROC 0.87) than the ISARIC 
cohort (0.77). The SOARS score had a slightly lower AUROC 
against both cohorts, namely, 0.80 (Aintree) and 0.74 (ISARIC). 
In comparison, the performance of other scores based solely on 
different cut- offs of age were associated with inferior discrimina-
tory ability. Comparison of some of the main population param-
eters between the derivation and both external cohorts is shown 
in online supplemental appendix 5.

The mortality rate at each level of the SOARS score in the 
derivation and both validation cohorts are shown in table 4. For 
increased applicability, the SOARS score results were further 
categorised into three risk classes: low (SOARS 0–1), moderate 
(SOARS 2) and high (SOARS≥3) (table 5). Between 2.3% and 
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Table 1 Risk factors of mortality in the derivation cohort (N=983)

Univariate OR

P value

Likelihood ratio 
χ2 of five final 
predictors

Multivariate OR

P value(95% CI) (95% CI)

Age (years) 2177.27

  <50 1.00 1.00

  50–59 1.30 (1.28 to 7.02) 0.01 2.39 (1.49 to 3.84) <0.001

  60–69 6.10 (2.73 to 13.66) <0.001 2.15 (1.32 to 3.50) <0.01

  70–79 14.86 (6.89 to 32.04) <0.001 7.40 (4.67 to 11.74) <0.001

  ≥80 20.87 (9.93 to 43.86) <0.001 10.73 (6.82 to 16.90) <0.001

Male sex (vs female) 1.23 (0.94 to 1.62) 0.137 –

Ever smoked (vs never smoked) 2.14 (1.52 to 3.01) <0.001 2.51 (1.91 to 3.29) <0.001

Ethnicity (vs White)

  Asian 0.57 (0.38 to 0.85) 0.006 1.44 (0.71 to 2.94) 0.301

  Black 0.39 (0.17 to 0.88) 0.024 0.51 (0.16 to 1.64) 0.257

Symptoms (vs none)

  Breathlessness 0.80 (0.59 to 1.07) 0.135 –

  Fever 0.84 (0.62 to 1.14) 0.26 –

  Cough 0.61 (0.45 to 0.82) 0.001 0.67 (0.41 to 1.09) 0.108

  Myalgia 0.41 (0.28 to 0.63) <0.001 0.79 (0.44 to 1.41) 0.423

  Headache 0.51 (0.26 to 0.97) 0.039 1.70 (0.64 to 4.51) 0.286

Clinical parameters

  SpO2 (≤92% on air) 3.74 (2.73 to 5.12) <0.001 31.87 2.69 (1.80 to 4.01) <0.001

  Respiratory rate (>24/min) 2.15 (1.63 to 2.84) <0.001 158.21 2.12 (1.35 to 3.32) 0.001

  Systolic BP (≤90 mm Hg) 2.19 (0.96 to 5.03) 0.064 –

BMI (>30) 1.40 (1.03 to 1.90) 0.033 11.13 2.18 (1.46 to 3.20) <0.001

Frailty (vs not frail, CFS 0–4)

  1 (CFS 5–6) 2.53 (1.73 to 3.70) <0.001 1.26 (0.82 to 1.96) 0.294

  2 (CFS 7–9) 2.56 (1.62 to 4.06) <0.001 1.28 (0.77 to 2.13) 0.341

Residency in care home (vs own home) 3.14 (2.28 to 4.32) <0.001 1.38 (0.90 to 2.11) 0.137

Peripheral blood markers

  CRP (>50 mmol/L) 2.40 (1.73 to 3.32) <0.001 1.42 (0.87 to 2.31) 0.16

  Total white cell count

  ≤4 × 109/L 0.93 (0.56 to 1.55) 0.79 –

  >11 × 109/L 2.04 (2.09 to 4.15) <0.001 1.76 (1.18 to 2.61) <0.01

Lymphocytes (<0.7 × 109/L) 1.97 (1.47 to 2.64) <0.001 1.67 (1.17 to 2.37) <0.01

Chronic kidney disease stage (vs 1, eGFR≥90 mL/min/1.73 m2) 1.00

  2 eGFR 60–89 2.35 (1.53 to 3.62) <0.001 0.91 (0.49 to 1.69) 0.769

  3 eGFR 30–44 and 45–59 6.09 (3.90 to 9.50) <0.001 1.46 (0.78 to 2.71) 0.234

  4 eGFR 15–29 8.88 (4.82 to 16.34) <0.001 1.78 (0.82 to 3.85) 0.145

  5 eGFR<15 15.73 (6.85 to 36.14) <0.001 3.82 (1.43 to 10.26) <0.01

CXR (≥4 zones affected, vs no abnormal zones) 1.89 (1.42 to 2.52) <0.001 1.73 (1.22 to 2.46) <0.01

