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Abstract: Following the view of several leading quantum-information theorists, this paper argues that
quantum phenomena, including those exhibiting quantum correlations (one of their most enigmatic
features), and quantum mechanics may be best understood in quantum-informational terms. It also
argues that this understanding is implicit already in the work of some among the founding figures
of quantum mechanics, in particular W. Heisenberg and N. Bohr, half a century before quantum
information theory emerged and confirmed, and gave a deeper meaning to, to their insights.
These insights, I further argue, still help this understanding, which is the main reason for considering
them here. My argument is grounded in a particular interpretation of quantum phenomena and
quantum mechanics, in part arising from these insights as well. This interpretation is based on the
concept of reality without realism, RWR (which places the reality considered beyond representation
or even conception) , introduced by this author previously, in turn, following Heisenberg and Bohr,
and in response to quantum information theory.

Keywords: causality; correlations; indeterminacy; quantum information; reality

1. Introduction

Quantum mechanics (QM) was born, with W. Heisenberg, as a principle rather than constructive
theory, in the sense of A. Einstein. According to Einstein: “constructive theories [aim at] build[ing]
up a picture of the more complex phenomena out of the materials of a relatively simple formal
scheme from which they start out” [1] (p. 228). “A relatively simple formal scheme” represents, in a
mathematically idealized way, a more, or even the most, fundamental underlying reality responsible
for these phenomena. Einstein’s example of a constructive theory in classical physics was the kinetic
theory of gases, which “seeks to reduce mechanical, thermal, and diffusional processes to movements
of molecules—i.e., to build them up out of the hypothesis of molecular motion”, described by the
laws of classical mechanics [1] (p. 228). The assumption that this motion obeys the laws of classical
mechanics was in effect abandoned by M. Planck’s black-body radiation theory, which inaugurated
quantum physics, although it was Einstein who was the first to realize the incompatibility between
Planck’s quantum hypothesis and this assumption, still made by Planck himself [2].

In contrast to constructive theories, principle theories, according to Einstein (thus revealing the
Kantian genealogy of his distinction [3]) “employ the analytic, not the synthetic, method. The elements
which form their basis and starting point are not hypothetically constructed but empirically discovered
ones, general characteristics of natural processes, principles that give rise to mathematically formulated
criteria which the separate processes or the theoretical representations of them have to satisfy” [1]
(p. 228, emphasis added). I would add the following qualification, which is likely to have been accepted
by Einstein: principles are not empirically discovered but are formulated on the basis of empirically
established evidence. Thermodynamics, Einstein’s example of a classical principle theory (parallel to
the kinetic theory of gases, as a constructive theory), is a principle theory because it “seeks by analytical
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means to deduce necessary conditions, which separate events have to satisfy, from the universally
experienced fact that perpetual motion is impossible” [1] (p. 228).

Einstein’s language of “theoretical representations” of the separate (natural) processes considered
by principle theories reflects his preference for realism in constructive and principle theories alike, and a
theory can also have both constructive and principle parts. While, however, Einstein’s definition of
constructive theories makes them realist, his definition of principle theories allows them to be nonrealist.
In particular, such theories may aims to satisfy the mathematically formulated criteria supplied by
founding principles without offering a theoretical representation of the ultimate constitution of the
reality considered by them, while using such a representation at other levels of this reality. I shall
call this way of thinking (applicable only in principle theories) “reality-without-realism,” RWR,
thinking. One can go further and place this constitution not only beyond representation, which I define
as “the weak RWR view”, but also beyond conception, which I define as “the strong RWR view”.
W. Heisenberg adopted the RWR thinking in creating QM, building on N. Bohr’s thinking in his 1913
atomic theory, arguably the first instance of such thinking in physics, even if used by Bohr in a more
limited way than by Heisenberg. While both held the weak RWR view at the time of creating these
theories, Bohr eventually (in late 1930s) adopted the strong RWR view in his interpretation of quantum
phenomena and QM, as I shall also do here.

I shall not be concerned with the question of derivation of QM from first principles. I have
considered this subject previously, from Heisenberg’s and Schrödinger’s discoveries of QM to
reconstruction projects in quantum information theory, such as those of L. Hardy and M. G. D’Ariano
and coworkers [4] (pp. 68–98, 238–248). Quantum information theory itself will, however, be my
concern because of affinities between it, at least, some forms of it, and RWR thinking. It has been
suggested by several quantum information theorists, beginning with J. A. Wheeler [5], that quantum
information theory captures some of the deeper aspects of QM and potentially quantum field
theory, QFT [6]. Both Hardy and D’Ariano, and others in this field hold this view [7–9]. This is a
complex claim because it depends on an interpretation of quantum phenomena and QM, and on
one’s view of what are their deeper aspects, and there is no easy consensus on either count.
While keeping these qualifications is mind, I would like, nevertheless, to support this view by bringing
together quantum-informational, QI, thinking with “reality-without-realism,” RWR, thinking and the
corresponding, RWR-type, interpretations (there can be more than one) of quantum phenomena and
QM. I shall trace this combination of QI and RWR thinking to the thinking of two founding figures of
quantum theory, already invoked here, Bohr, in his 1913 atomic theory and then in his interpretation
of QM, and Heisenberg, in his invention of QM. Their thinking had a profound influence on that of
quantum information theorists, in particular Bohr’s thinking on that of Wheeler [8] (p. 168) and [9].
Reciprocally, quantum information theory sheds a new light on Bohr’s and Heisenberg’s thinking.

This article is, however, not primarily a contribution to the history of quantum theory or quantum
information theory. Its primary concern is the physics and philosophy of QM and quantum information
theory, and the main reasons for considering this history here are physical and philosophical as well.
Every concept or theory, no matter how innovative, has a history and depends on it, a circumstance
more often used, even if without realizing it, than reflected on in physics or in the philosophy of
physics. By contrast, I would like to take advantage of this circumstance, by selecting two early cases of
this history and exploring these relationships with the aim of contributing to a deeper understanding
of QM and quantum information theory, cases that I believe to be especially significant, although there
are other such cases. Thus, E. Schrödinger’s and W. Pauli’s ideas have been expressly used in quantum
information theory [8,9].

