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Cells of all tissues in the human body share almost the exact same DNA sequence, but
the epigenomic landscape can be drastically distinct. To improve our understanding
of the epigenetic abnormalities in prostate-related diseases, it is important to use
the epigenome of normal prostate as a reference. Although previous efforts have
provided critical insights into the genetic and transcriptomic features of the normal
prostate, a comprehensive epigenome map has been lacking. To address this
need, we conducted a Roadmap Epigenomics legacy project integrating six histone
marks (H3K4me1, H3K4me3, H3K9me3, H3K36me3, H3K27me3, and H3K27ac) with
complete DNA methylome, transcriptome, and chromatin accessibility data to produce
a comprehensive epigenome map of normal prostate tissue. Our epigenome map is
composed of 18 chromatin states each with unique signatures of DNA methylation,
chromatin accessibility, and gene expression. This map provides a high-resolution
comprehensive annotation of regulatory regions of the prostate, including 105,593
enhancer and 70,481 promoter elements, which account for 5.3% of the genome.
By comparing with other epigenomes, we identified 7,580 prostate-specific active
enhancers associated with prostate development. Epigenomic annotation of GWAS
SNPs associated with prostate cancers revealed that two out of nine SNPs within
prostate enhancer regions destroyed putative androgen receptor (AR) binding motif.
A notable SNP rs17694493, might decouple AR’s repressive effect on CDKN2B-
AS1 and cell cycle regulation, thereby playing a causal role in predisposing cancer
risk. The comprehensive epigenome map of the prostate is valuable for investigating
prostate-related diseases.
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INTRODUCTION

In the 1940s, the term epigenetics was first introduced to describe
the interaction between a phenotype and the environment
(Waddington, 2012). Interest in epigenetics has been fueled by
accumulating evidence that the mechanisms are associated with
various human diseases and developmental stages. This includes
nearly all types of cancer, and autoimmune, cardiovascular,
and hereditary disorders (van der Harst et al., 2017; Cavalli
and Heard, 2019). The Human Genome Project provided a
high-quality human genome assembly, a milestone in genomic
and medical research (Collins et al., 2003). Although all
cells and tissues in the human body share a nearly identical
genome, the epigenomic landscape varies as a function of
cell type, developmental stage, and environmental impact. To
annotate regulatory regions of the genome, large-scale mapping
of epigenomic modifications has been undertaken in recent
years. The NIH Roadmap Epigenomics Consortium integrated
epigenomic maps to develop a database of tissue-specific
functional elements, with distinct chromatin states and generated
reference epigenomes for 127 human tissues and primary cells
(Roadmap Epigenomics Consortium et al., 2015). These maps
have been extensively used to gain an in-depth understanding
of the role of epigenomic modifications underlying diverse
human traits, as well as gene regulation, cell differentiation, and
tumorigenesis (Chen et al., 2016; Yu et al., 2016; Pomerantz
et al., 2020). However, prostate tissues were not included in these
initial studies.

The prostate gland is a male reproductive organ that produces
seminal fluids to feed and protect sperm cells. It is also associated
with hormone release and sexual health (Verze et al., 2016). On
the contrary, adenocarcinoma of the prostate is one of the leading
causes of cancer-related deaths among men (Cornford et al.,
2021). Most studies have confirmed that prostate cancer is often
associated with a variety of abnormal epigenetic modifications
of the genome, such as the global loss of DNA methylation,
reprogramming of histone modification marks, and abnormal
activation of tissue-specific enhancers, among others (Stelloo
et al., 2018; Zhao et al., 2020). To gain a clear understanding of
the epigenetic abnormalities in prostate cancer, it is important
to use the epigenome, including detailed maps of cis-regulatory
elements and chromatin states, of the normal prostate tissue
as a reference. However, the majority of epigenomic datasets
available are from prostate cancer, instead of normal prostate
tissue (Stelloo et al., 2018; Rhie et al., 2019).

To close this knowledge gap, we produced multiple
omics datasets from the normal prostate, including histone
modifications, DNA methylation, chromatin accessibility, and
RNA transcripts. We generated a high-resolution reference
epigenome map to facilitate investigation of the normal biology
and pathophysiology of the prostate. These annotations were
used to identify epigenome differences between the prostate
and other tissues. Furthermore, by comparing with previously
published Roadmap epigenomes, we defined prostate-specific
regulatory elements and made these resources publicly and
freely available. By applying the prostate reference epigenome to
functionally annotate genetic variants associated with prostate

cancer, we identified two GWAS SNPs in prostate enhancers that
may disrupt androgen receptor (AR) binding and the target gene
regulatory network, thereby providing a mechanistic hypothesis
regarding genetic predisposition for the disease.

MATERIALS AND METHODS

Sample Collection
Prostate specimens were collected from radical cystectomies
treating bladder cancer at the Urology Department of Changhai
Hospital, Shanghai, China. Informed assent/consent was
obtained in accordance with Chinese legislation. Ethical
committee approval was secured from Changhai Hospital
(CHEC2019-012). All samples were immediately frozen
after collection in liquid nitrogen and stored at –80◦C.
Hematoxylin and eosin-stained (H&E) slides from each case
were independently reviewed by two genitourinary pathologists.
Samples enriched with normal prostate epithelium (> 70%) were
used for the analyses. The clinical information of all cases is
presented in Supplementary Table 1.

DNA and RNA Extraction
Genomic DNA was extracted using the DNeasy Tissue Kit
(Qiagen) according to the manufacturer’s protocol. RNA was
extracted using TRIzol reagent (Invitrogen). The total DNA/RNA
concentration was measured using a Qubit fluorometer
(Invitrogen). RNA purity was checked using a NanoPhotometer
spectrophotometer (IMPLEN, München, Germany).