Medications (≥5 different) 2.59 (1.93 to 3.48) <0.001 0.90 (0.53 to 1.52) 0.695

Co- morbidities (vs none)

  Dementia 3.53 (2.46 to 5.08) <0.001 1.54 (0.97 to 2.44) 0.066

  CVA/stroke 3.50 (2.32 to 5.28) <0.001 44.98 1.92 (1.18 to 3.11) <0.01

  Cardiac disease 2.84 (2.13 to 3.80) <0.001 1.15 (0.70 to 1.91) 0.579

  Cancer 2.60 (1.77 to 3.83) <0.001 1.85 (0.91 to 3.75) 0.091

  Hypertension 2.46 (1.85 to 3.26) <0.001 1.10 (0.65 to 1.88) 0.717

  Diabetes mellitus 1.40 (1.02 to 1.91) 0.036 1.00 (0.58 to 1.75) 0.981

  Anxiety/psychosis 1.20 (0.84 to 1.71) 0.318 –

  Lung disease 1.15 (0.86 to 1.55) 0.35 –

Out of the starting 75 variables, those with numerically small ORs or a p value of >0.05 following univariate regression were not included in table 1.
BMI, body mass index; BP, blood pressure; CFS, Clinical Frailty Scale; CRP, c- reactive protein; CVA, cerebrovascular accident; CXR, chest radiograph; eGFR, estimated glomerular filtration rate.
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3.2% of patients scoring 0 or 1 (low risk) in each of the three 
cohorts died due to COVID-19, whereas 2.3%–6.3% of those 
scoring 2 (moderate risk) failed to survive to discharge. Overall, 
9 out of every 10 deaths in each of the derivation and validation 
cohorts had a SOARS score of 3 or greater. Within this broad 
range of increasing scores, the highest proportion of deaths was 
encountered at SOARS score 4 in both the derivation cohort and 
the ISARIC validation cohort (28.3% and 34.5%, respectively) 
and at SOARS score 5 in the Aintree validation cohort (30.9%).

Sensitivity thresholds calculated for the larger validation 
(ISARIC) cohort showed that the low risk class (SOARS 0–1) 
comprised 16.6% of patients with an in- hospital mortality of 
5.4%, sensitivity of 97% and negative predictive value (NPV) 
of 94.6% (table 6). By comparison, 13.2% of patients were clas-
sified as moderate risk; their mortality rate was 14.5%. When 
combining the low and moderate risk groups (SOARS 0–2), the 
sensitivity reduces to 90.7% and the NPV to 90.5%. The high- 
risk group comprised 70.2% of the validation cohort who scored 
across a wide range of SOARS (scores 3–8). The specificity for 
a prediction of death was thus more variable, from 58.2% for a 
SOARS score of 3 to 99.8% at the other end of the scale when 
the SOARS score was 7. Only one patient scored 8; they survived 
to discharge.

Reliability of the risk estimates in the ISARIC cohort, 
modelled as calibration or goodness- of- fit between expected 
(predicted) and observed outcomes using SOARS, showed a cali-
bration slope of 0.70, calibration- in- the- large (CiTL) 0.02 and 
an expected- to- observed (E:O) ratio of 0.990 (figure 2). Cali-
bration was slightly improved in the Aintree cohort with a slope 
of 0.80, CiTL −0.16 and E:O ratio of 1.06. A LOWESS (locally 
weighted scatterplot smoothing algorithm) curve was generated 
to show differences between these outcomes in both cohorts. 
The plot characteristics suggested that the model, while demon-
strating good concordance, had greater predictive accuracy in 
low- risk to moderate- risk patients whose predicted probability 
of mortality was under 40%. Conversely, overestimation of 
mortality risk was evident in patients in the high- risk group.

DISCUSSION
We show that prognostic evaluation of a small panel of base-
line clinical and demographic characteristics of patients with 
COVID-19 enables their subsequent risk of in- hospital death to 
be quantified across three strata of risk. Findings were obtained 
by applying the five- predictor SOARS (SpO2, Obesity, Age, 
Respiratory rate, Stroke history) score to a large random sample 
of the ISARIC cohort and a smaller single- hospital cohort 
from Aintree, both with individual- level data. Our objective 
was to enable risk stratification to be undertaken early, ideally 
prehospitalisation (eg, in the community), during the encounter 

Figure 1 (A) In- patient mortality stratified according to the 
11- predictor (SOARS) scores; (B) In- patient mortality stratified according 
to the 5- predictor (SOARS) scores.