The RWR thinking is in accord with that of several quantum-information theorists, although,
as might be expected, not all of them. Wheeler’s thinking was of the RWR type, as reflected in
his famous “it from bit” principle, stating that our understanding of the ultimate nature of reality
responsible for quantum phenomena (“it”) should be, and possibly could only be, derived from
the structure of quantum information [5]. I shall call this principle the quantum information,



Entropy 2020, 22, 747 3 of 30

QI, principle. While both classical information (from C. Shannon’s pioneering work on) and quantum
information are essentially probabilistic, and while this information qua information is classical in
both cases, the structure of quantum information is different. Wheeler’s “it from bit” or the QI
principle does not imply the RWR-type view, and either could be and has been allied with more realist
views, for example, with the many worlds interpretation of QM [10]. My aim here, however, is to
explore the combination of RWR and QI-thinking in considering quantum phenomena and QM.
Quantum phenomena may be interpreted apart from QM or any theory predicting them, and my
interpretation can apply to them separately as well. Given, however, that quantum probability or
statistics is my main concern, I will consider both jointly, because one needs a theory, such as QM,
to predict them. Alternative theories of quantum phenomena, such as Bohmian mechanics, will only
be mentioned in passing, as will be quantum field theory, QFT, which can, however, be interpreted on
RWR-lines. I shall also put aside the complexities involved in using such terms as “theory,” “model,”
or “mathematical model,” considered from the RWR perspective in [11]. Sometimes a theory refers to
both its mathematical formalism and an account of how this formalism is related to the phenomena
considered. For the present purposes, such a relation can be seen as part of the interpretation that
establishes it. I shall return to this difference in considering quantum correlations in Section 4.

The concept of reality without realism, RWR, introduced by this author previously [4,11–14],
allows for a range of interpretations. This concept only assumes the concept of reality, defined as
that which is assumed to exist, while placing the character of this existence beyond representation
or knowledge, the weak RWR view, or beyond conception, the strong RWR view (which would,
thus, distinguish two types of RWR interpretations). By contrast, realism is defined by assuming the
possibility of representing or at least forming a conception of the character of the reality considered by
a given scientific theory. Importantly, in these interpretations, the concept of reality without realism,
RWR, only applies to the ultimate constitution of physical reality at stake in QM. Building on Kant’s
epistemology [3], this reality will be idealized here in terms of quantum objects, as against quantum
phenomena, observed in measuring instruments, which allow for a representational and thus realist
treatment, in fact by means of classical physics. This treatment is still an idealization because it is a
product of thought, and, as Kant argued, it may not correspond to what actually obtains in nature [3].
Bohr spoke of this representation as “the idealization of observation” [15] (Volume 1, p. 55).

In all RWR-type interpretations, each quantum phenomenon is always discrete in relation to any
other, and not only observationally, which is true in most interpretations, but also without allowing
us to know or even conceive of how it comes about, in particular by means of a continuous and
classically causal process of the type found in classical physics or relativity. This feature manifests
the quantum discreteness, QD, principle. Quantum phenomena may, however, be related to each
other, by means of one or another quantum theory, in terms of probabilistic or statistical predictions
or correlations, defining the quantum probability or statistics, QP/QS, principle. I use this double
designation, first, because quantum correlations are statistical, and secondly, because one can adopt
either a probabilistic, such as Bayesian, or statistical interpretation of QM. No other predictions are
possible on experimental grounds, at least as things stand now, because the repetition of identically
prepared quantum experiments in general leads to different outcomes. Indeed, the concept of reality
without realism, grounding RWR-type interpretations, is an interpretive inference from these and other
experimentally established features of quantum phenomena, features outlined in detail below.

Consequently, most of my claims here concern interpretations of quantum phenomena and QM,
those of the RWR type amidst others, some of which are realist. While I do make claims concerning
quantum phenomena, observed in measuring instruments, and thus the workings of nature at that
level, I make no claims concerning how nature ultimately works. Such claims would, in any event,
be precluded by the RWR view, because it places the ultimate workings of nature beyond representation
or even conception, at least as things stand now. In short, I do make claims concerning how nature
works, but not how it ultimately works.
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2. A Brief History of RWR/QI Thinking in Quantum Theory

2.1. A (Very) Brief Prehistory: Realism in Modern Physics

Physical theories prior to quantum theory have been realist theories, usually representational
realist theories. Such theories aim to represent the reality they consider, usually by mathematized
physical models based on suitably idealizing this reality. As discussed below, one could also aim,
including in quantum theory, for a strictly mathematical representation of this reality, apart from any
physical concepts, as they are customarily understood, say, in classical physics or relativity. All modern,
post-Galilean, physical theories have been such mathematized idealizations, as is QM, in this case
an idealization that, in the RWR view, does not involve a representation or even conception of the
ultimate nature of the reality responsible for quantum phenomena. It is also possible to assume an
independent architecture of the reality considered, while admitting that it is either (A) not possible
to adequately represent this architecture by means of a physical theory or (B) even to form a specific
concept of this architecture, either at a given moment in history or even ever. Under (A), a theory that is
merely predictive could be accepted for lack of a realist alternative, but usually under the assumption
or with a hope that a future theory will do better by being a representational theory. Einstein adopted
this attitude toward QM or QFT, which he expected to be eventually replaced by a realist theory.
Even under (B), however, this architecture is usually conceived on the realist models of classical
physics, without assuming that the physics in question is classical. What, then, grounds realism most
fundamentally is the assumption that the ultimate constitution of reality possesses properties and
the structure of relationships between them, or, as in structural realism [16], just a structure, that it
may either allow to be ideally represented by a theory or is unknown or even unknowable, but still
conceivable, usually with a hope that it will be eventually so represented. As most standard terms
used here, such as causality or determinism, realism has a spectrum of possible definitions, which only
share some of their features. I shall further discuss the concept of realism below.

