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ABSTRACT Human health and disease are emergent properties of a complex, nonlinear, dynamic
multilevel biological system: the human body. Systems biology is a comprehensive research strategy that
has the potential to understand these emergent properties holistically. It stems from advancements in
medical diagnostics, “omics” data and bioinformatic computing power. It paves the way forward towards
“P4 medicine” (predictive, preventive, personalised and participatory), which seeks to better intervene
preventively to preserve health or therapeutically to cure diseases. In this review, we: 1) discuss the
principles of systems biology; 2) elaborate on how P4 medicine has the potential to shift healthcare from
reactive medicine (treatment of illness) to predict and prevent illness, in a revolution that will be
personalised in nature, probabilistic in essence and participatory driven; 3) review the current state of the
art of network (systems) medicine in three prevalent respiratory diseases (chronic obstructive pulmonary
disease, asthma and lung cancer); and 4) outline current challenges and future goals in the field.

Introduction
Human health and disease are emergent properties of a complex, multilevel biological system that spans
from the molecular domain to the microbiome, exposome and social levels (figure 1) [1, 2]. Ideally,
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therefore, if we want to intervene prophylactically to preserve health or therapeutically to cure disease, in a
safe and effective way, we should understand these dynamic gene–environment interactions in greater detail.
Certainly, this will not be an easy task, but the alliance of new high-throughput “omic” methodologies, novel
imaging techniques and current (and future) computational power can project us forward in this endeavour
and eventually facilitate the development of novel therapeutic strategies (and the repurposing of old ones) [3].
However, as wisely highlighted by one of the anonymous reviewers of this paper, to whom we are grateful:
“… full understanding of complex nonlinear systems in physics and biology might not be ever possible and,
fortunately, might not be even required because probabilistic decisions are (and will become) more powerful
than decisions based on precise mechanistic understanding. This is a real revolution already happening in
society (Google and Amazon can predict your behaviour without knowing (less understanding) you).
Similarly, Artificial Intelligence (AI) will be able soon to predict the clinical course and responsiveness to
intervention based on probabilities rather than on deep understanding of the system …”. We think that both
concepts are actually synergistic since a more comprehensive and precise understanding of human biology
(figure 1) will, no doubt, feed back to any AI platform, which will in turn provide new hypotheses to test
iteratively. In any case, embracing a holistic scientific approach (as opposed to the reductionist research
strategy used traditionally) for the understanding of human health and disease is a unique (and mandatory)
opportunity to really move medical practice forward in the 21st century.

In this review, we: 1) discuss the principles of systems biology, a relatively recent research strategy that
leverages from omics and bioinformatics to gain a holistic understanding of complex biological systems; 2)
elaborate on how this can pave the way towards the effective deployment of the so-called “P4 medicine”
(predictive, preventive, personalised and participatory) [4], which can shift healthcare from treatment of
illness to prediction and prevention of illness, in a revolution that will be personalised in nature,
probabilistic in essence and participatory driven; 3) review the state of the art of network (systems)
medicine in three prevalent respiratory diseases (chronic obstructive pulmonary disease (COPD), asthma
and lung cancer); and 4) outline current challenges and future goals in the field.

Systems biology
System approaches and emergent properties
System approaches stem from the premise that separate analysis of information gathered from different
elements, compartments or levels of a dynamic system (figure 1) cannot yield appropriate understanding/
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FIGURE 1 Multilevel layers of biological, environmental and social information ideally integrated in systems
biomedicine approaches. For further explanations, see text. Reproduced and modified from [2] with permission.
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prediction of the global behaviour of the system (so-called emergent properties, which are implicit in
nonlinear systems) nor allow to fix it if found globally away from an homeokinetic state (e.g. disease versus
health), with alterations that may spread throughout various levels or compartments of the system [5]. As
MACKLEM [5] pointed out, emergent properties arise spontaneously as self-organised order from the
nonlinear interactions of the different biological components and thus the overall emergent behaviour
transcends the behaviour from each part in isolation. It follows that a more holistic approach, integrating
information of the interacting parts and subentities into a single mathematical representation or model,
can potentially offer better clues as to the causal chain of events that leads to the apparent phenotypic
manifestations and how to remedy the situation [6]. Therefore, systems biology departs from the
reductionist approach followed by traditional biomedical research by integrating (rather than taking apart)
different biological levels (genes, molecules, cells, organs and the environment) and mechanisms, and
shares a very similar goal with integrative physiology: to better understand holistically the systemic
dynamic state of individuals [7, 8]. In this context, systems biology (and systems or network medicine) is
nothing more than physiology, which has always meant to be multiscale and integrative [7, 8]. The
difference is that today’s availability of new tools, high-throughput technologies and computing power
allows, for the first time, real physiology to be performed. In essence, it is all about perspective [9]. Before
“perspective” (i.e. three-dimensional) painting was “invented”, classical painting considered only two
dimensions. Systems biology includes many different biological levels (dimensions) as well as the element
of time dynamics. Hence, it has the potential to provide a much better definition for “the eye of the
beholder” [9].