Chromatin Immunoprecipitation
Sequencing (ChIP-Seq) Library
Generation
Samples were cut into 2–3 mm 3 pieces, fixed in 1.5%
formaldehyde for 10 min, and quenched with glycine. The tissues
were mechanically extracted by applying 50–75 strokes using
a Dounce homogenizer (Type B). Chromatin was sheared to
200–500 bp using a high-power Bioruptor Plus sonicator for 30
cycles (10 s ON, 10 s OFF). For each ChIP, 1–3 µg of antibodies
were conjugated with 100 µL Protein G Dynabeads (Thermo
Fisher Scientific, Cat. No. 10004D, 5 mL). Antibodies against the
histone marks H3K4me3 (ab8580, Abcam), H3K4me1 (ab8895,
Abcam), H3K9me3 (ab8898, Abcam), H3K36me3 (ab9050,
Abcam), H3K27ac (ab177178, Abcam), and H3K27me3 (Cat.
No: 39155, Active Motif) were used for immunoprecipitation.
The immunoprecipitated and input DNA was purified with
QIAquick Spin Columns (QIAGEN) and then subjected to library
preparation using the ThruPLEX DNA-seq 48D Kit (Rubicon
Genomics) according to the manufacturer’s instructions. The
libraries were inspected with a Qubit fluorometer, Agilent
Bioanalyzer 2100 system, and StepOnePlus Real-Time PCR.

mRNA Sequencing (RNA-Seq) Library
Generation
The RNA-seq libraries were generated using the NEBNext
UltraTM RNA Library Prep Kit for Illumina (NEB, United States)
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according to the manufacturer’s protocol. In total, 3 µg
RNA was used for each sample. Briefly, mRNA was purified
using oligo (dT) magnetic beads. Purified RNA was subjected
to fragmentation, reverse transcription, end-repair, 3’-end
adenylation, adaptor ligation, and polymerase chain reaction
(PCR) amplification. The final product was purified using the
AMPure XP system, and library quality was checked using the
Agilent Bioanalyzer 2100 system.

Assay for Transpose Accessible
Chromatin Using Sequencing
(ATAC-Seq) Library Generation
The fresh-frozen samples were disassociated as previously
described (Corces et al., 2017). A total of 50,000 isolated nuclei
were used, and library preparation was performed using the
Nextera DNA Library Preparation Kit (Illumina) according to
the manufacturer’s protocol. Transposed DNA was then purified
using the MinElute PCR Purification Kit (Qiagen), amplified
using the NEBNext High-Fidelity PCR Master Mix (New England
Biolabs, Ipswish, MA, United States), and purified using the
MinElute PCR Purification Kit (Qiagen).

Whole-Genome Bisulfite Sequencing
(WGBS) Library Generation
In total, 5.2 µg of genomic DNA and 26 ng lambda DNA
were sheared to 200–500 bp using a Bioruptor Plus sonicator.
Cytosine-methylated barcodes were ligated to DNA fragments.
Lambda DNA was used to calculate the bisulfite conversion rate.
These DNA fragments were treated twice with bisulfite using
the EZ DNA Methylation-Gold Kit (Zymo Research) according
to the manufacturer’s instructions. Subsequently, the single-
strand DNA was PCR-amplified using KAPA HiFi HotStart
Uracil + ReadyMix (2X), and the insert size was assayed on an
Agilent Bioanalyzer 2100 system.

Generation of Sequencing Data
All libraries were subjected to sequencing on the Illumina
NovaSeq 6000 platform, and 150 bp paired-end reads were
generated. FastQC (v.0.11.8)1 was used to assess quality of the raw
reads. The reads were pre-processed using Trimmomatic (v.0.39)
(Bolger et al., 2014) using the following parameters: LEADING:3
TRAILING:3 adapter.fa:2:30:10 SLIDINGWINDOW:4:15
MINLEN:36. The clean reads that passed all the filtering steps
were used for downstream analyses.

ChIP-Seq Processing
Clean reads were mapped to hg19 using BWA-MEM (v.0.7.17)
(Li and Durbin, 2009). Multiple-mapped reads were filtered using
Samtools (v.1.9) (Li et al., 2009), and PCR-duplicated reads were
removed using Picard.2 Index of the bam files was generated
using Samtools. The overall quality control of the ChIP-seq
data was evaluated using the ChIPQC R package (v.4.0.2)
(Carroll et al., 2014; Supplementary Table 1). To examine

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://broadinstitute.github.io/picard

the reproducibility of the ChIP-seq experiments, correlation
coefficients were calculated between replicates using the read
coverages of 10 kb-binned matrices using deepTools 2.0 (Ramirez
et al., 2016). DeepTools was also used to plot the gene body
and flanking region heatmap graphs using the normalized signal
intensity. The ChIP-seq signals over the input background
were visualized on the WashU Epigenome Browser using the
MACS2 (Zhang et al., 2008) bdgcmp function with the following
parameter: -m FE. The MACS2 peak caller was used to identify
narrow peaks for H3K4me3, and H3K27ac using a q-value
threshold of 0.05 and broad domains for H3K4me1, H3K36me3,
H3K9me3, and H3K27me3 using a q-value threshold of 0.1.

ATAC-Seq Processing
The clean reads were mapped to hg19, and the aligned reads
were filtered in the same way as the ChIP-seq data processing.
Reads mapped to blacklist regions or mitochondria were
removed. All filtered reads mapped to the positive strand were
offset by + 4 bp, and reads mapped to the negative strand
were offset by -5 bp to reflect the actual binding sites of
transposons using deepTools with the following command:
Alignmentsieve –ATACshift. The Spearman correlation
coefficient was calculated between replicates (Supplementary
Table 1), and signals were calculated for visualization, similar
to ChIP-seq. To evaluate the chromatin accessibility of each
state, we calculated the -log10 (p-value) scores using the
MACS2 bdgcmp function with the following parameter: -m
ppois. The MACS2 peak caller was used to identify narrow
ATAC peaks using a q-value threshold of 0.05. The peaks
were merged to create a union set of sites. All merged peaks
were separated into proximal ATAC-seq peaks (n = 13,553),
which were defined as overlapping with promoters [regions
as 2 kb upstream and 500 bp downstream of transcription
start site (TSS)], and distal ATAC-seq peaks (n = 27,840)
(Supplementary Table 2).