Thus, classical mechanics (used in dealing with individual objects and small systems, apart from
chaotic ones), classical statistical mechanics (used in dealing, statistically, with large classical systems),
or chaos theory (used in dealing with classical systems that exhibit a highly nonlinear behavior) are
realist as concerns the ultimate reality they consider. While classical statistical mechanics does not
represent the overall behavior of the systems it deals with because their mechanical complexity
prevents such a representation, it assumes that their individual constituents are represented by
classical mechanics. In chaos theory, which, too, deals with systems consisting of very large numbers
of atoms, one assumes a mathematical representation of their behavior (the so-called “quantum
chaos” is a quantum theory). The status of these theories as realist could be questioned, on Kantian
lines, even in classical mechanics, where our idealized representations are more in accord with our
phenomenal experience, which, however, as Kant argued, does not necessarily correspond to how
things, as things-in-themselves, are in nature [3]. Our phenomenal experience can only serve us
partially in relativity. This is because, while, in special relativity, we can give the relativistic behavior
of photons a concept and represent it mathematically, which makes relativity a realist and classically
causal, in fact, deterministic, theory, we have no means of visualizing this behavior, or the behavior
represented by Einstein’s velocity-addition formula for collinear motion s = v+u

1+vu/c2 . All these theories,
however, are grounded in the assumption that we can observe the phenomena considered without
disturbing the corresponding objects, which is no longer possible in quantum physics. As a result,
we can identify these phenomena with the corresponding objects for all practical purposes, within the
proper scope of these theories, at least as effective approximations. Thus, classical mechanics is only
an approximation and is ultimately incorrect even within its proper limits, for example, in considering
gravity. First, it cannot properly account for certain phenomena, such as, famously, the precession of
Mercury, which requires general relativity. Secondly, the mathematics of classical mechanics implies
features, sometimes known as singularities, that are generally assumed not to be found in nature.
For example, if one assumes Newton’s law of gravity for a system of four bodies, one of them can
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be accelerated to an infinite speed in a finite time. This consequence of Newton’s law for N bodies,
known as the Peinlevé conjecture, now proven even for only four bodies [17]. This problem does not
arise in general relativity, which has no singularities of this type. However, general relativity has its
own difficulties as a realist theory (some of which are related to other types of singularities), even apart
from the fact that it cannot account for quantum phenomena. One might also question to what
degree, if at all, the spacetimes of relativity, special or general, represent nature, even as idealizations,
as opposed to serving as mathematical tools for correct predictions, albeit, in this case, exact rather
than probabilistic (e.g., [18]). As discussed below, similar qualifications are required in dealing with
causality and determinism. Thus, if the mathematics of a theory fails because it leads to consequences
incompatible with nature, the theory could hardly be assumed to be causal or deterministic physically.
These qualifications, however, do not affect the present argument, and it is certainly true that realism,
coupled to classical causality (explained below), has been an ambition of these theories.

2.2. Heisenberg: From the Physics of Representation to the Physics of Information

The representation of individual quantum objects and behavior became partial in the so-called old
quantum theory, in particular, Bohr’s atomic theory, introduced in 1913 [19].The theory only provided
representations, in terms of orbits, of the stationary states of electrons in atoms (in which electrons
had constant energy levels), but not for the discrete transitions, “quantum jumps,” between these
states. This was an audacious step, because this concept was incompatible with classical mechanics
and electrodynamics alike [13]. It was, however, this concept that became central for Heisenberg,
who built on it by abandoning an orbital representation of stationary states as well. This led him to his
discovery of QM [20]. I shall only briefly comment on this paper itself, which I have considered in
detail elsewhere from the RWR and QI perspective [4] (pp. 68–83) , [21] and [22] (pp. 77–138). I shall
begin with Bohr’s 1925 assessment, made after Heisenberg’s theory was developed into a full-fledged
matrix mechanics by M. Born and P. Jordan [23] but before E. Schrödinger’s invention, based on very
different, realist principles, of his wave mechanics in 1926. Bohr said:

In contrast to ordinary mechanics, the new quantum mechanics does not deal with a
spacetime description of the motion of atomic particles. It operates with manifolds of
quantities [matrices] which replace the harmonic oscillating components of the motion and
symbolize the possibilities of transitions between stationary states . . . . These quantities
satisfy certain relations which take the place of the mechanical equations of motion and the
quantization rules. [15] (Volume 1, p. 48; emphasis added)

Following Heisenberg’s own thinking at the time, this assessment was thus based on the RWR
view and, implicitly, the corresponding interpretation of QM. By contrast, the first worked-out version
of Bohr’s interpretation, in his so-called Como lecture, attempted to restore, ambivalently, realism and
classical causality to QM, in particular by assuming that the independent behavior of quantum objects
could be represented, moreover, classically causally, by the mathematical formalism of QM [15]
(Volume 1, pp. 52–91). I shall explain the concept of classical causality below. Roughly, it means that
the state of a physical system is determined, by a law (such as the law of gravity in classical mechanics),
at all future moments of time once it is determined at a given moment of time. Bohr’s Como argument
reflected several intervening developments, such as, on the RWR side, Heisenberg’s discovery of
the uncertainty relations, and on the realist side, Schrödinger’s introduction of his wave mechanics.
Bohr’s ambivalence was suggested by several statements, such as that “radiation in free space as well
as isolated material particles are abstractions, their properties . . . being definable and observable
only through their interactions with other systems,” or those referring to“the symbolic character of
Schrödinger’s method,” in this respect no different from matrix theory [15] (Volume 1, pp. 57, 76).
In any event, this interpretation was quickly abandoned by Bohr, following his discussion with
Einstein in October of 1927, which returned him to his 1925 view and initiated his path toward his
ultimate, RWR-type, interpretation [22] (pp. 179–238) and [24] (pp. 31–70). I have considered different
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versions of Bohr’s interpretation in detail in [24]. Bohr next article, “The Quantum of Action and
the Description of Nature” [15] (iv), clearly manifested these changes. It is worth noting that there is
no single Copenhagen interpretation, as even Bohr changed his views a few times. It is more fitting
to speak, as Heisenberg did, of “the Copenhagen spirit of the quantum theory” [25] (pp. 92–101).
This spirit characterizes a spectrum of interpretations that share some of their features, but not all
of them.

Heisenberg’s thinking leading him to his discovery of QM was a decisive event in the history
of RWR and QI thinking, and in connecting them [4] (pp. 68–83) and [11,21]. His approach and then
Bohr’s interpretation of QM were grounded in the following principles (with Bohr’s principle of
complementarity added in 1927):

(1) The principle of quantum discreteness, the QD principle, according to which all observable
quantum phenomena are individual and discrete in relation to each other, which is different from
the discreteness of quantum objects;

(2) The principle of the probabilistic or statistical nature of quantum predictions, the QP/QS principle,
maintained, in contrast to classical physics, even in considering individual quantum objects,
and accompanied by the nonadditive character of quantum probability and rules, such as Born’s
rule, for predicting them; and

(3) The correspondence principle, which, as initially understood by Bohr, required that the
predictions of quantum theory must coincide with those of classical mechanics in the classical
limit, but given by Heisenberg a mathematical form, requiring that the equations and variables of
QM convert into those of classical mechanics in the classical limit.

