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Abstract: Background and objectives: Maximal heart rate (HRmax) is an important training and testing
tool, especially in the context of evaluating intensity in exercise prescription; however, few studies
have examined the validity of prediction equations of HRmax in physically active female adolescents
and the role of maturation level. Therefore, the aim of the present study was to examine the differences
between measured and predicted HRmax in a sample of physically active female adolescents. Materials
and Methods: Seventy-one selected volleyball players (age 13.3 ± 0.7 years, body mass 62.0 ± 7.2 kg,
height 1.72 ± 0.06 m) performed a 20 m shuttle run endurance test, and the actual HRmax was
compared with Tanaka HRmax (‘208 − 0.7 × age’) and Fox HRmax (‘220 − age’). Results: A large main
effect of assessment method on HRmax was found (p < 0.001, η2 = 0.486) with Fox overestimating
actual HRmax by 6.8 bpm (95% confidence intervals, CI; 4.2, 9.3) and Tanaka underestimating actual
HRmax by −2.6 bpm (95% CI; −5.1, −0.1). The more matured participants had similar actual HRmax

(mean difference −2.4 bpm; 95% CI; −6.5, 1.7; p = 0.242, d = −0.28), difference Fox − actual HRmax

(1.5 bpm; 95% CI; −2.6, 5.6, p = 0.466, d = 0.17), and difference Tanaka − actual HRmax (1.7 bpm;
95% CI; −2.4, 5.8; p = 0.414, d = 0.19) to the less matured participants. Conclusions: These findings
suggest that age-based prediction equations of HRmax developed in adult populations should be
applied with caution in physically active female adolescents, and Tanaka should be preferred instead
of the Fox equation.

Keywords: cardiac rate; exercise prescription; exercise testing; prediction equations; training
zones; volleyball

1. Introduction

Exercise prescription in a health or sport context includes information about the basic characteristics
of exercise, e.g., mode, duration, sets, repetitions and intensity [1]. An accurate prescription of exercise
intensity is crucial to induce optimal chronic adaptations to exercise. In aerobic exercise, exercise
intensity should be within a specific range (‘training zone’) to elicit desired physiological adaptations.

Medicina 2019, 55, 735; doi:10.3390/medicina55110735 www.mdpi.com/journal/medicina

http://www.mdpi.com/journal/medicina
http://www.mdpi.com
https://orcid.org/0000-0003-1526-6429
https://orcid.org/0000-0002-2412-9103
https://orcid.org/0000-0001-8030-7122
http://dx.doi.org/10.3390/medicina55110735
http://www.mdpi.com/journal/medicina
https://www.mdpi.com/1010-660X/55/11/735?type=check_update&version=2


Medicina 2019, 55, 735 2 of 8

Exercise intensity, when evaluated by heart rate (HR) measures, is usually expressed as percentage
of the maximal HR (HRmax) [2]. Thus, the knowledge of HRmax is essential to accurately prescribe
exercise intensity.

HRmax might be measured directly through a graded exercise test (GXT) till exhaustion, whereas
indirectly it might be calculated using an age-based equation [3]. Occasionally, a practitioner might
wish to use an age-based equation when a GXT till exhaustion would be contraindicated (e.g., exercise
testing of patients or fitness assessment of athletes during a competitive period). In such cases, popular
age-based equations—e.g., Fox, Naughton and Haskell (Fox HRmax; ‘220 − age’) [4] and Tanaka,
Monahan and Seals (Tanaka HRmax; ‘208 − 0.7 × age’) [5] —might be used. The validity of these
equations has been examined in both adults [6] and adolescents [7,8]. In adolescents, the need for
further studies to control for the potential effect of biological age on sympathetic modulation of HRmax
was identified [8].

Although the existing research on the validity of age-based predicted HRmax has enhanced our
understanding of the practical applications of these equations, the role of maturation as a covariate
has not been considered adequately so far by the existing literature, where two relevant studies were
found [9,10]. However, pubertal status was categorized using only a chronological cut-off age (14 years)
for females in one study [9], whereas a mixed sample of females and males was considered in the
other study, which included maturation offset in regression analysis instead of comparing maturation
groups [10]. Since it has been suggested that age-based prediction equations developed in adults were
not applicable in children [8], it would be reasonable to assume that maturation would be expected to
be related to the validity of such equations. Therefore, the aim of the present study was to examine the
validity of two popular prediction equations (Fox and Tanaka) in female adolescent volleyball players
and the variation of validity by maturation level.