RNA-Seq Processing
Clean reads were mapped to hg19 using STAR (v.2.7.6a) (Dobin
et al., 2013). Multiple-mapped reads were then removed, and
the correlation coefficient was calculated between replicates
(Supplementary Table 1), and normalized signals were
calculated for visualization, similar to ChIP-seq. Filtered reads
were assembled using StringTie (v.2.1.4) (Kovaka et al., 2019).
Transcripts per million (TPM) were calculated for each gene.
Genes were defined using the GENCODE release 29 (Harrow
et al., 2012). We divided the genes into expressed and repressed
prostate genes using a Gaussian mixture model. The R package
mixtools (v.1.2.0) was used to perform this analysis (Scrucca
et al., 2016). First, the average expression values (TPMs) of
all protein-coding genes of the 3 samples in this study were
taken as input. All genes were divided into 2 (k = 2) density
functions of Gaussian distribution. In this manner, each gene
was assigned to a Gaussian distribution model and received
a posterior probability value. These genes defined as either
expressed or repressed genes, respectively, using the cutoff value
of the posterior probability of 0.9.
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WGBS Processing
The clean reads were mapped to hg19 using Bismark (v.0.22.1)
(Krueger and Andrews, 2011) with the following parameters:
Bowtie2 –dovetail –score_min L,0,-0.2 –nucleotide_coverage.
Duplicate reads from PCR amplification were removed using
the deduplicatebismark command. Cytosine methylation
levels were extracted from the de-duplicated reads using the
bismark_methylation_extractor command from Bismark with
the following parameters: –comprehensive –ignore_r2 18 –ignore
2 –bedGraph –no_overlap –report. The Coverage2cytosine
command was used to calculate the methylation and total read
counts per CpG. CpGs with coverage of at least five were used for
downstream analyses. The bedgraph files generated by Bismark
were converted to bigwig files, which were used for visualization
using BedGraphToBigWig.

Gene Expression Omnibus (GEO) Data
The ChIP-seq data of H3K27ac with three biological replicates,
FOXA1, AR, and HOXB13, and two biological replicates from
NCBI’s GEO with GSE numbers GSE130408, GSE130408, and
GSE70079 were downloaded from the SRA Toolkit (v.2.10.7).3

The downstream analysis of these datasets resembled the ChIP-
seq data in this study.

Construction of Prostate Epigenome
We applied ChromHMM (v.1.22) (Ernst and Kellis, 2012), which
is based on a multivariate hidden Markov model, to compute
genome-wide 15 chromatin states using five histone marks
(H3K4me1, H3K4me3, H3K36me3, H3K9me3, and H3K27me3)
and 18 chromatin states using six histone marks (plus H3K27ac).
For each one, read counts were calculated in non-overlapping
200-bp bins across the whole genome. Each bin was assigned 0
(no signal) or 1 (signal) using the BinarizeBam command with
the input alignment files as the control. The joint models, which
were trained by Roadmap using 60 (for 15-state) or 40 (for 18-
state) epigenomes with the highest-quality data from diverse
tissues and cell types, were applied to generate those states using
the MakeSegmentation command. Enrichments for annotations,
including all types of genomic features, TSS/TSS neighborhood,
conserved GERP elements,4 LMRs/UMRs, distal/proximal ATAC
peaks, and FOXA1/AR/HOXB13 peaks for the 18-state or
15-state model, were computed using the OverlapEnrichment
command of ChromHMM. In this study, we also created an
individual model using ChIP-seq datasets of the prostate.

Clustering Analysis and Identification of
Prostate-Specific Active Enhancers
First, we downloaded the 18 states of 98 epigenomes from the
Roadmap Epigenomics Project.5 We then extracted and merged
all active enhancer states (EnhA1 and EnhA2) of the prostate
and 98 epigenomes. All active enhancers were divided into non-
overlapping 200-bp bins. For each tissue or cell type, each bin

3https://www.ncbi.nlm.nih.gov/books/NBK158900/
4http://mendel.stanford.edu/SidowLab/downloads/gerp/
5https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/core_K27ac/jointModel/final/

was assigned 0 (no enhancer) or 1 (enhancer). From this data
matrix, we identified all prostate-specific enhancer bins, none of
which were active enhancers in any of the other 98 epigenomes.
These bins were merged to produce 7,580 prostate-specific active
enhancers. The matrix was also used to calculate the pair-
wise Pearson correlation coefficients among all 99 reference
epigenomes. We then performed complete-linkage hierarchical
clustering according to the resulting correlation matrix using the
factoextra R package (v.1.0.7). We compared the active enhancers
between the prostate and six other tissues or cell types as an
example (E003, E034, E090, E091, E072, and E104). All active
enhancer states of the samples were merged into a union set
of regions. We calculated the read counts, which were then
normalized to obtain reads per kilobase per million (RPKM)
values of H3K27ac in these regions for each sample. We clustered
all the regions into nine clusters based on the normalized
intensity of H3K27ac using the k-means algorithm. Normalized
H3K4me1 intensity for seven samples and ATAC-seq intensity
for five samples in the corresponding enhancer clusters are
also shown. GO term analysis of the top 1,000 prostate-specific
active enhancers (ranked by intensity) was performed using
GREAT (v.4.0.4) (McLean et al., 2010). Motif analysis of prostate-
specific active enhancers was performed using HOMER2 (v.4.11)
(Heinz et al., 2010).