To connect his formalism (defined over C) to the probabilities of outcomes of quantum
experiments, Heisenberg used a version of Born’s rule in the special case of the transitions between
stationary states of the electrons, although not, as Born did later, as universally applicable in QM (matrix
mechanics did not offer a treatment of the electrons’ behavior in stationary states, unlike Schrödinger’s
theory, based on the time-dependent Schrödinger’s equation). In Heisenberg’s theory, there were
no longer orbits but only states and discontinuous transitions between states. One was no longer
thinking in terms of predictions, even probabilistic ones, concerning a (continuously) moving object,
say, an electron, free or orbiting the nucleus of an atom. Instead, one was thinking, in terms of the
probabilities of transitions between the states of an object, transitions that are always discrete. This type
of thinking, again, emerged in Bohr’s 1913 theory in considering an electron’s transitions from one
energy level to another, but, following Heisenberg, came to define quantum physics in general as a
physics of predicting discrete transitions between states [13,26]. As he said: “What I really like in
this scheme is that one can really reduce all interactions between atoms and the external world ... to
transition probabilities” (W. Heisenberg, Letter to Kronig, 5 June 1925; cited in [27] (Volume 2, p. 242)).
By speaking of the “interactions between atoms and the external world”, this statement suggests that
QM was only predicting the effects of these interactions, observed in measuring instruments. This view
was adopted and developed by Bohr.

The mathematical correspondence principle motivated Heisenberg’s decision to retain the
equations of classical mechanics, while introducing different variables to enable correct predictions for
all energy levels of electrons. The correspondence with classical theory could be maintained because
new variables could be substituted for conventional classical variables in the classical limit, as the
in the case of large quantum numbers, when the electrons were far away from the nuclei and when
classical concepts, such as orbits, could apply (the electrons’ behavior itself is still quantum and can
have quantum effects). The old quantum theory was defined by the strategy of retaining, on realist
lines, the variables of classical mechanics while adjusting the equations to achieve better predictions.
Heisenberg’s reversal of this strategy was unexpected, as was, indeed more so, a radical change of the
role of these equations: they no longer represented the motion of electrons, but served as mathematical
means for probabilistic or statistical predictions concerning effects of the interaction between quantum



Entropy 2020, 22, 747 7 of 30

objects and measuring instruments. Heisenberg was initially concerned with spectra, so the objects
interacting with measuring instruments were photons emitted by electrons. Heisenberg’s new variables
were infinite unbounded matrices with complex elements. Their multiplication, which Heisenberg,
who was famously unaware of the existence of matrix algebra and reinvented it, had to define to
use them in his equations, is in general not commutative. Essentially, these variables were operators
in Hilbert spaces over C, which were infinite-dimensional, given that Heisenberg was dealing with
continuous variables. The Hilbert-space formalism of QM was rigorously established by J. von
Neumann shortly thereafter [28]. Such mathematical objects had never been used in physics previously.
In fact, while matrix algebra, in finite and infinite dimensions, was developed in mathematics by then,
unbounded infinite matrices were not previously studied. Most crucially, again, the concept was part
of the formalism enabling probabilistic or statistical predictions concerning quantum phenomena,
observed in measuring instruments, without providing a representation of the spacetime behavior of
quantum objects responsible for these phenomena.

In his 1925 paper, Heisenberg began his derivation of QM with an observation that reflected a
radical departure from the classical ideal of continuous mathematical representation of individual
physical processes. He said: “in quantum theory it has not been possible to associate the electron with
a point in space, considered as a function of time, by means of observable quantities. However, even in
quantum theory it is possible to ascribe to an electron the emission of radiation” [the effect of which is
observed in a measuring instrument] [20] (p. 263, emphasis added). A measurement could associate an
electron with a point in space (and QM can predict the probability for finding its position in given area),
but not by linking this association to a function of time (as a real variable) representing the continuous
motion of this electron, as in classical mechanics. Heisenberg then said [20] (p. 263): “In order to
characterize this radiation we first need the frequencies which appear as functions of two variables.
In quantum theory these functions are in the form:

v(n, n− α) = 1/h
{
(W(n)−W(n− α)

}
v(n, α) = αv(n) = α/h(dW/dn)

This difference leads to the difference between classical and quantum theories as regards the
combination relations for frequencies, which, in the quantum case, correspond to the Rydberg-Ritz
combination rules. However, “in order to complete the description of radiation [in conformity, by the
correspondence principle, with the classical Fourier representation of motion] it is necessary to have
not only frequencies but also the amplitudes” [20] (p. 263). On the one hand, then, the new equations
must formally contain amplitudes as well as frequencies. On the other hand, these amplitudes
could no longer serve their classical physical function (as part of a continuous representation of
motion) and are instead related to discrete transitions between stationary states. In Heisenberg’s
theory and in QM since then, these “amplitudes” are no longer amplitudes of physical motions,
which, in Bohr’s language, makes the term “amplitude” symbolic, because amplitudes are now linked
to the probabilities of transitions between stationary states as “probability amplitudes” [15] (Volume 1,
pp. 1, 17). The corresponding probabilities are derived by a form of Born’s rule for this limited
case (technically, one needs to use the probability density functions). The standard rule for adding
the probabilities of alternative outcomes is changed to adding the corresponding amplitudes and
deriving the final probability by squaring the modulus of the sum. Importantly, while (because it
essentially amounts to using the complex conjugation) Born’s rule is reasonably natural, it is added to
the formalism of QM, rather than is inherent in it. We do not know why Born’s rule works. But then,
we do not know why the whole scheme works either. It is a separate question to what degree QM can
be derived from the principles in question. Heisenberg used these principles in his discovery of QM,
but it may not be said that he strictly derived QM or, especially, his use of Born’s rule from them.

Now, while one could not say that Heisenberg’s approach was, technically, quantum-informational,
it could be viewed as quantum-informational in spirit, and conversely, quantum information



Entropy 2020, 22, 747 8 of 30

theory as Heisenbergian in spirit [4] (pp. 68–63) and [13,22]. The reason for this view is that the
quantum-mechanical situation, as Heisenberg conceived of it, was defined by:

(A) certain already obtained information, derived from spectral lines (due to the emission of radiation
by the electron), observed in measuring instruments; and

(B) certain possible future information, to be obtainable from spectral lines to be observed in
measuring instruments and, hopefully, predictable in probabilistic or statistical terms by the
mathematical formalism of a quantum theory.