Biology as an informational science
In recent decades, faced with the biological complexity of human diseases, biomedical scientists have
increasingly turned their efforts to apply high-throughput methodologies that embrace the Cartesian view
that the human body is a system of formally interacting parts and that biology is an informational science.
A nonexhaustive list of information sources (table 1) includes “omics” data ((epi-)genomic, transcriptomic,
proteomic, metabolomic and microbiomic), single-cell analyses, phenotypic assays, extensive medical
records and an endless list of environmental factors (“exposome”), such as smoking, exercise, diet and
pollution, among others (figure 1). Common respiratory-specific levels of information are lung function
and imaging.

System representation: networks
A network (or graph) is a practical graphical representation of complex data in the context of systems
approaches (figure 2), where nodes are the elements of the system under study (e.g. genes, proteins,
biochemical or physiological measures, individuals or patients, among many others) and edges (or links)
connect nodes that interact somehow (causality, correlation). The network(s) constructions are hypothesis
driven, i.e. there is not a single, fixed, network “template”; on the contrary, they can be “custom-made”.
Networks are used to make inferences regarding the emergent dynamic (spatial and temporal) behaviour
of the system in response to perturbations of putative critical network elements (nodes and/or edges).

Diseases as network perturbations
Any disease can be viewed as a system in an abnormal state (a perturbed network) far from homeokinetic
operating conditions [5], either with: 1) associated nonemergent (i.e. subclinical) alterations, or 2)
observable phenotypic abnormalities (i.e. clinical symptoms) progressively departing from functional
equilibrium towards partial system collapse (i.e. organ failure, etc.) or complete collapse (death). In
opposition, perfect health, or wellness, can be viewed as the optimal and quantifiable state of a system in
dynamic equilibrium (i.e. homeokinesis [5]).

Biological network properties
Several aspects of biomedical networks are due to their particular biological nature and must always be
considered in a research setting [16]. In terms of “topology” (i.e. their spatial distribution) they are
generally scale-free (as opposed to random networks). In this setting, “scale-free” means that this type of
network contains many nodes with few connections and a few nodes with many links (hubs) (figure 2).
This topology makes networks more robust against random perturbations [17] because of their higher
modularity [18]. They are composed of loosely connected subparts (modules), which are groups of nodes
highly connected internally but little to outsiders. Modules are usually coupled with specialised biological
subtasks. Additionally, not all nodes are equal relative to the network structure. Central elements that are
much more connected than the average are denominated “hub” nodes [19], while linkers between modules
are termed “bottleneck” nodes (figure 2) [20]. Perturbations of these elements (hubs and bottlenecks)
often alter the system behaviour drastically, whereas the impact of more peripheral nodes on systems
behaviour (emergent properties) is often marginal. Other influential network properties with regard to the
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robustness of the system include “redundancy” and “degeneracy” [21]. Finally, nodes and edges may
be characterised qualitatively (e.g. fold-change sign for nodes that represent gene products) or
quantitatively (e.g. chemical binding constant for edges that connect drug ligands to their target molecules)
(figure 2).

Medical uses
Although systems biology is best suited for experimental models of disease, it can also provide actionable
and useful insights in clinical medicine [22–24]. Systems (network) medicine can lead to the identification
of disease biomarkers or drug targets, both defined as key nodes whose perturbation transits the state of
the biological system from health to disease or vice versa. A paradigmatic example comes from the field of
cancer and the observation that the sequential use of anticancer drugs enhances cell death by rewiring
apoptotic signalling networks [25].