2. Materials and Methods

For the purpose of the study, a sample of convenience consisting of 71 selected female adolescent
volleyball players was retrospectively analyzed. Participants were members of volleyball clubs from
Attiki, i.e., the wider geographical area of Athens, and were selected by the national teams’ coaches to
be considered as members of national teams. Inclusion criteria were the absence of any known pain
or injury that would prevent participants from exercise testing. Parents or guardians of participants
provided informed consent prior to exercise testing. The study was approved by the local institutional
review board (Exercise Physiology Laboratory, Nikaia, Greece; number EPL2008/1, 6 August 2008).
All procedures adhered to the 2013 revision of the Declaration of Helsinki.

Exercise testing was performed in two sessions separated by a week. Anthropometric
characteristics were recorded in the first session in an exercise physiology laboratory, and a 20 m
shuttle run test (SRT) [11] was done in the second session in an indoor court. With regards to
anthropometric measures, weight and height were examined using an electronic weight scale (HD-351,
Tanita, Arlington Heights, IL, USA) and a portable stadiometer (SECA, Leicester, UK), respectively.
A calliper (Harpenden, Burgess Hill, UK) for skinfold thickness (0.5 mm) measured skinfold thickness
of 10 sites (cheek, wattle, chest I, chest II, triceps, subscapular, abdominal, suprailiac, thigh and calf),
and body fat percentage was calculated from the sum of these skinfolds’ thicknesses [12]. Chronological
age was estimated by a table of decimals of year [13]. Peak height velocity (PHV) was used to assess
biological maturation, and age at PHV (APHV) was predicted based on sex, date of birth, date of
measurement, height, sitting height and body mass [14]. Thereafter, difference (∆APHV) between
chronological age and APHV was considered as an estimate of biological age. The estimation of
biological maturation using the approach of Mirwald and colleagues relied on the differential timings
of growth of height, sitting height and leg length [14]. For the purpose of the present study, biological
maturation was expressed using a continuous variable to allow regression analysis and comparison to
chronological age. Actual HRmax was recorded as the peak HR during SRT. SRT started at 8.5 km/h,
and speed increased by 0.5 km/h every minute till exhaustion [11]. During this test, HR was monitored
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by Team2 (Polar Electro Oy, Kempele, Finland). In addition, HRmax was predicted using Fox HRmax

(‘220 − age’) [4] and Tanaka age-based equations (‘208 − 0.7 × age’) [5].
Statistical analyses were performed using GraphPad Prism v. 7.0 (GraphPad Software, San

Diego, CA, USA) and IBM SPSS v. 23.0 (SPSS, Chicago, IL, USA). Significance was set at p = 0.05.
Data were tested for normality using the Kolmogorov-Smirnov test and visual inspection of Q-Q
plots and were expressed as mean and standard deviations of the mean (SD). A one-way repeated
measures analysis of variance (ANOVA) examined differences between actual, Fox and Tanaka HRmax.
Despite potential limitations (e.g., unequal variances), this statistical approach was used previously by
studies on differences between actual and age-based predicted equations [3,10,15] and was selected
for the present study to provide comparable findings. The magnitude of differences in ANOVA
was evaluated using eta squared, classified as small (0.01 < ŋ2

≤ 0.06), medium (0.06 < ŋ2
≤ 0.14)

and large (ŋ2 > 0.14) [16]. The accuracy and variability of Fox and Tanaka HRmax were examined
using Bland–Altman analysis. The relationship of actual HRmax and age was tested by Pearson’s
product–moment correlation coefficient (r). The magnitude of r was interpreted as very small (r < 0.1),
small (0.1 ≤ r < 0.3), moderate (0.3 ≤ r < 0.5), large (0.5 ≤ r < 0.7), very large (0.7 ≤ r < 0.9), nearly
perfect (0.9 ≤ r < 1) and perfect (r = 1) [17]. A t-test examined differences between less (n = 37,
∆APHV ≤ 1.8 years) and more matured participants (n = 34; ∆APHV ≥ 1.9 years). The classification
of participants into these two groups relied on the split technique, which—without neglecting its
drawbacks—has been a common practice in clinical research [18]. The magnitude of differences in
t-test was evaluated using Cohen’s d, which was considered as trivial (d ≤ 0.2), small (0.2 < d ≤ 0.6),
moderate (0.6 < d ≤ 1.2), large (1.2 < d ≤ 2.0) or very large (d > 2.0) [17]. Complimentary analyses
included comparison of squared differences (predicted - actual HRmax) by maturation level (Table S1),
regression analysis of these squared differences with maturation (Figure S1) and mixed model analysis
(Table S2).