Heisenberg’s aim was to develop such a formalism without assuming that it needed to represent
a spatiotemporal process connecting these two sets of information or how each comes about.
This information is, in each case, determined by what type of experiment we decide to perform,
rather than by arbitrarily selecting one or another pre-existing “elements of reality,” to use an expression
made famous by A. Einstein, B. Podolsky, and N. Rosen’s (EPR’s) paper [29]. Although this became
apparent later, the formalism anticipated this aspect of the situation from the outset in view of the
noncommutativity of the operators associated with the variables defining such alternative decisions,
such the position (Q) and momentum (P) operators, and the corresponding equation PQ−QP 6= 0,
through which QM connects to the uncertainty relations.

Heisenberg’s theory was, thus, dealing with quantum information, defined by a particular
structure of bits of classical information, obtainable in measuring instruments, described by classical
physics, but not predictable by classical physics. The theory was still concerned with quantum
objects or the reality thus idealized, even though this reality was not represented by the theory and
could be beyond representation or even conception. Heisenberg did not make definitive claims
in this regard, and, as explained below, eventually adopted the view that this reality could be
mathematically, although not physically, represented. But then, much of foundational thinking
in quantum information theory also aims to understand the ultimate nature of physical reality through
the nature of quantum information.

I would like to close my discussion of Heisenberg with an even stronger assessment.
As quantum-informational in spirit, Heisenberg’s thinking that led him to his discovery of QM
revolutionized the very practice of theoretical physics, and also redefined the practice of experimental
physics, when dealing with quantum phenomena. This is a broader claim concerning the nature and
practice of physics, rather than any particular interpretation of QM, including those of the RWR-type,
more in accord with this change as they may be. The practice of experimental physics no longer
consists, as in classical or relativistic experiments, in tracking the independent behavior of the systems
considered, but in unavoidably creating new configurations of experimental technology that reflect
the fact that what happens is unavoidably defined by what kinds of experiments we perform, by how
we affect quantum objects. I emphasize “unavoidably” because, while the behavior of classical or
relativistic objects may be affected by experimental technology, in general we can observe them without
appreciably affecting their behavior. This does not appear to be possible in quantum experiments.
The practice of theoretical physics no longer consists, as in classical physics or relativity, in offering an
idealized mathematical representation of quantum objects and behavior, but in inventing mathematical
machinery enabling us to predict, probabilistically or statistically, the outcomes of quantum events
and correlations between these events. This was Heisenberg’s revolution, with which, in Bohr’s words,
“a new epoch of mutual stimulation of mechanics and mathematics has commenced,” making quantum
mechanics the most fundamentally mathematical physical theory ever, because it provided no mechanics
for the behavior of quantum objects [15] (Volume 1, p. 51).

2.3. Bohr: “The Unavoidable Interaction between the Object and the Measuring Instrument”

Bohr realized an essentially informational (as one could see it now), rather than representational,
nature of QM immediately after its introduction, although, as I said, he briefly retreated from this view
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in his Como argument. It is instructive to consider Bohr’s use of the term information after he returns
to the RWR view. Thus, he says, in the “Introductory Survey” of his 1931 book, now volume 1 of [15]:

[W]hat gives to the quantum-theoretical description its peculiar characteristic is just this,
that in order to evade the quantum of action [h] we must use separate experimental
arrangements to obtain accurate measurements of different quantities, the simultaneous
knowledge of which would be required for a complete description based upon the classical
theories, and, further, that these experimental results cannot be supplemented by repeated
measurements. In fact, the indivisibility of the quantum of action demands that, when any
individual result of measurement is interpreted in terms of classical conceptions, a certain
amount of latitude be allowed in our account of the mutual action between the object and
the means of observation. This implies that a subsequent measurement to a certain degree
deprives the information given by a previous measurement of its significance for predicting
the future course of the phenomena. Obviously, these facts not only set a limit to the extent of
the information obtainable by measurements, but they also set a limit to the meaning we may
attribute to such information. [15] (Volume 1, pp. 17–18, emphasis added)

Bohr’s view of the role of classical concepts in quantum measurement is a subtle and often
misunderstood issue, on which I shall comment below. For the moment, in a radical departure from
classical physics and relativity, the data obtained in a given quantum measurement is made obsolete
by a subsequent measurement for the purposes of our predictions concerning experiments performed
after the second measurement. As Bohr said already in the Como lecture: “It must not be forgotten...
that in the classical theories any succeeding observation permits a prediction of future events with
ever increasing accuracy, because it improves our knowledge of the initial state of the system.
According to the quantum theory, just the impossibility of neglecting the interaction with the agency
of measurement means that every observation introduces a new uncontrollable element” [15] (Volume 1,
p. 68, emphasis added). Classically, one can continue to perform measurements of both the position and
the momentum of an object at any point along its continuous and classically causal trajectory. This is not
possible in quantum measurements, even if one assumes that such a trajectory and classical causality
are possible for a quantum object. Heisenberg made the same point in his uncertainty relations
paper and elsewhere [25] (p. 36) and [30] (pp. 66, 72–76). So did Schrödinger in his cat-paradox
paper [31] (pp. 152, 54, 57–158).

One might doubt that Bohr’s use of the word information here is more than common-sense and,
hence, that it should be seen as having anything to do with information theory, introduced two decades
later, or quantum information theory, introduced half a century later. As in considering Heisenberg’s
thinking earlier, however, I only ascribe to Bohr the spirit of quantum information theory. Bohr is
notoriously careful in his choice of words in his writings. In this case, the use of information was,
I would argue, motivated by Bohr’s view of the difference between classical and quantum theory
discussed in this passage. Because, in classical physics, the influence of measuring instruments could
be neglected, all available information can be considered as representing classical objects and their
continuous motions, which, by the same token, can be predicted ideally exactly. While one could
still speak of information, any information only reflects what is bound to happen regardless of which
experiment we decide to perform. It is only a matter of our access to what happens, even in classical
statistical physics or chaos theory, where this access is limited, making the recourse to probability
unavoidable. By contrast, in quantum physics, our experiments define what may or may not happen,
even if not what will necessarily happen. The corresponding data, now only as information found in
measuring instruments, can be obtained or predicted with one probability or another.