Identification of Prostate-Specific Genes
To identify prostate-specific genes, we used the algorithm
described by the Human Protein Atlas (HPA) (Uhlen et al., 2015)
and obtained 120 genes from the HPA website.6 We filtered these
genes (TPM > 1 in our RNA-seq data) and defined 103 prostate-
specific genes (Supplementary Table 3), including the following
three groups: (1) prostate-enriched genes with at least four-fold
higher mRNA levels in the prostate compared to any other tissue;
(2) group-enriched genes with at least fourfold higher average
mRNA levels in a group of 2–5 tissues, including the prostate,
compared to any other tissues; (3) prostate-enhanced genes with
at least fourfold higher mRNA levels in the prostate compared to
the average level in all other tissues. The other 55 human tissue
transcriptomes were downloaded from the GTEx Consortium.
To remove the batch effect between our and the public RNA-
seq libraries of normal prostate samples, we used the limma
R package (v.3.44.3). First, we downloaded the gene expression
value (TPMs) matrix of multiple human normal tissues used for
the GTEx project from the website.7 The gene expression values
(TPMs) of three cases of normal prostate tissue in this study and
prostate tissue in GTEx project were integrated into a matrix.
The data on genes whose TPM expression value was less than
1 in all samples were removed, and then log2 (TPM + 0.01)
conversion was performed for all genes. The removeBatchEffect
function in the limma package was used to remove the batch
effect using the default parameters. After removing the batch
effect, we normalized the expression data using the quantile
method, and the normalized data were used for subsequent

6https://www.proteinatlas.org/
7https://gtexportal.org/home/datasets
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analysis. A heatmap was used to show the expression of these 103
genes in all tissues using the pheatmap R package (v.1.0.12).

Identification of Unmethylated Regions
(UMRs) and Lowly Methylated Regions
(LMRs)
LMRs and unmethylated regions (UMRs) were identified for all
samples using the MethylSeekR package (v.1.28.0) for R (Burger
et al., 2013). First, partially methylated domains (PMDs) were
identified and masked. We then ran MethylSeekR with default
parameters: A coverage cutoff of 5 reads per CpG, at least
5 or 6 CpGs, FDRs of less than 0.05, and methylation level
threshold set at 0.5.

Analysis of GWAS SNPs in
Tissue-Associated Enhancers
To evaluate the enrichment of SNPs in enhancers, we adopted
a previously described method (Ernst et al., 2011; Roadmap
Epigenomics Consortium et al., 2015). Firstly, we obtained
the NHGRI GWAS catalog through the UCSC Table Browser
on April 23, 2021. The enrichment of GWAS SNPs for 99
epigenome references was calculated. We excluded chromosome
Y but retained chromosome X for the enrichment analysis.
To reduce dependencies between pairs of SNPs assigned to
the same study, we pruned SNPs such that no two SNPs
were within 1 Mb of each other on the same chromosome.
The pruning procedure considered each SNP in the order of
their genomic locations. We retained an SNP if there was not
another SNP already retained within 1 Mb. We restricted our
analysis to studies reporting two or more associated SNPs.
The variants from each study were intersected with active
enhancer states (states 9 and 10 for the 18-state model)
of each of the cell type. Hypergeometric P-values for the
enrichment of each pruned set of SNPs overlapping enhancer
states were computed against the pruned GWAS catalog as
the background. We obtained the location information of
SNPs from the SNPlocs.Hsapiens.dbSNP144.GRCh37 database.
Functional annotation of the GWAS SNPs was performed
using motifbreakR Tool (Coetzee et al., 2015) by examining
a 2-kb region centered on the SNP. We used the database
for Homo sapiens and selected the method “ic” to calculate
position probability matrix (PPM). The gain or loss of the
motifs around nine prostate cancer-associated GWAS SNPs was
predicted using a p-value cutoff of 1e-04 and presented in
Supplementary Table 7. For the same transcription binding sites
from different database, we chose the most recent versions. The
germline information was obtained from the Chinese Prostate
Genome and Epigenome Atlas (CPGEA) (Li et al., 2020) using
GATK HaplotypeCaller (Van der Auwera et al., 2013). The
RNA-seq data were obtained from the CPGEA. The raw count
matrix was used by DESeq2 (Love et al., 2014) to quantify
gene expression level as normalized counts. Transcripts with an
adjusted P < 0.05 were considered differentially expressed. The
AR ChIP-seq data of normal prostate epithelial and prostate
cancer cells with two replicates were queried in the cistromeDB

website8 (Zheng et al., 2019). Data passing all quality controls
were selected to be visualized in the WashU epigenome browser
(Zhou et al., 2011).

Data Availability
Epigenomic data generated in this study can be visualized in the
WashU Epigenome Browser.9 Sequencing data in FastQ format
are available at the Genome Sequence Archive (GSA) for Human
at the BIG Data Center,10 Beijing Institute of Genomics (accession
number PRJCA004460). The 18-state and 15-state epigenomic
maps generated using ChromHMM can be downloaded from the
BIG Data Center.11

Bioethics
The authors state that they obtained the approval from
appropriate institutional review board and have followed the
principles outlined in the Declaration of Helsinki for all
human experimental research. In addition, for investigations
involving human subjects, informed consent was obtained from
the participants.