3. Results

The demographic data of participants by maturation group are presented in Table 1. The more
matured participants were older, heavier and taller than their less matured counterparts (p < 0.05),
whereas no difference in body mass index (BMI) and SRT between the two maturation groups was
observed. The actual and predicted HRmax can be seen in Table 2. No difference in actual HRmax

was shown between the maturation groups (p > 0.05). The more matured participants had similar
actual HRmax (mean difference −2.4 bpm; 95% confidence intervals, CI; −6.5, 1.7; p = 0.242, d = −0.28),
difference Fox − actual HRmax (1.5 bpm; 95% CI; −2.6, 5.6, p = 0.466, d = 0.17) and difference Tanaka
− actual HRmax (1.7 bpm; 95% CI; −2.4, 5.8’ p = 0.414, d = 0.19) to the less matured participants.
No relationship was observed of actual HRmax with chronological age or ∆APHV (Figure 1).

Table 1. Demographic characteristics of participants.

Variable Total (n = 71) Less Matured (n = 37) More Matured (n = 34)

Age (years) 13.3 ± 0.7 12.9 ± 0.7 13.8 ± 0.4 *

∆APHV (years) 1.9 ± 0.5 1.5 ± 0.3 2.3 ± 0.3 *

Weight (kg) 62.0 ± 7.2 59.1 ± 6.1 65.1 ± 7.2 *

Height (m) 1.72 ± 0.06 1.68 ± 0.05 1.75 ± 0.04 *

BMI (kg.m-2) 21.1 ± 2.2 20.9 ± 2.1 21.2 ± 2.4

BF (%) 21.2 ± 4.6 20.8 ± 4.6 21.6 ± 4.5

SRT (min:s) 5:00 ± 1:17 5:08 ± 1:20 4:51 ± 1:13

BMI = body mass index; BF = body fat percentage; SRT = 20 m shuttle run test; * p < 0.05.
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Table 2. Actual, Fox and Tanaka HRmax of participants.

Variable Total (n = 71) Less Matured (n = 37) More Matured (n = 34)

Actual HRmax (bpm) 199.9 ± 8.6 201.1 ± 8.4 198.7 ± 8.8

Fox HRmax (bpm) 206.7 ± 0.7 207.1 ± 0.7 206.2 ± 0.4 *

Tanaka HRmax (bpm) 197.3 ± 0.6 197.7 ± 0.5 197.0 ± 0.3 *

Fox - Actual HRmax (bpm) 6.8 ± 8.7 6.0 ± 8.5 7.6 ± 8.9

Tanaka - Actual HRmax (bpm) −2.6 ± 8.6 −3.4 ± 8.5 −1.7 ± 8.8

HRmax = maximal heart rate; * p < 0.05.

Figure 1. Relationship of actual HRmax with chronological age (a) and difference from the age at peak
height velocity (b).

∆APHV = difference from the age at peak height velocity; error bars represent 95% confidence intervals. (1)

A large main effect of assessment method on HRmax was found (p < 0.001, η2 = 0.486), with Fox
overestimating by 6.8 bpm (95% CI; 4.2, 9.3) and Tanaka underestimating actual HRmax by −2.6 bpm
(95% CI; −5.1, −0.1) (Figure 2). The Bland–Altman plots (Figure 3) show that overall, Fox overestimated
and Tanaka underestimated actual HRmax; however, a similar trend was observed in both cases, where
there was an overestimation when actual HRmax was low and an underestimation when actual HRmax

was high.

Figure 2. Variation of HRmax by assessment method (a) and difference (∆HR) of Fox and Tanaka values
compared to actual HRmax (b). Individual values are presented by open circles (#), boxes show means,
and error bars refer to standard deviations.
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Figure 3. Bland–Altman plots of the difference of Fox (a) and Tanaka (b) with actual HRmax. Solid lines
represent agreement, whereas the upper and lower dashed lines show 95% limits of agreement. The
values of agreement and upper and lower 95% limits of agreement are presented within the figure.
‘Difference’ refers to the difference between predicted and actual HRmax, and ‘average’ was calculated
using the formula (predicted HRmax + actual HRmax)/2.