P4 medicine
The holistic approach of systems biology discussed earlier has enabled the emergence of a new
comprehensive paradigm in medicine, called P4 medicine, for predictive, preventive, personalised and
participatory [4, 26–28].

From treatment to prediction and prevention
Current western medicine mostly focuses on treating diseases and symptoms when they appear. Thus, the
current healthcare system organisation (and its major stakeholders, i.e. hospitals and primary care centres,
pharmaceutical industry, insurance companies, policy makers, providers (e.g. physicians) and patients) is
based on the provision of medication and related health products to individuals once they are sick and

TABLE 1 Common omics data types

Assay Platform Main advantages and
disadvantages

Standard
bioinformatics

pipelines

Genomics Identify nucleotide
variants (SNPs) in the

whole genome
associated with clinical

traits (GWAS)

Genotyping arrays, whole-
exome sequencing

SNP variability is stable during life;
provides limited information in
complex diseases due to several

loci implicated

GWAS protocol
review [10]

Transcriptomics Quantify expression
levels of cellular

transcripts (e.g. mRNA)

Expression arrays, RNA
sequencing

Widely used due to its high
information content on cell status;
differences in mRNA expression do
not imply differences in proteins;

does not take into account
post-transcriptional modifications

RNA sequencing
pipelines review [11]

Proteomics Characterise protein
expression levels of

cells/samples

MS-based approaches Expected to be closer to the
phenotype; not widely used,

expensive and more cumbersome
analysis

Next-generation
proteomics review [12]

Metabolomics Characterise
abundance profile of
metabolites and their

relative ratios

MS-based approaches Representative of the cellular
status; applicable to many

biological fluids (i.e. breath, blood,
urine, etc.); not widely used

Review of analytical
methods for

metabolomics [13]

Epigenomics Determine
modifications in DNA
and small RNA that
interfere with gene

expression

DNA methylation analysis with
arrays (Infinium

MethylationEPIC 850K; Illumina,
San Diego, CA, USA),

next-generation sequencing,
small RNA sequencing, arrays,

etc.

Provides additional information to
transcriptomics; related to

exposures; more expensive than
transcriptomics; sequencing-based
approaches have computational
tools in active development

Bioinformatics aspect of
DNA methylation

studies [14]

Microbiomics Characterise bacterial
(and viral) composition

of a sample

Targeted sequencing of 16S
rRNA gene, shotgun

metagenomics sequencing

Provides information of external
factors likely to be associated with
disease; 16S sequencing does not
differentiate between the presence

of live/dead bacteria

Bioinformatics analysis
for the characterisation

of the human
microbiome [15]

SNP: single nucleotide polymorphism; GWAS: genome-wide association study; MS: mass spectrometry.
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seeking treatment. In most countries, only a small fraction of public funds is currently devoted to
prevention. Meanwhile, the burden and cost of chronic complex conditions (e.g. asthma, COPD, heart
disease, stroke, cancer, type 2 diabetes, obesity and arthritis) is rising at an alarming rate [29, 30]. Hard or
impossible to treat, these conditions may, however, be preventable to some (large?) extent. The hope to
reach this goal (e.g. maintaining wellness) is fuelled by the growing understanding of risk factors and
pathobiology of these diseases, gained (in part) as a result of the implementation of systems biomedicine
approaches into research studies [31].

Personalised in nature
Since the dynamic life-long (from pre-womb to tomb [2]) interaction of genetic, environmental and social
factors is what drives the physical state of individuals, and because no two individuals are biologically
alike [2], the ideal preventive strategy should be tailored to each individual. In this setting, access to the
individualised clouds of data, including omics data, digital medical records, and information related to the
exposome, behaviour and social exposures, will be needed (and available).

Blood as a window for health assessment (liquid biopsies)
Blood stands out on the list of all the personalised data sources as it conveniently harbours dynamic
critical information from many organs in the form of circulating organ-specific proteins, immune or
signalling small molecules and cells (liquid biopsy). Moreover, cheap and mainstream nanosensor
technology to measure these analytes longitudinally is on its way [32]. In the near future, these
technologies may well serve to alert individuals in real-time to any high-risk alteration from healthy baseline
measurements in order to prevent clinical complications such as organ failure, heart attacks [33], prion
disease [34], liver injury [35], cancer recurrence [36], diabetes [37] or asthma attacks [38]. This scheme is
expected to be especially powerful when combined with personalised genomic data, as well as other

Hub node

Bottleneck

 nodes

FIGURE 2 Network topology. Nodes are linked by edges. Node size represents a quantifiable node property (e.g.
fold-change in two different experimental situations; this allows the inclusion of a dynamic component (i.e. time
change) in the graphical representation of the network). Edge width represents the connection strength (e.g.
correlation coefficient). Node colours identify different network modules. For further explanations, see text.
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biosensors continuously tracking essential variables, such as exhaled breath [39], urine [40], imaging [41]
and/or ambient pathogens or allergens [42–44].