RESULTS

Reference Map of the Normal Prostate
Epigenome
The first step in the construction of a high-resolution
epigenome reference is to collect high-quality data. Qualified
urological pathologists curated and selected five normal
adult prostate tissues (Supplementary Table 1). Chromatin
immunoprecipitation sequencing (ChIP-seq) of six histone
modification marks (H3K4me3, H3K4me1, H3K27ac,
H3K36me3, H3K27me3, and H3K9me3), whole-genome
bisulfite sequencing (WGBS), total mRNA-seq, and assay for
transpose accessible chromatin using sequencing (ATAC-seq)
were performed on these normal prostate specimens. The
ChIP-seq datasets of H3K27ac from public resources were also
integrated into our study to better define active enhancers and
promoters. In total, we generated 23whole-genome datasets,
including 17 ChIP-seq, 2 ATAC-seq, 3 WGBS, and 3 RNA-seq
datasets (Supplementary Figure 1A). Each experiment had
at least two highly correlated biological replicates, illustrated
in the correlation heatmap (Supplementary Figure 1B).
For ChIP-seq quality assurance, we calculated the number
of usable fragments, the fraction of reads in peaks (FRiP),
percentage of reads marked as duplicates, percentage of reads
within blacklist regions, and relative cross-coverage scores
(Supplementary Table 1). As expected, the activation-associated
signals (H3K4me1, H3K4me3, H3K27ac, and H3K36me3)
were characterized as having a low correlation with the
repression-associated marks (H3K9me3 and H3K27me3)

8http://www.cistrome.org/db/#/
9https://epigenomegateway.wustl.edu/browser/?genome=hg19&hub=https:
//epigenome.w0075stl.edu/normal_prostate_epigenome/hub
10http://bigd.big.ac.cn/gsa-human/
11https://bigd.big.ac.cn/omix/release/OMIX237
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(Supplementary Figure 1B; Xie et al., 2013; Matsumura et al.,
2015; Zhuo et al., 2020). We also used ChIP followed by
quantitative polymerase chain reaction (PCR) (ChIP-qPCR) to
validate some of the target regions, further confirming the high
quality of the ChIP-seq data (Supplementary Figure 1C and
Supplementary Table 4). For WGBS, we generated more than
9 billion bases per sample, covering 91.2% of CpGs in the whole
genome with an average of 22 × coverage (Supplementary
Table 1). The majority (mean 80.1%) of CpGs was methylated
(gene bodies, intergenic regions, and repeats). In contrast,
a small fraction of CpGs was intermediately methylated or
unmethylated (CpG islands and promoters) (Supplementary
Figures 2A,B), reflecting the bimodal distribution of CpG
methylation levels in normal somatic cells (Supplementary
Figure 2C). RNA-seq data in this study detected a total of
72% (13,828 out of 19,327) protein-coding genes expressed
(TPM > 1) in the normal prostate tissue, and captured
over 89% (13,368 out of 14,928) of genes detected by HPA
(TPM > 1) in prostate tissues. The normalized signals
of all ChIP-seq, and ATAC-seq in the gene body and the
neighboring regions showed high reproducibility between
replicates (Supplementary Figure 2E).

To integrate our histone modification datasets, we first
generated a stable 18-state model of the prostate epigenome
using ChromHMM, following the guidelines of the Roadmap
Project (Figures 1A,B). The 200-bp resolution epigenomic
map of the prostate consisted of transcription signatures
(1-Active TSS, 2-Flanking TSS, 3-Flanking TSS upstream,
4-Flanking TSS downstream, 5-Strong transcription, and
6-Weak transcription), enhancer signatures (7-Genic
enhancer 1, 8-Genic enhancer 2, 9-Active enhancer 1, 10-
Active enhancer 2, and 11-Weak enhancer), ZNF signature
(12-ZNF genes and repeats), and repression signatures (13-
Heterochromatin, 14-Bivalent/poised TSS, 15-Bivalent enhancer,
16-Repressed PolyComb, 17-Weak repressed PolyComb, and
18-Quiescent/Low), providing a functional annotation of the
prostate genome. Simultaneously, a 15-state model of the
prostate epigenome was generated with the same ChIP-seq
datasets, excluding H3K27ac (Supplementary Figure 3).
The biological significance of each state has been described
in detail by Roadmap Epigenomics and follow-up studies
(Matsumura et al., 2015; Roadmap Epigenomics Consortium
et al., 2015; Pomerantz et al., 2020). We found that enhancers
and promoters accounted for 5.3% (18-state) and 6.5% (15-state)
of the prostate genome, respectively, and more than half of the
genome was covered by the quiescent state, resembling other
normal human tissues (Roadmap Epigenomics Consortium
et al., 2015). To evaluate the relationship between chromatin
states and genomic features, we computed the overlap and
neighborhood enrichment of each state relative to specific
genomic annotations (Figures 1A,C and Supplementary
Figures 3A,B). We also evaluated the relationship between
individual chromatin states and DNA methylation levels,
as well as chromatin accessibility. Globally, the extent
of activity of the regions negatively correlated with DNA
methylation and positively correlated with DNA accessibility
(Figure 1D and Supplementary Figure 3C). Additionally,

we identified 13,565 UMRs and 65,800 LMRs using three
WGBS datasets (Supplementary Table 5). We found that
the enhancers were mainly enriched in the LMRs and distal
ATAC peaks (Supplementary Table 2). Promoters were
enriched primarily in the UMRs and proximal ATAC peaks
(Figure 1E and Supplementary Figure 3D). These results
underscored the chromatin signature differences between
the enhancer and promoter states, which were defined by
histone modifications. In addition, the enhancer states of
the prostate were enriched for evolutionarily conserved non-
exonic elements (Figure 1E and Supplementary Figure 3D).
We found that some chromatin states showed distinct
activities although they shared the same DNA accessibility
patterns, such as TxFlnk, Enh, ZNF/Rpts, TssBiv, and BivFlnk.
Moreover, the bivalent enhancer states (EnhBiv and BivFlnk)
showed lower DNA methylation than the active enhancer
states (Enh and EnhA), the biological significance of which
requires future investigation (Song et al., 2019). Overall,
these results demonstrate the complex relationship between
DNA methylation, chromatin accessibility, and histone
modifications in the prostate tissue. Studying DNA methylation
or chromatin accessibility alone may have specific limitations,
supporting the need for constructing a comprehensive prostate
reference epigenome.