Table 2 SOARS score (five predictors; range: 0–8 points) for 
predicting in- hospital COVID-19 death

Predictor Points

SpO2

  >92% on air 0

  ≤92% on air 1

Obesity (BMI>30)

  Absent 0

  Present 1

Age (years)

  <50 0

  50–59 1

  60–69 2

  70–79 3

  ≥80 4

Respiratory rate

  ≤24/min 0

  >24/min 1

Stroke/CVA

  Absent 0

  Present 1

CVA, cerebrovascular accident; SOARS, SpO2, Obesity, Age, Respiratory rate, Stroke 
history.

Table 3 Discriminatory performance (area under the receiver 
operating characteristic; AUROC) of different risk stratification models 
for predicting COVID-19 in- hospital mortality

Cohort 11- predictor
5- predictor 
(SOARS)

Age 
≥80

Age 
70–79 Age ≥50

Derivation 0.84 0.82 0.73 0.76 0.73

Aintree
(validation)

0.87 0.80 0.78 0.69 0.57

ISARIC 
(validation)

0.77 0.74 0.68 0.70 0.63

SOARS, SpO2, Obesity, Age, Respiratory rate, Stroke history.
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with COVID-19- suspected individuals. This role is not met 
by currently available prediction tools that rely on laboratory 
measurements.

The SOARS score discriminated well for COVID-19 mortality 
and its simplicity obviated the need for complex calculations. It 
also retained good predictive accuracy in two external validation 
cohorts, with performance metrics that were primarily reflected 
in its high negative predictive values for mortality among patients 
with the lowest risk scores (0 or 1). This characteristic is consis-
tent with a high accuracy for predicting a non- fatal outcome in 
its key target group, namely, individuals with milder COVID-19.

Patients who score SOARS 0 or 1 could be discharged home 
with advice to re- establish urgent contact if their symptoms 
worsened. Patients stratified as moderate risk (SOARS 2) could 
be virtually monitored with a predefined plan for care escala-
tion if specific thresholds relating to deteriorating symptoms or 
self- recorded SpO2 were triggered. Patients in the high- risk class 
(score ≥3)  are highly  likely  to be  symptomatic  and would,  in 
all probability, be referred directly to the ED for hospital- based 
management. Thus, the target individuals for the SOARS score 
are those with a low or moderate risk of COVID-19 mortality.

Our data concur with other reports that advanced age is the 
strongest predictor of death from COVID-19.20–23 The increase 
in mortality in patients within the derivation cohort who were 
in or beyond their seventh decade of life was reflected in the 
magnitude of their respective adjusted ORs for in- hospital death, 
namely, 7.4 (aged 70–79) and 10.7 (aged ≥80). Even so, predic-
tive models generated with age as the lone variable showed 
poorer discriminatory ability than the SOARS score.

The early development of physiological abnormalities in 
COVID-19 does not always result in timely clinical presenta-
tion. In our study, two measures of acute physiological perturba-
tion proved to be important predictors of COVID-19 mortality: 
hypoxia and tachypnoea. Although persistent hypoxia is more 
common in non- survivors of COVID-19, its relationship with 
tachypnoea remains incompletely understood.24 25 Fewer than 
half of patients with COVID-19 who present to hospital with 
decreased oxygen saturation report experiencing subjective 
breathlessness.26–29 One reason for this observation might be the 
so- called ‘silent hypoxia’ where a blunted symptomatic percep-
tion of the effects of hypoxaemia is apparent even when low 
arterial oxygen tension is evident.30 This phenomenon may be 
responsible for delays in seeking clinical attention. Such danger 
could be mitigated by accurate risk assessment including the 
measurement and tracking of SpO2 in patients who are deemed 
to not require immediate hospitalisation. The absence of oxygen 
determination in the CURB-65 score has been cited as limiting 
its utility in stratifying patients with COVID-19 for outpatient 
management.31

The SOARS score was constructed with data from hospitalised 
patients as the very low adverse event rate among non- admitted 
cases (eg, in the VH pathway) curtailed the development of a 
prognostic tool. This issue has previously been highlighted in the 
context of CRB-65 where low event rates in community studies 
of pneumonia made predictive inferences difficult to conclude.9 
Other scores that have been used in COVID-19 studies have 
either not been designed for this disease or have relied heavily 
on laboratory- measured data.32–35

Table 4 Mortality in the derivation and validation cohorts at different levels of SOARS

Score

Derivation cohort
(N=821; deaths=258)

Aintree validation cohort
(N=290; deaths=94)

ISARIC validation cohort
(N=14 231; deaths=4319)

No of deaths 
(n/N)

Mortality rate 
(%)

Proportion of 
deaths (%)

No of deaths 
(n/N)

Mortality rate 
(%)

Proportion of 
deaths (%)

No of deaths 
(n/N)

Mortality rate 
(%)

Proportion 
of deaths 
(%)