4. Discussion

The present study examined the application of two popular age-based prediction equations of
HRmax in physically active female adolescents. The main findings were that (a) Fox’s ‘220 − age’
overestimated actual HRmax by ~7 bpm, (b) Tanaka’s ‘208 − 0.7 × age’ underestimated actual HRmax by
~3 bpm, (c) a large amount of individual variation was observed in both prediction equations, and (d)
no variation of these findings was observed by maturation. Tanaka underestimated HRmax less than
Fox overestimated, and the notion that the former provided a better estimate of actual HRmax than Fox
was in agreement with the existing literature in adolescents [8]. Particularly, a meta-analysis of seven
articles reported an underestimation using Tanaka by ~3 bpm and an overestimation using Fox by
~12 bpm [8]. In addition, the large amount of individual variation was in agreement with previous
studies on adolescents [10], and this variation was larger in studies using wider ranges of ages [8].
An explanation of this variation might be that HRmax was related to several factors, such as HR at rest
(the higher the HR at rest, the higher the HRmax) [9] and body mass (the higher the body mass index,
the lower the HRmax) [19].

The lack of correlation of actual HRmax with chronological or biological age was not surprising and
should be attributed to the small range (<3 years) of chronological age of participants (11.7–14.6 years).
Previous studies [6,15,20], which observed negative correlation of large to very large magnitude between
actual HRmax and chronological age, covered a chronological range of many decades. Furthermore,
growth-related differences in HR might be linked to maturation of sympathetic-parasympathetic
neural regulation and the role of circulating modulators [21,22]. In addition, it was assumed that the
older participants would exhibit lower HRmax than their younger counterparts due to their larger
accumulated training experience. This assumption relied on the suggestion that aerobic training would
result in chronic adaptations, such as plasma volume expansion and alteration of the electrophysiology
of the sinoatrial node [23]. A meta-analysis reported that aerobic training in sedentary individuals and
athletes decreased HRmax by 6 bpm, and detraining and tapering increased HRmax by 6 bpm, whereas
athletes had lower HRmax than sedentary individuals by 8 bpm [23]. The lack of differences in actual
HRmax by age might also be attributed to the nature of volleyball training practiced by participants,
which should not be considered aerobic training.

With regards to the role of maturation, no difference in the validity of age-based prediction
equations was observed between the two maturation groups. The research hypothesis was that the
more matured group would have lower actual HRmax, considering that an age-related decline in
HRmax was more striking after puberty with a rate of ~0.7 bpm per year [24]. Prepubescents would
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be expected to show blunted sympathetic modulation during exercise compared to post-pubescents
and adults due to age-related differences in sympathoadrenal regulation [25]. The lack of differences
observed between maturation groups observed in the present study might be attributed to the small
range of ∆APHV (~2 years, Figure 1b).

A limitation of this study was that actual HRmax was elicited during a field GXT. Thus, caution
would be needed to generalize the findings in a laboratory setting. It was acknowledged that laboratory
criteria of achieving maximal performance (e.g., plateau in oxygen uptake, carbon dioxide to oxygen
exchange ratio, lactate) [26] were not applied. On the other hand, all participants were motivated
to perform maximally, as the testing session occurred in the context of selection process for the
national teams. In addition, a field GXT might result in even higher HRmax than a laboratory GXT on
treadmill ergometer, likely due to the more natural running patterns observed in the former than in
the latter case [27]. A strength of the study was its novelty, as it was the first one—to the best of our
knowledge—to examine the role of maturation in predicting HRmax in physically active adolescents.
Considering the importance of exercise intensity when prescribing exercise programs [1], the findings
of the present study would have practical applications for practitioners in the context of testing and
training. Since Fox overestimated actual HRmax, its use should be contraindicated when there is
high exercise intensity and, consequently, increased risk of overtraining, whereas Tanaka should be
avoided in prescribing low exercise intensity, since an underestimation of actual HRmax would result
in a training program of inadequate exercise intensity to induce the desired physiological adaptations.
Another limitation of the findings of the present study was the sample size, which was relatively small
due to the specific characteristics of participants (i.e., selected athletes). Future studies should not only
use larger sample size, but also recruit participants with a larger range of maturity status, e.g., from
pre-pubescence to post-pubescence.

5. Conclusions

Based on these findings, it is suggested that age-based prediction equations of HRmax developed
in adult populations should be applied with caution in physically active female adolescents. In the
context of testing and training, practitioners would be advised to choose an age-based prediction
equation considering the risks of overestimation and underestimation of actual HRmax. Tanaka equation
provided more accurate values than Fox equation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1010-660X/55/11/735/s1,
Figure S1: Single scatter plot with maturation on the horizontal x-axis, and the (squared) differences (Delta HR) on
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maturation level, Table S2: Estimates of fixed effects.
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