Significant Correlation Between Multiple
Epigenetic Modifications and the
Prostate Transcriptome
Having established the prostate epigenome map, we further
explored the correlation between the epigenome and gene
expression. Using a Gaussian mixture model (Lee, 2005), we
categorized all genes into expressed and repressed genes based
on RNA-seq data (Figure 2A and Supplementary Table 6). We
evaluated the epigenomic patterns as a function of expression
levels (Figure 2B). We found that the epigenetic signatures of
the expressed and repressed genes were significantly different
(Figure 2C). First, almost all the expressed genes were enriched
with the active states in their bodies and regulatory regions
(1_TssA, 5_Tx, 7/8_EnhG) (Figures 2D,F and Supplementary
Figures 4A,B). Second, the promoters, enhancers, and gene
bodies of the expressed genes showed high signals for activation-
associated histone marks (H3K4me3, H3K36me3, H3K4me1,
and H3K27ac), but low signals for repression-associated histone
marks (H3K9me3 and H3K27me3) (Figure 2B). Third, the
expressed genes displayed lower methylation levels in promoters
and higher levels in gene bodies than the repressed genes
(Figure 2E). In contrast, the repressed genes had unique histone
marks. Two repressive signals (H3K27me3 and H3K9me3) were
found with distinct distributions around the repressed genes,
indicating different silencing mechanisms. For example, a small
fraction of repressed genes showed high levels of H3K9me3, but
low levels of H3K27me3 (Figure 2B). H3K9me3 is considered a
permanent repression marker associated with heterochromatin,
whereas H3K27me3 is considered a temporary repressive marker
associated with PolyComb binding and CpG-rich regions (Wang
et al., 2018; Jadhav et al., 2020). Therefore, the map of the
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FIGURE 1 | Epigenomic 18-state map of the prostate epigenome based on six histone modification marks. (A) Epigenomic 18 states definitions, histone mark
probabilities, average genome coverage, and genomic annotation enrichments. The 18-state joint model from the Roadmap was used to generate 18 states of the
prostate whole genome with the same colors and mnemonics. Different annotations of hg19 were used for the enrichment analysis. (B) An example region of all
datasets in this study, which shows the prostate 18/15-state epigenome, six histone marks, WGBS, ATAC-seq, and RNA-seq data using the WashU Epigenome
Browser. Normalized intensity of the ChIP-seq, ATAC-seq, and RNA-seq signals is shown. The values on the y-axis for WGBS indicate the methylation level of each
CpG site. (C) Enrichment of the18-state epigenome in the 4-kb neighboring regions of the transcription start site (TSS) and end site (TES). (D) Median DNA
methylation level and ATAC-seq signal confidence -log10 (p-value) were calculated per state. (E) Enrichment of lowly methylated regions, unmethylated regions (left),
distal ATAC peaks, proximal ATAC peaks (middle), and GERP evolutionarily conserved non-exonic nucleotides (right).

prostate epigenome enables a more precise and comprehensive
investigation of gene regulation in the prostate.

Epigenome Comparison and
Prostate-Specific Enhancer Modules
Epigenetic mechanisms are instrumental in maintaining
cell identity and tissue diversity. A critical component is
the enhancer module that orchestrates tissue specificity