Thus, as discussed earlier in considering Heisenberg’s invention of QM, one deals with the
information processing between measuring devices, defined by discrete quantum experiments,
even in the case of elementary individual constitutive quantum events, where, too, unlike in classical
mechanics, only probabilistic or statistical estimates are possible. This information is determined by
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what type of experiment we decide to perform, and not, as in classical physics or relativity, by the
independent behavior of objects, where (barring outside interferences) all possible information is
determined in advance, even when the complexity of the systems makes the recourse probability or
statistics necessary. As M. G. D’Ariano, G. Chiribella, and P. Perinotti argue:

Information theory would not make sense without the notions of probability and [in the
case of quantum theory] mixed states, for the whole point about information is that there
are things that we do not know in advance. However, in the world of classical physics
of Newton and Laplace, every event is determined and there is no space for information
at the fundamental level. In principle, it does not make sense to toss a coin or to play a
game of chance, for the outcome is already determined and, with sufficient technology and
computational power, can always be predicted. [8] (p. 169)

By contrast, in quantum physics, all predictions, no matter how elementary the objects,
are irreducibly probabilistic or statistical, regardless of our technological and computational power,
as reflected in the uncertainty relations, which would apply even if we had perfect instruments.
Hence, as Bohr said, “these facts not only set limits to the extent of the information obtainable, but they
also set a limit to the meaning we may attribute to such information.” This information only concerns
the effects of the interaction between quantum objects, or the reality they idealize, as something beyond
conception, and measuring instruments, or the reality they idealized in terms of classical physics.
This information is physically classical, but its organization or structure cannot be predicted by classical
physics. It is made possible by quantum objects and measuring instruments capable of interacting
with them and giving rise to quantum phenomena by these interactions.

Bohr’s ultimate interpretation took another decade to develop. It was first sketched in Bohr’s 1937
article, “Complementarity and Causality”. It was grounded in the feature that defined the difference
between classical and quantum phenomena in all of Bohr’s interpretations: the irreducible role of
the interactions between quantum objects and measuring instruments in the constitution of quantum
phenomena. Bohr does not use the language of reality without realism, but his understanding of
quantum measurement clearly amounts to the RWR view:

The renunciation of the ideal of causality in atomic physics which has been forced on us is
founded logically only on our not being any longer in a position to speak of the autonomous
behavior of a physical object, due to the unavoidable interaction between the object and the
measuring instrument which in principle cannot be taken into account, if these instruments
according to their purpose shall allow the unambiguous use of the concepts necessary for the
description of experience. In the last resort an artificial word like “complementarity” which
does not belong to our daily concepts serves only briefly to remind us of the epistemological
situation here encountered. [32] (p. 87)

I shall discuss complementarity, which does more, below and shall only note here that it is
complementarity that enables this unambiguous use by making some of these concepts complementary:
mutually exclusive and yet equally necessary for a proper account of quantum phenomena.
The renunciation of “the ideal of causality" is “forced on us” by depriving us of “a position to speak
of the autonomous behavior of a physical object,” a position that defined both classical physics and
relativity, which, as consequence, also conform to “the ideal of causality.” What is this ideal? It is
clear from Bohr’s argument in this article and elsewhere that the concept of causality that grounds this
ideal is defined by the claim that the state, X, of a physical system is determined, in accordance with a
law, at all future moments of time once it is determined at a given moment of time, state A, and A is
determined in accordance with the same law by any of the system’s previous states. This assumption,
thus, implies a concept of reality, which defines this law, and makes this concept of causality ontological.
This concept of causality has a long history, beginning with the pre-Socratics, and it has governed
classical physics from its inception on. I designate this concept “classical causality.”
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There are several reasons for my choice of this denomination, which qualifies a more common
“causality”. The main one is that it is possible to introduce alternative, probabilistic, concepts of
causality, applicable in QM, including in RWR-type interpretations, and relate them to complementarity,
which Bohr saw as a “generalization of causality” [15] (Volume 2, pp. 41, 64–66). Several further
qualifications are in order, however. First, although this concept is in accord with the history of the
idea of causality, one might question calling this concept “causality”, because it need not imply that A
is a cause of X, in accord, say, with Kant’s definition of causality [3] (p. 305). The fact that the physical
state of a falling body at point t1 determines, by Newton’s law of gravity, the state of this body at
any other point t2 does not mean that t1 is the cause of t2. One might say that gravity, encoded in
Newton’s law, is the cause of this determination, although this claim involves further complexities.
These qualifications in part explain the history of questioning the idea of causality in fundamental
physics, while allowing for the view of classical physics or relativity termed here classically causal,
beginning with B. Russell’s 1913 essay [33]. See [34] for a reconsideration of Russell’s argument from
a contemporary perspective, allied with structural realism [16]. While keeping these qualifications
in mind, I shall, nevertheless, retain the designation classical causality for this concept, although
some, beginning indeed with P. S. Laplace, have used “determinism” instead or its avatars such
as “deterministic causality” or “causal determinism” [35]. I prefer to define “determinism” as an
epistemological category referring to the possibility of predicting the outcomes of classically causal
processes ideally exactly. In classical mechanics, when dealing with individual objects or small systems
(apart from chaotic ones), both notions in effect coincide. On the other hand, classical statistical
mechanics or chaos theory are classically causal but not deterministic in view of the complexity of the
systems considered, which limit us to probabilistic or statistical predictions concerning their behavior.

I indicated earlier, the meanings of these terms fluctuate in physical and philosophical literature,
without, I would contend, a uniform consensus concerning them. Chaos theorists tend to prefer
“determinism” for “classical causality,” as defined here, and “predictability” for “determinism,”
as defined here. I prefer “classical causality,” given the history of use of causality in quantum theory.
Furthermore, while “predictability” implies here the possibility of ideally exact predictions, the term
may also be used, especially in the present context, for probabilistic predictions, because in some
interpretations, individual events cannot be predicted even probabilistically. Although both special and
general relativity are classically causal theories, the term “causality” is often used there to designate
that, as required by the postulate that the speed of light in a vacuum, c , is constant and independent
of the speed of the motion of the source, a cause is restricted to those occurring in the backward (past)
light cone of the event that is seen as an effect of this cause, while no event can be a cause of any
event outside the forward (future) light cone of that event. In other words, no physical causes can
propagate faster than c. One might also argue, as C. Hoefer does [35], that classical mechanics, even
in considering small systems, and relativity are not strictly causal in view of singularities, indicated
above. In fact, however, Hoefer shows that it is not so much that classical causality or, in Hoefer’s
terms, “causal determinism” fails there but that the theories themselves fail, in which case they cannot
of course be expected to make correct predictions. In particular, classical mechanics is, again, only
an approximation, albeit a very good one, even within its proper scope. General relativity has its
own difficulties, for example, because, as K. Gödel demonstrated, its equations allow for solutions
that entail a retroaction in time and thus a backward-in-time causality, not an easy notion to justify,
although it is entertained by some [36]. See [4] (pp. 201–203), for a critical assessment of this view.