Participatory driven
Finally, the benefits of this new P4 medicine will only be possible if patients and healthy subjects become
active agents in the continuous assessment and preservation of their health. The role of health providers, both
traditional (physicians, nurses, physiotherapists) and novel (genetic counsellors, behavioural coaches), will
evolve to facilitate actionable information to individuals, which they can use to maintain their health [45].
Importantly, a new legal framework of rights, obligations and protections for individuals/patients and health
professionals alike remains to be established and implemented. The emergence of personalised “big” data
repositories raises unprecedented ethical, privacy, confidentiality, security and policy issues related to
information ownership, access and management. Of note, the insurance company regulatory framework is
markedly unprepared in most countries.

How to do it?
Research strategy
In principle, there are two different approaches to analyse data in this setting: “supervised” analysis based
on a priori knowledge (e.g. clinical characteristics of patients) and “unsupervised” analysis (i.e.
hypothesis-free). Both strategies have advantages and disadvantages, and in a sense they are
complementary; their characteristics are further discussed in the Analytical complexity section.

Input data
Systems biology leverages from several omics data types. The most commonly used data types are
genomics, transcriptomics, proteomics, metabolomics, epigenomics and microbiomics. Table 1 summarises
their definitions, available experimental platforms, advantages/disadvantages and the bioinformatics tools
needed. In each omic, data is curated, normalised and the differences between groups are usually
computed using general linear models [46, 47]. We acknowledge that exposomics and imaging are missing
in table 1; this is on purpose as both fields are currently developing very actively [48, 49].

Analytical complexity
Single-level analysis
A common research approach is to perform standard (supervised or unsupervised) single-level omic
analysis (table 1) and then use further bioinformatics tools to facilitate the translational interpretation
(table 2 and figure 3). For instance, from a list of genes/proteins of interest, in order to identify underlying
biological mechanisms, functional enrichment can be performed against many databases that host
annotated information on functional roles (figure 3d): Gene Ontologies of biological processes, cellular
components or molecular functions [62], KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
[63], Reactome pathways [64] and gene set enrichment analysis (GSEA) [50]. Furthermore, the

TABLE 2 Widely used tools to facilitate biomedical interpretation from omics analysis

Analytical tool Goal Advantages and disadvantages Pipelines

Functional
enrichment

From lists of identifiers (commonly genes)
computes the over-representation in a

specific molecular function, Gene
Ontology, pathway, biological process, cell

localisation, etc.

Noise and dimension reduction, helps
interpret gene sets; useful to
aggregate the individual gene
contribution to overall changes;

results are dependent on database
knowledge and thus may be biased

Gene set enrichment analysis (GSEA):
http://software.broadinstitute.org/

gsea/index.jsp [50]; gene set variation
analysis (GSVA) [51]; Enrichr: http://
amp.pharm.mssm.edu/Enrichr [52];
FunRich: http://funrich.org [53];
STRING: https://string-db.org [54]

Data clustering Classifies samples/variables based on
their similarity in order to obtain

homogeneous groups

Unsupervised, data driven and
probabilistic; requires medium/large

data sets

k-means [55, 56]; hierarchical
bottom-up [57]; hierarchical top-down

(divisive analysis clustering
(DIANA)) [58]

Coexpression
networks

From the dataset builds a correlation
network to identify groups of related genes
(modules), which can be investigated for
biological functions and/or related to

clinical traits

Coexpression in order to reflect
causative processes must be coupled

with functional enrichment and
validation; correlations are affected

by sample size of the dataset;
requires proper data normalisation

Weighted gene coexpression networks
analysis (WGCNA) [59]; conventional
coexpression measures (Pearson/