(Alvarez-Errico et al., 2015; Lee et al., 2017). We extracted all
active enhancer states (EnhA1 and EnhA2) of the prostate
and compared them with 98 Roadmap epigenomes of diverse
tissues and cell types. Similar lineages, such as pluripotent
stem cells, immune-associated cells, and brain-derived tissues,
formed distinct clusters in the hierarchical clustering analysis
(Figure 3A). We found that the prostate tissue clustered most
closely with tissues from the digestive system. This clustering
reflects that these tissues are derived from secretory organs
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FIGURE 2 | Epigenomic characteristics of expressed and repressed genes. (A) Density histogram. All genes were divided into two clusters: Expressed (green line)
and repressed genes (red line) using a Gaussian mixture model based on the mean log2 (TPM + 0.01) value of each gene in the prostate. (B) The normalized signals
of all ChIP-seq and ATAC-seq datasets were calculated for the expressed and repressed genes, respectively. All rows of heatmaps (top: Expressed genes, bottom:
Repressed genes) are in the same descending order according to the gene expression levels. (C) Snapshot of an example showing the dramatically distinct
epigenomic landscapes of the expressed and repressed genes using WashU Epigenome Browser. Normalized intensity of the ChIP-seq, ATAC-seq, and RNA-seq
signals is shown. The values on the y-axis for WGBS show the methylation level of each CpG site. (D) Enrichment of the expressed and repressed genes, at their
transcription start site (TSS) and end site (TES). (E) Expressed and repressed genes showing different DNA methylation signatures in three replicates. (F) The
neighborhood of TSS and TES enrichments for the expressed and repressed genes, respectively (± 2 kb).
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FIGURE 3 | Comparison of the prostate and other epigenomes. (A) Hierarchical clustering of prostate and other epigenomes using all active enhancers. The active
enhancer states (EnhA1 and EnhA2) of 99 epigenomes were divided into non-overlapping 200-bp bins, which were then assigned 0 (no enhancers) or 1 (enhancers).
The huge matrix was used to perform hierarchical clustering. (B) Multidimensional scaling (MDS) plot of all 99 epigenomes based on the same matrix used for
hierarchical clustering. (C) Clustering analysis identified tissue-specific active enhancers across the prostate and six other tissues or cell types. All active enhancers
were merged into a union set of regions. Values in the heatmap were normalized RPKM (reads per kilobase million) values of H3K27ac calculated from the merged
regions in each sample. Normalized H3K4me1 RPKM values for seven samples and ATAC-seq RPKM values for five samples in the corresponding enhancer clusters
are shown. (D) H3K27ac, H3K4me1, and ATAC-seq signals of 7,580 prostate-specific active enhancers over 10-kb regions centered on the prostate demonstrate
strong signals, whereas other tissues show weak signals. (E) Enrichments for FOXA1, AR, and HOXB13 peaks of the 18-state epigenome. (F) Gene ontology (GO)
terms associated with the top 1,000 prostate-specific active enhancer regions using the GREAT tool for this analysis. (G) Enriched known motifs in the
prostate-specific active enhancer regions detected by HOMER2. (H) A fraction of 103 genes with active prostate enhancers.
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comprising secretory epithelial and smooth muscle cells and
have similar stromal components (Dedhia et al., 2016; Ikegami
et al., 2020). Multidimensional scaling (MDS) analysis distinctly
separated the prostate from immune cells, pluripotent stem
cells, and brain tissues (Figure 3B). These results highlight that
active enhancer states are a signature of specific cell types and
tissue identity. Six high-quality epigenomes (E003, E034, E072,
E090, E091, and E104), as representatives of distinct lineages,
were selected for comparison with the prostate epigenome,
and only 18.9% of active enhancers were shared across all
seven tissues (Figure 3C). Moreover, we identified 7,580
prostate-specific active enhancers (see section “Materials and
Methods”), which were confirmed by examining the signals of
H3K27ac, H3K4me1, and ATAC (Figure 3D). Gene Ontology
(GO) analysis revealed enhancer-target gene functions that
were enriched in prostate gland development (Figure 3F). To
construct the prostate-specific regulatory network, we defined
103 prostate-specific genes based on our RNA-seq data and
GTEx project RNA-seq data (Supplementary Figure 5 and
Supplementary Table 3). Of these, 89 (86%) genes had at
least one active enhancer of the prostate (± 20 kb of TSS),
and 77 (74.8%) genes had at least one prostate-specific active
enhancer (± 20 kb of TSS) (Figure 3H and Supplementary
Figures 5, 6), indicating that the active enhancers of the prostate
were closely related to its identity. To identify putative master
transcription factors in the prostate tissue, we performed motif
enrichment analysis of prostate-specific active enhancers and
found that most of them were known prostate-related master
transcription factors (Figure 3G), such as FOXA1, HOXB13, and
AR (Edwards et al., 2005; Hankey et al., 2020). To further study
the interaction between master transcription factors and the
prostate epigenome, we calculated the enrichment of FOXA1,
HOXB13, and AR (ChIP-seq datasets from GSE70079 and
GSE130408) in each state of the prostate epigenome. FOXA1
and AR binding was mainly enriched in enhancers, especially
in active enhancers, whereas HOXB13 binding was primarily
located in the promoter regions (Figure 3E and Supplementary
Figures 7, 8). The global landscape of interactions among these
master transcription factors and the prostate epigenome may
provide valuable information for future research.

Predicting Regulatory Functions of
Disease-Associated Variants
To better understand the molecular mechanism underlying
prostate-associated disease phenotype, we integrated the large
epigenome references with trait-associated genetic variants. We
obtained GWAS data for multiple diseases and traits from the
University of California Santa Cruz (UCSC) Table Browser.
Consistent with the results of the Roadmap Project, we confirmed
that the prostate cancer-associated genetic variants were enriched
in prostate-associated enhancer states (states 9 and 10 of the 18
states) (Figure 4). In the GWAS study (Conti et al., 2021), 19 out
of the 186 SNPs were located in prostate enhancers. Furthermore,
a substantial number of transcription factor-binding sites were
created or destroyed by GWAS SNPs, including the binding sites
of the androgen receptor (AR) (Supplementary Table 7). Of

the 19 SNPs within the prostate enhancer regions, rs17321482
and rs17694493 were predicted to disrupt the binding of AR
(Coetzee et al., 2015; Figure 5A and Supplementary Table 7).
SNP rs17321482 was located in the intron of ARHGAP6 on the X
chromosome. SNP rs17694493 was located on 9p21, in the intron
of CDKN2B-AS1, which is a putative oncogene that encodes a
long non-coding RNA, ANRIL (Walsh et al., 2014). Previous
studies have predicted that the risk allele rs17694493 disrupts
two transcription factor-binding motifs (STAT1 and RUNX1),
which regulate the expression of the CDKN2B-CDKN2A gene
cluster (Al Olama et al., 2014). However, we observed significant
AR ChIP-seq signals in normal prostate epithelial and multiple
prostate cancer cell lines, suggesting that the SNP overlaps a bona
fide AR-binding site, and the risk allele potentially negatively
influences AR binding (Figure 5A). Interestingly, when we
examined data from a previously published prostate cancer
cohort (Li et al., 2020), we found that AR expression negatively
correlated with the expression of CDKN2B-AS1 in the normal
prostate, and this correlation was completely dependent on the
reference allele, but not the risk allele. This pattern was consistent
with a model in which AR binding represses CDKN2B-AS1, and
the disruption of the AR-binding site decouples CDKN2B-AS1
from AR control (Figure 5B). Consistent with this model, tumor
samples with the risk allele rs17694493 (C > G) exhibited higher
CDKN2B-AS1 expression (Figure 5C). Thus, rs17694493 might
play a causal role in predisposing cancer risk.