I would also question or at least qualify Hoefer’s (and others’) claim concerning the possibility of
“causal determinism” in QM. Thus, Schrödinger’s equation is sometimes seen as “deterministic” or
“causal,” under the interpretative assumption, to which Hoefer appears to subscribe, that it describes,
in a classically causal fashion, the independent behavior of quantum objects, with the recourse to
probability only arising because of the interference of measurements into this behavior. In RWR-type
interpretations, Schrödinger’s equation only determines the corresponding wave-function at any
future point, once it is determined at a given point, mathematically. Physically, it only “determines,”
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predicts, in Schrödinger’s own apt terms, probabilistic “expectation-catalogs” concerning possible
future experiments [31] (p. 154) observed in measuring instruments, without representing either the
independent behavior of quantum objects or the outcomes of these experiments, which are represented
by classical physics.

In quantum physics, deterministic predictions are not possible even in considering the most
elementary quantum phenomena, such as those associated with elementary particles. This is because,
as noted, the repetition of identically prepared experiments in general leads to different outcomes,
and unlike in classical physics, this difference cannot be diminished beyond the limit defined by
Planck’s constant, h, by improving the capacity of our instruments. This impossibility is manifested in
the uncertainty relations, which, as noted above, would remain valid even if we had perfect instruments
and which pertain to quantum phenomena, rather than to any theory. Hence, the probabilistic or
statistical character of quantum predictions must also be maintained by interpretations of QM or
alternative theories of quantum phenomena that are classically causal. Such interpretations and
theories are also, and in the first place, realist because classical causality implies a law governing it and
thus a representation of the behavior of quantum objects in terms of this law.

By contrast, as Bohr says above, RWR-type interpretations are not classically causal because of the
absence of realism in considering the behavior of quantum objects or the reality thus idealized.
Given, however, that it is possible to argue for interpretations of QM or alternative theories of
quantum phenomena that are realist and classically causal, Bohr’s claim should be seen as representing
an RWR-type interpretation, based on the strong RWR type, adopted by Bohr from this point on.
This interpretation fulfilled his imperative in his 1935 reply to EPR, still alongside an appeal to “a final
renunciation of the classical ideal of causality,” that quantum phenomena required “a radical revision
of our attitude toward the problem of physical reality” [37] (p. 697). Bohr’s strongest expression of his
ultimate view was found in responding to Einstein’s criticism of QM: “In quantum mechanics, we are
not dealing with an arbitrary renunciation of a more detailed analysis of atomic phenomena, but with
a recognition that such an analysis is in principle excluded” [15] (Volume 2, p. 62).

Around the same time (1937–1938), Bohr also introduced his concept of “phenomenon,” defined in
terms of effects manifested in the observable parts of measuring instruments, effects from which the
RWR nature of the ultimate reality responsible is inferred, without assuming classical causality and
thus classical causes of these effects. As he said:

I advocated the application of the word phenomenon exclusively to refer to the observations
obtained under specified circumstances, including an account of the whole experimental
arrangement. In such terminology, the observational problem is free of any special
intricacy since, in actual experiments, all observations are expressed by unambiguous
statements referring, for instance, to the registration of the point at which an electron
arrives at a photographic plate. Moreover, speaking in such a way is just suited to
emphasize that the appropriate physical interpretation of the symbolic quantum-mechanical
formalism amounts only to predictions, of determinate or statistical character, pertaining
to individual phenomena appearing under conditions defined by classical physical
concepts [15] (Volume 2, p. 64).

A phenomenon is thus always defined by what has already been observed, as a result of the
interaction between the quantum object considered and the measuring instrument, prepared in
accordance with this specification, and not as anything that is predicted, even if, as in EPR-type
experiments with probability one [38]. As Wheeler stated: “No ... phenomenon [in Bohr’s sense] is
a phenomenon until it is a registered phenomenon” [39] (p. 192). This is a crucial point, including,
as discussed in Section 4, in considering quantum correlations. The concept sharpens the point that
quantum discreteness is that of quantum phenomena, rather than the Democritean atomic discreteness
of quantum objects [15] (Volume 2, pp. 32–33). Around 1937–1938, Bohr also introduced a concept
of “atomicity,” pertaining to quantum phenomena rather than quantum objects [29]. This concept
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is, however, essentially equivalent to Bohr’s concept of phenomenon and only highlights some of its
aspects. In Bohr’s ultimate interpretation, as an RWR-type interpretation, one cannot represent or
even conceive of the ultimate constitution of the reality considered, and hence assume it to be either as
continuous or as discrete.

Referring, phenomenologically, to observations explains Bohr’s choice of the term “phenomenon”.
This “idealization of observation” [15] (Volume 1, p. 55) is the same as that of classical physics,
which allows one to identify phenomena with the corresponding physical objects (here measuring
instruments), because our observation does not disturb them, in contrast to the way one disturbs
quantum objects or the reality they idealize by interacting with them. This reality is, again, no longer
available to a representation or even conception, at least as things stand now. Accordingly, no physical
quantities are assumed to correspond to properties of quantum objects, even single properties
considered independently, rather than only certain joint properties, not attributable simultaneously by
virtue of the uncertainty relations. Even when we do not want to know the momentum of the object and
thus need not worry about the uncertainty relations, the position of this object itself is still not assumed
to be the property of the object. It is only the position of, say, a spot of a screen, classically observed in
the instrument. The uncertainty relations remain valid, of course, as do other standard laws, such as
conservation laws. However, they apply to the corresponding (classical) variables of measuring
instruments impacted by quantum objects. We can either prepare our instruments to be able to
measure a change of momentum of certain parts of them or to locate the spot that registers an impact
of a quantum object, but never both.

The uncertainty relations reflect the mutually exclusive nature of these arrangements, in accord
with Bohr’s concept of complementarity, his most famous concept, introduced in the Como lecture,
but refined subsequently to conform to the RWR view. The concept, in its ultimate form, is defined by:

(A) a mutual exclusivity of certain phenomena, entities, or conceptions; and yet
(B) the possibility of considering each one of them separately at any given point; and
(C) the necessity of considering all of them as possible at different moments for a comprehensive

account of the totality of phenomena that one must consider in quantum physics.