Spearman/Kendall, mutual
information [60]); miRNA (targets)–

genes [61]
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informational power can be augmented (“integrated”) with additional molecular interactions available
from public sources with the help of dedicated software (e.g. Cytoscape plugins [65] for the STRING
protein–protein association database [54]). These exponentially growing public repositories host pathway
interactions (e.g. gene regulatory, metabolic or signalling) of known relationships or putative associations
that come from a wide range of experiments: theoretical, animal, experimentally modified (perturbed)
biological conditions, etc. Additionally, in order to obtain homogeneous groups (of variables or samples),
systems medicine uses a large variety of methods for clustering data (figure 3e) [66]. The methods vary in
clustering criteria, computational efficiency/speed and cluster outputs. To stratify patients, relatively simple
methods such as unsupervised learning algorithms (e.g. k-means [55, 56]) are commonly applied (table 2).
However, more sophisticated methods can yield hierarchically organised clusters visualised as
dendrograms: bottom-up agglomerative approaches (e.g. as described by WARD [57]) are preferred when
clusters are expected to contain few observations, while top-down divisive approaches (e.g. DIANA
(divisive analysis clustering) [58]) are more suited for estimating large numbers of clusters [67].

Finally, networks can be used to infer the structure of the data (table 2). Co-expression, co-occurrence or
similarity networks can be built either across all study samples or separately for each medical condition that
is to be compared (figure 3a). Many methods have been devised and are continuously under active
development for building these networks. The simplest approach is to compute all gene–pair correlations
with conventional coexpression measures (Pearson/Spearman/Kendall, mutual information [60]) (figure 3a),
but more complex statistical procedures exist that cater for the specific features of biological systems. An
extensively used procedure is termed weighted gene coexpression networks analysis (WGCNA) (figure 3b)
[59, 68], which has the added value of clustering genes into nonoverlapping modules and correlating them
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FIGURE 3 Summary of bioinformatic methodologies currently available. a) Correlation (e.g. Pearson/Spearman) network constructed from omics
data. b) Weighted gene coexpression networks analysis (WGCNA) methodology. c) Bayesian networks approach. d) Gene set enrichment with gene
set enrichment analysis (GSEA). e) k-means clustering. For further explanations, see text.
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with any imputed (usually clinical) characteristic. WGCNA can be complemented with functional
enrichment analysis.

Multilevel analysis: the true revolution
Although some studies have and will continue to work successfully on a single omic level, recent decades
have seen an ever-increasing body of work where several distinct omics datasets, including also other
biological or clinical levels, are analysed conjointly using multiscale integrative methods such as SNF
(similarity network fusion) [69]. This combination of levels has the potential to provide researchers with
simultaneous information from several compartments of the biological system of interest, thus facilitating
the modelling of the dynamic nonlinear relationships that characterise emergent properties (phenotypes)
and complex diseases. Accordingly, this strategy would be able to provide more power to identify groups
of patients affected with the same pathobiological mechanism or more power to probabilistically model
(without understanding) the health versus disease states. The main multiscale analytical tools described to
date are summarised in table 3. The “supervised” methods can be grouped mostly into either
network-based, machine learning or multistep approaches [86], while the “unsupervised” can be further
classified as based primarily on networks, Bayesian approaches or matrix factorisation (table 3).

Current applications of systems approaches in respiratory medicine
The pathogenesis of most common respiratory diseases is complex and largely undefined from a precise
pathobiological point of view. Chronic respiratory conditions, such as asthma or COPD, are still diagnosed
(and treated) based on respiratory symptoms and traditional lung function measures, but they are highly
heterogeneous and often overlap. In fact, they are the end result of complex genetic and environmental
interplays that are yet to be explicitly modelled. This poorly defined characterisation of the basic disease
mechanisms results in nonspecific, mostly symptom-driven treatment options, or lack thereof, that may
eventually be able to slow the progression of these diseases in fortunate, responsive patients.

Systems biology and network medicine approaches are being put forth in an effort to palliate this painful
lack of knowledge and understanding by tackling two fundamental and interrelated matters: 1) as in other
biomedical fields such as cancer, a novel classification (i.e. “taxonomy”) of chronic airway diseases is
needed, based not on clinical presentation (i.e. “phenotypes”) but instead either on the underlying
biological mechanisms (i.e. “endotypes”) when characterised or resulting directly from data-driven
probabilistic clustering of patients data; and 2) a more precise patient stratification that can be transferred
to distinct and personalised preventive or therapeutic prognosis as well as improved prognosis (i.e. P4
medicine) is also needed, as recently highlighted in a review focused on biological therapies for airway
diseases [87].