DISCUSSION

International epigenomics consortia, such as the Encyclopedia
of DNA Elements (ENCODE) Project (Maher, 2012), Roadmap
Epigenomics Program (Roadmap Epigenomics Consortium et al.,
2015), International Human Epigenome Consortium (IHEC)
(Bujold et al., 2016), and Functional ANnoTation Of the
Mammalian Genome 5 (FANTOM5) Consortium (Noguchi et al.,
2017), have devoted great efforts to generate, analyze, and
interpret epigenomics data to help understand gene regulation
in development and disease. In this study, we focused on
the prostate, whose complete epigenome map is lacking. Even
in the most recent EpiMap (for epigenome integration across
multiple projects), a compendium comprising epigenomic maps
across 800 samples, a high-quality prostate epigenome is still
missing (Boix et al., 2021). A complete epigenomic map of the
normal prostate will likely make a significant contribution to
the literature and advance research efforts on prostate cancer,
the second most common cancer in men worldwide (Stelloo
et al., 2018; Arap et al., 2020; Zhao et al., 2020). By integrating
comprehensive histone modification ChIP-seq, WGBS, RNA-seq,
and ATAC-seq data, we filled this gap, enabling comprehensive
annotation of regulatory elements in normal prostate at a
high resolution.

Here, we present an 18-state epigenome map of the normal
prostate and analyzed the patterns of DNA methylation and
chromatin accessibility in each state. In most cases, the analyses
confirmed the general knowledge about DNA methylation
and chromatin accessibility levels in relation to epigenome
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FIGURE 4 | Epigenomic annotation of disease-associated variants. Enhancer states (states 8 and 9) of 18-state and prostate-specific enhancer enrichment
(p-value < 0.05) for trait-associated genetic variants. The SNP number overlapped with the data of the prostate cancer study, and the enhancers are shown in the
box. The findings of representative studies were consistent with those of the Roadmap Project.
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FIGURE 5 | Potential mechanism of GWAS effects on tumor predisposition. (A) A representative GWAS locus associated with prostate cancer trait affects
AR-binding motif predicted by motifbreakR in the enhancer regions. The high-quality AR ChIP-seq data from two independent studies of normal prostate epithelium
and prostate cancer cell lines are shown around the representative GWAS locus. (B) rs17694493 is located in the intron of CDKN2B-AS1. AR binds to the SNP and
inhibits CDKN2B-AS1. The Pearson correlation of CDKN2B-AS1 expression with AR in the normal prostate is demonstrated in the right panel. The groups harboring
the SNP are indicated with a red dot. The anti-correlation was abolished. In the INK4b/ARF/INK4a locus, the effector genes of CDKN2B-AS1 are transcribed to
control the cell cycle in the normal prostate tissue. (C) In tumor samples, SNP rs17694493 abolished AR binding and downstream CDKN2B-AS1 inhibition,
supported by allelic expression in CPGEA prostate cancer cohorts (right panel). The upregulated expression of CDKN2B-AS1 affected INK4b/ARF/INK4a, gate
guard genes of cell cycle.

states; however, some interesting exceptions were observed. For
instance, bivalent enhancers showed lower DNA methylation
levels than active enhancers but had similar chromatin
accessibility. Previous studies suggested that DNA methylation
can be antagonistic to H3K27me3 in enhancer regions (Inoue
et al., 2017; Chen et al., 2019). Therefore, chromatin accessibility
and DNA methylation work in conjunction with other histone
modifications rather than independently or redundantly, to
control gene regulation (Gal-Yam et al., 2008; Bogdanovic et al.,
2011; King et al., 2016). The complex relationship between
chromatin accessibility, DNA methylation, and chromatin states
in the prostate remains to be elucidated.

We also found that enhancer and promoter states accounted
for 5.3% of the prostate genome, and they exhibited increased
evolutionary conservation, underscoring the biological
significance of these regions. We defined 5,625 prostate-specific
active enhancers, demonstrated their potential to distinguish
prostate tissue identity, and investigated their association with
prostate-specific gene expression.

Furthermore, we examined the master transcription factors in
the prostate, including FOXA1, AR, and HOXB13. Our previous
study confirmed that FOXA1 was frequently mutated in prostate
cancer in an Asian cohort (Li et al., 2020). Recent studies
have also found that FOXA1 mutations affect the phenotype
of prostate cancer and interfere with the differentiation of
normal prostate epithelium (Adams et al., 2019; Parolia et al.,

2019). By defining a global landscape of interactions between
FOXA1 and prostate-specific regulatory elements, especially
active enhancers, we provide a useful resource for future research.
We also found the motifs of CTCF and BORIS (Zf) in prostate-
specific enhancers, suggesting the existence of prostate-specific
chromatin interactions (Rowley and Corces, 2018; Debruyne
et al., 2019).

Finally, to illustrate the utility of our prostate epigenome
map, we used this map to annotate genetic variants that are
associated with disease traits. The current NHGRI GWAS catalog
has collected over four thousand GWAS studies (Welter et al.,
2014). However, functionalizing trait-associated genetic variants
has been a major challenge. The majority of GWAS SNPs reside
in non-coding regions, which are potentially regulatory elements.
Integrating large epigenomic roadmaps holds promise to provide
a principled approach to elucidate the functional consequences
of GWAS SNPs. In our study, we used the prostate-specific
enhancer to link a novel GWAS SNP with upstream AR binding
and downstream disturbance of cell cycle regulation. We suggest
that it is a promising paradigm to integrate the epigenome
reference, public data, and large tumor consortium to interpret
and identify possible causal variants.

In summary, our normal prostate epigenome map
complements the current human reference epigenome and
fills an important gap in the field. This is valuable for a
better understanding of gene regulation, development, and
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tumorigenesis of the prostate. Further studies will be required
to investigate the complex relationship between chromatin
accessibility, DNA methylation, histone modifications, and
chromatin states in the prostate, and to validate mechanistic
predictions on the functional consequences of genetic variations.
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