0 1/69 1.4% 0.4% 1/12 8.3% 1.1% 34/833 4.1% 0.8%

1 5/94 5.3% 1.9% 2/23 8.7% 2.1% 94/1529 6.1% 2.2%

2 6/102 5.9% 2.3% 3/37 8.1% 3.2% 273/1879 14.5% 6.3%

3 29/124 23.4% 11.2% 11/60 18.3% 11.7% 650/2577 25.2% 15.1%

4 73/206 35.4% 28.3% 24/72 33.3% 25.5% 1490/4013 37.1% 34.5%

5 63/117 53.9% 24.4% 29/48 60.4% 30.9% 1170/2402 48.7% 27.1%

6 58/80 72.5% 22.6% 16/30 53.3% 17.0% 571/939 60.8% 13.2%

7 22/28 78.6% 8.5% 6/6 100.0% 6.4% 36/58 62.1% 0.8%

8 1/1 100.0% 0.4% 2/2 100.0% 2.1% 0/1 0.0% 0.0%

The proportion of deaths at each score is defined as the number of deaths at that score divided by the total number of deaths in that particular cohort.
SOARS, SpO2, Obesity, Age, Respiratory rate, Stroke history.

Table 5 COVID-19 mortality risk stratification based on SOARS score

Risk class
(score level)

Derivation cohort
(N=821 with full data; deaths=258)

Aintree validation cohort
(N=290 with full data; deaths=94)

ISARIC validation cohort
(N=14 231; deaths=4319)

Mortality by risk 
class (%)

Proportion of 
deaths by risk 
class (%)

Mortality by risk 
class (%)

Proportion of 
deaths by risk 
class (%)

Mortality by risk 
class (%)

Proportion of deaths 
by risk class (%)

Low (0–1) 6/163 (3.7%) 6/258 (2.3%) 3/35 (8.6%) 3/94 (3.2%) 128/2362 (5.4%) 128/4319 (3.0%)

Moderate (2) 6/102 (5.9%) 6/258 (2.3%) 3/37 (8.1%) 3/94 (3.2%) 273/1879 (14.5%) 273/4319 (6.3%)

High (≥3) 246/556 (44.2%) 246/258 (95.3%) 88/218 (40.4%) 88/94 (93.6%) 3917/9990 (39.2%) 3917/4319 (90.7%)

SOARS, SpO2, Obesity, Age, Respiratory rate, Stroke history.
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Our multivariate regression model was bootstrapped to 
reduce overfitting but not penalised prior to external valida-
tion. In common with other severity scores for COVID-19, we 
dichotomised several continuous data parameters which may 
have potentially obscured non- linear effects between predictors 
and outcome, contributing to the difference in AUROC values 
between our derivation and validation cohorts and between 
both validation cohorts.11 32 34 Other prediction systems, notably 
CURB-65 and the Pneumonia Severity Index for pneumonia 
similarly categorise some of their score parameters.10 36 We also 
used in- hospital mortality as an unambiguous disease- related 
primary outcome rather than 30- day or 60- day mortality. The 
better performance of the SOARS score in the smaller Aintree 
validation cohort compared with the much larger ISARIC 
cohort may have been due to its more homogeneous case- mix. 
This comparison suggested that, on balance, the simplicity of a 
prehospital risk prediction tool, provided it retained acceptable 

accuracy, may outweigh any minor diminution of its perfor-
mance arising from improved practicality.

Other limitations in the study include the occurrence of 
missing information despite prospective data collection. The use 
of multiple imputation to estimate missing values for multivariate 
regression and the availability of nearly 85% of observations for 
constructing the risk stratification rule helped to mitigate against 
underestimating their role. The modest sample size of our deri-
vation cohort was dictated by the incident caseload during the 
pandemic. However, selective sampling of the pandemic timeline 
was avoided by including all COVID-19 cases from the initial 
rise to the subsequent decline in new case numbers over the 
11- week study period. Finally, reduced score calibration at the 
high- risk end suggests that SOARS may overestimate the prob-
ability of death in the highest risk cases. However, the principal 
objective of this score was to enhance frontline decision- making 
in patients with a low predicted risk of mortality at a time when 
demand for in- patient resources is likely to be high.

In summary, prognostication using the SOARS score can be 
undertaken concomitantly with SARS- CoV-2 diagnostic testing 
to inform clinical triaging, including decisions about the place-
ment of the patient for ongoing care. Analysis of the ISARIC 
validation cohort in this study showed that between 16.6% and 
29.8% (those scoring up to SOARS 1 or 2, respectively) could 
potentially have avoided admission provided a safe alternative 
to hospitalisation was in place. Prospective studies of SOARS 
implementation will enable the score to be calibrated against 
other independent cohorts of patients with COVID-19 to 
examine its performance under conditions that may be unique 
to different localities. Such an opportunity may soon present 
itself if SARS- CoV-2 transmission continues to increase in the 
UK and beyond.
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