COPD
COPD is a heterogeneous disease with pulmonary and extrapulmonary manifestations [88], and variable
response to pharmacological treatment [89], suggesting that the condition affects several distinct biological
pathways. To characterise this heterogeneity at the molecular level, several studies have already used a
number of different systems approaches. 1) WGCNA and GSEA showed that a molecular signature
composed of gene modules related to B-cell activity, NK-cell activity or viral infection cellular markers
might be detectable in peripheral blood months following COPD exacerbations [90]. 2) XUE et al. [91]
used other network-centric procedures to reveal an unexpected loss of inflammatory signature in COPD
patients, as well as an activation-independent core signature for human and murine macrophages. 3) GLASS

et al. [92] used the network inference analysis PANDA (Passing Attributes between Networks for Data
Assimilation) [93], designed for improved integration of individual with public datasets, and discovered
network rewiring of lymphocyte activation signalling circuits in a known gene variant implicated in COPD
by genome-wide association studies. 4) FANER et al. [94] unravelled differences in the molecular
pathogenesis of emphysema and bronchiolitis by performing correlation network analysis of lung
transcriptomics on COPD patients. They found that B-cell-related genes were significantly enriched in
emphysema (compared with COPD patients without emphysema), paving the way for differential
therapeutic research on inflammatory pathways of the adaptive immune response. 5) Two COPD studies
demonstrated the utility of unsupervised k-means clustering by identifying robust cluster associations with
clinical characteristics and known COPD genetic variants [95, 96]. 6) Very recently, ROSS et al. [97] introduced
a new Bayesian method for COPD subtyping. They applied it to the COPDGene cohort and identified
nine different patient subgroups with distinct disease progression trajectories. Of note, ROSS et al. [97] prove
that their sophisticated model has a better predictive capacity than multivariate ordinary least squares
regression analysis.
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Asthma
Several international consortia have already applied systems biology and network medicine approaches to
asthma research. 1) ADEPT (Airways Disease Endotyping for Personalised Therapeutics) and U-BIOPRED
(Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome Consortium) have, for instance,
applied a clustering algorithm to two independent asthma cohorts on a small set of easily measurable
clinical variables and successfully defined four longitudinally stable clusters of patients with distinct

TABLE 3 Analytical strategies for integrative multiomics analysis

Analytical tool Strategy Implementation features Advantages and
disadvantages

Pipelines

Unsupervised
Network-based
methods
(variables)

Identification of subgroups of
variables that span several

data types

Coexpression measures are
used to build a

coexpression network
across all data types, where
variables are nodes and

links represent
correlations; clustering
algorithms are latter

applied to achieve groups
of variables

Outperforms single data
type network analysis;

combines the network with
known pathways; large

multilayer network density
complicates biological

interpretation

PAthway Representation
and Analysis by DIrect
Reference on Graphical
Models (PARADIGM) [70];

Lemon-Tree [71]

Network-based
methods
(patients)

Classifies patients on the
basis of the similarity of their

omic data

Constructs networks of
samples for each available
data type and efficiently
fuses these into one

comprehensive network

Identifies homogeneous
individual clusters; goes

beyond dichotomous patient
classification by capturing

continuous phenotypes; does
not provide information on
which biological features

cluster individuals

Similarity network fusion
(SNF) [69]

Bayesian
methods

With the different layers of
omics builds a Bayesian

model of relations with the
aim to create classifiers when
related to clinical information

Computes probabilistic
relationships among

variables that can express
mutual dependencies

between them

Allows prior assumptions for
each data type distribution
and between data sets; good

at modelling nonlinear
relationships; high

computational cost; difficulty
of choosing prior

distributions

Multiple dataset
integration (MDI) [72];

patient-specific data fusion
(PSDF) [73]; Bayesian
consensus clustering

(BCC) [74]; COpy Number
and EXpression In Cancer

(CONEXIC) [75]
Matrix
factorisation
methods

Projects variations among
data sets onto

dimension-reduced space

Algorithms aim to unravel a
latent data matrix of

reduced dimensionality that
best explains observed

variables’ variations among
all data sets

Noise, dimension and
heterogeneity reduction;

requires heavy computation
time and large memory

Joint non-negative matrix
factorisation (NMF) [76];
iCluster+ [77]; joint Bayes

factor [78]

Supervised
Network-based
methods

Clinically meaningful groups
are chosen as input for

different network construction

Network construction relies
on clinical characteristics
of patients so as to allow
analysis of underlying

networks

Network models are tailored
for prognosis or diagnosis;
comparison of resulting

networks is not
straightforward

Analysis Tool for Heritable
and Environmental

Network Associations
(ATHENA) [79];

jActiveModules [80]
Machine
learning

Clinical covariates and omics
data are included in a

machine learning model for
prediction or classification

Machine learning methods
use various kernel-based

frameworks for data
transformation, integration

and classifier training

The model obtained is better
when large amounts of data
are used for training the
system; machine learning

kernel parameterisation can
be difficult

Semidefinite
programming/support

vector machine (SDP/SVM)
[81]; feature selection

multiple kernel learning
(FSMKL) [82]

Multistep
analysis

A step-by-step
semiautomated data
integration process

Works independently on the
different layers prior to
integrating them by
identifying variables

differentially expressed in
several layers

User has more control
flexibility over the workflow,
filtering and selection of
relevant biological/clinical
information; relatively lower

statistical or predictive
power

Integrative Bayesian
analysis of genomics data

(iBAG) [83]; multiple
concerted disruption

(MCD) [84]; Anduril [85]
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clinical and biomarker profiles (from blood, sputum and airway data) [98]. 2) KUO et al. [99] recently
reported three novel molecular phenotypes of asthma in the U-BIOPRED cohort by analysing sputum cell
transcriptomics in asthmatic and nonasthmatic subjects. They applied hierarchical clustering of
differentially expressed genes as well as gene set variation analysis, gene–protein coexpression and pathway
enrichment analysis. 3) SHARMA et al. [100] used network-based tools to analyse the predictive value of the
asthma interactome, and characterised high-impact pathways central to the disease heterogeneity and drug
response. 4) QIU et al. [101] used PANDA on participants of the Childhood Asthma Management
Program cohort to assess the differential connectivity between the gene regulatory network of good
responders to inhaled corticosteroids versus that of poor responders. The method allowed them to
integrate their dataset with public data interactions of genes, transcription factors and proteins, and
eventually implicate several network hubs and transcription factors (as well as regulatory rewiring) in the
heterogeneity of drug treatment effects. Specifically, the differential network topology of good responders
versus that of poor responders revealed enriched corticosteroid-induced pro-apoptosis pathways in the
former and anti-apoptosis pathways in the latter, as well as key regulatory transcription factors (hubs) that
drove differential downstream gene expression in the two groups.

Lung cancer
Lung cancer is the leading cause of cancer death in the world. Lung cancer is highly heterogeneous
genetically because of a high mutation rate, as well as extremely complex since it comprises a disparate
subset of diseases with distinct and possibly overlapping pathobiologies that share a common phenotypic
manifestation. Smoking is a core shared risk factor for COPD and lung cancer; up to 65–70% of lung
cancer patients suffer both lung cancer and COPD [102, 103]. So far, no single satisfactory circulating (i.e.
liquid biopsy) tumour marker has been properly validated, but recently a panel of six tumour markers
showed a very high specificity and sensitivity in patients referred to a tertiary hospital because of the
clinical suspicion of lung cancer [104, 105]. Given that inherited genetic variants play a significant role in
lung cancer development [106], but contribute little to risk estimates of classical predictive statistical
models [107–109], it is hoped that systems biology approaches will allow the comparison multilevel
high-throughput omics data between tumour and normal tissue, and facilitate the identification of early
diagnostic lung cancer biomarkers. WGCNA has already been used successfully in lung cancer research. 1)
TANG et al. [110] related the gene expression profile of lung squamous cell carcinoma with five
differentially expressed long noncoding RNAs that could help in prognosis evaluation. Their gene
signature was statistically associated with overall survival in important clinical subsets (stage I, epidermal
growth factor (EGFR) wild-type and EGFR mutant). 2) TIAN et al. [111] analysed coexpression networks
and protein–protein interactions of data available in public repositories (The Cancer Genome Atlas, KEGG
and Gene Ontology).

What’s next? Future challenges
For the successful development and implementation of systems biology and network medicine approaches
in respiratory medicine, several challenges need to be faced and eventually solved.

Technical challenges
In any clinical study, only a fraction of the biological variability is captured (and therefore analysed) due
to technical limitations (and cost) of the experimental tools available. The development of new
experimental tools (e.g. high-throughput next-generation sequencing, mass spectrometry-based flow
cytometry or real-time molecular imaging) will generate new information but, at the same time, massive
amounts of (big) data that will have to be adequately handled, analysed and interpreted [112–114]. In this
context, RIEKEBERG and POWERS [115] recently reviewed the methodological advancements and successful
applications of metabolomics, one the newest omic fields.

However, research would benefit not only from measuring “more” relevant variables, but also from
estimating with better precision those variables already determined in the context of a more complete
definition of reference and pathological ranges (that vary in time, across individuals and biological
codeterminants) [116]. Of the variability supposedly present in experimental data, these currently
unaccounted factors and batch effects should not be underrated since they can partly explain the general
difficulty to replicate scientific findings in the biomedical field, of which respiratory biomedicine is not
exempt.

Computational challenges
Computational methodologies and programming analytical tools are being constantly refined as they
translate advancements from complementary areas such as AI and information science. However,
challenges and difficulties remain. For instance, in differential expression (omics) analysis, one of the main
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difficulties is to accurately separate the biological signal from technical noise. As risk factors of complex
diseases are polygenic (individualised genes have little independent effects), batch effects and technical
heterogeneity are difficult to separate from protein, gene and epigenetic perturbations causing the disease.
Computational analysis partly palliates this difficulty by integrating enormous amounts of data into
models or network representations. However, there is not a single bioinformatic approach for the task and
each has its own best-use cases, advantages and drawbacks. Regrettably, this lack of standard biostatistical
and algorithmic procedures may create a lot of uncertainty as to the validity of the results and usually
cannot fully guarantee reproducibility [117]. It is thus extremely important that bioinformatic researchers
assess the sensitivity and optimal network thresholds of their implementations. Thus, replication and
experimental validation of results must remain a research priority.

Drug discovery challenges
Network (poly) pharmacology differs from conventional drug discovery strategies by providing a powerful
rationale for target identification that is based on the analysis of disease-specific biological networks. This
novel paradigm consists of administering simultaneously multiple small molecules to target several
biochemical network nodes in an attempt to “re-engineer” the network into its normal and healthy
dynamic structure [118]. It has the potential to overcome the two major obstacles hindering the field:
efficacy and toxicity. This new approach still requires considerable methodological developments.
Proof-of-concept was obtained by combining methods as diverse as network analysis, text mining,
molecular docking data and the STRING database [54] to integrate data from network pharmacology and
metabolomics [119].

Healthcare system, educational and economic challenges
The milestones required for systems medicine to become a reality go far beyond mere scientific and
technological progress. The structure of the healthcare system needs to substantially adapt to operate with
multidisciplinary teams [113] of traditional (physicians, epidemiologists, computational biologists, IT
specialists, statisticians) and new roles (genetic counsellor [45], behavioural coach, specialised educators),
which cannot function without specific omics data storage facilities, diagnosis centres, standard analytical
pipelines and managerial frameworks. Furthermore, systems biology and P4 medicine require specific
education (via higher education degrees, complementary formations for hospital personnel or genomics
training programmes [120]) since there is a growing gap between the amount of data generated by basic
scientists and the clinical expertise available to analyse, interpret and translate it into clinical practice.
Finally, because of the high cost of overcoming these challenges, there is a significant risk that individuals
in developing countries will not benefit from this health revolution [121], unless guided by the appropriate
political efforts from the international community and an informed public opinion [122–124]. Even within
the richest nations, equitable access to P4 medicine is not guaranteed, and low-income individuals may
not be able to afford the unsubsidised cost of omics data integration, diagnostic and clinical care [125, 126].

Conclusions
Human health and disease are emergent properties of a complex, multilevel and dynamic system: the human
body. Systems biology and network medicine are comprehensive research strategies that have the potential to
understand the emergent properties of the system holistically. By doing so, they are paving the way for a
radical shift in medical practice that is evolving from a reactive proposition to a predictive, preventive,
personalised and participatory (P4) approach. Respiratory medicine is in fact already contributing
significantly to this change by leading the field of data-driven management [98, 99] as well as by applying
multilevel network analysis to a variety of clinical conditions [127].
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