The concept was never given by Bohr a single definition of this type. However, this definition
may be surmised from several of Bohr’s statements, such as: “Evidence obtained under different
experimental conditions cannot be comprehended within a single picture, but must be regarded
as complementary in the sense that only the totality of the phenomena [some of which are mutually
exclusive] exhaust the possible information about the objects” [15] (Volume 2, p. 40; emphasis added).
In classical mechanics, we can comprehend all the information about each object within a single
picture because the interference of measurement can be neglected: this allows us to identify the
phenomenon considered with the object and to establish the quantities defining this information,
such as the position and the momentum of each object, in the same experiment. In quantum physics,
this interference cannot be neglected, which leads to different experimental conditions for each
measurement on a quantum object and their complementarity, in correspondence with the uncertainty
relations. This implies two incompatible pictures of what is observed, as phenomena, in measuring
instruments. Hence, the possible information about a quantum object, the information to be found in
measuring instruments, could only be exhausted by the mutually incompatible evidence obtainable
under different experimental conditions.

On the other hand, once made, either measurement, say, that of the position, will provide the
complete actual information about the system’s state, as complete as possible, at this moment in time.
One could never obtain the complementary information (that concerning its momentum) about this
object at this moment in time, because in order to do so one would need simultaneously to perform
a complementary experiment on it, which is never possible. In fact, as explained, if one performs
the first, position, measurement again with the same preparation, the outcome will be different.
Thus, when one speaks, as Bohr does, of any possible information about the object, this information is
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always probabilistic or statistical in character. Indeed, by that time (1949), Bohr might well have been
thinking of connections between QM and information theory.

It follows that one cannot assume that two complementary measurements represent parts of
the same whole, the same single reality. Each establishes, by a decision, the only reality there
is, and the alternative decision would establish a different reality, at both levels of idealization,
quantum phenomena and quantum objects, even though in the latter case this reality is each time
unknowable and even unthinkable. It may still be assumed to be each time different because
each of its effects, observed as a phenomenon, is different. Rather than arbitrarily selecting one
or another element of a preexisting physical reality, as is possible in classical physics, our decisions
concerning which experiment to perform establish the single reality which defines what type of
quantity (although not its value) can be observed or predicted and precludes the complementary
alternative. Accordingly, parts (B) and (C) of the above definition are as important as part (A),
and disregarding them could lead to a misunderstanding of Bohr’s concept.

It might be noted that wave-particle complementarity, with which the concept of complementarity
is often associated, had not played a significant role in Bohr’s thinking. Bohr’s solution to the dilemma
of whether quantum objects are particles or waves was that they were neither. Instead, either “picture”
refers to one of the two sets of discrete individual effects of the interactions between quantum
objects and measuring instruments, particle-like, which may be individual or collective, or wave-like,
which are always collective, but composed of discrete individual effects. The example of the latter are
“interference” effects, composed of the large number of discrete traces of the collisions between the
quantum objects and the screen in the double-slit experiment in the corresponding setup (when both
slits are open and there are no means to know through which slit each object has passed). These two
sets of effects may be seen as complementary.

The concept of complementarity is better exemplified by complementarities of spacetime
coordination and the application of momentum or energy conservation laws, correlative to the
uncertainty relations. Technically, the uncertainty relations, ∆q∆p ≈ h, only prohibit the simultaneous
exact measurement of both variables, always possible, at least in principle, in classical physics. In Bohr’s
interpretation, however, one not only cannot measure both variables simultaneously but also cannot
define them simultaneously. According to Bohr:

In the phenomena concerned we are not dealing with an incomplete description characterized
by the arbitrary picking out of different elements of physical reality at the cost of [sacrificing]
other such elements, but with a rational discrimination between essentially different
experimental arrangements and procedures which are suited either for an unambiguous use
of the idea of space location, or for a legitimate application of the conservation theorem of
momentum [37] (p. 699).

By the same token, the uncertainty relations are not due to the limited accuracy of measuring
instruments, and, as noted, they would be valid even if we had perfect instruments. As Bohr
said: “we are of course not concerned with a restriction as to the accuracy of measurement,
but with a limitation of the well-defined application of space-time concepts and dynamical
conservation laws, entailed by the necessary distinction between measuring instruments and atomic
objects” [15] (Volume 3, p. 5).

Complementarity, thus, reflects of the fact that, in a radical departure from classical physics or
relativity, the behavior of quantum objects of the same type, say, electrons, is not governed by the
same physical law in all contexts contexts, specifically in complementary contexts. Speaking of a
“physical law” here requires caution, because, in RWR-type interpretations, there is no physical law
representing this behavior. One might speak, with Wheeler, of “law without law” [39] in parallel with,
and as an effect of, “reality without realism.” This leads to incompatible observable physical effects in
complementary contexts. On the other hand, QM makes correct probabilistic or statistical predictions
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(no other predictions are, again, possible) in all contexts. This situation is also responsible for what is
known as “contextuality,” which I considered from the RWR perspective in [38].

3. Reality, Indeterminacy, and Probability in QM

This section offers a theoretical outline of the RWR-QI view of quantum phenomena and QM,
in part prepared by the preceding, more historical, discussion. I begin with the concept of quantum
phenomena, assuming Bohr’s concept of phenomena, explained above. Quantum phenomena were
(to add a bit more history) initially defined by the fact that in in considering them, h, must be
taken into account. This allowed one to use classical physics in representing quantum phenomena,
although classical physics could not predict them. This incapacity led to the assumption that there
must exist entities in nature the behavior of which could not be represented by classical physics,
for otherwise classical physics would be able to predict them. These entities are now understood or
idealized as quantum objects. In the RWR view, h is only be associated with quantum phenomena,
because the ultimate nature of reality, idealized as quantum objects, is beyond representation or
conception, which precludes associating any numerical constant with it.

While, however, measuring any quantum phenomenon known thus far involves h, its role of may
not be sufficient to fully distinguish quantum phenomena, and their specificity as quantum appears
to be defined by a broader set of features, some of which are not expressly linked to h. Some of these
features are also exhibited by classical phenomena or found in theories or “toy” models different from
those of QM [40,41], models discussed in [11]. This article, for example, considers the following features
of quantum phenomena and QM, all, it appears necessary to define them vs. classical phenomena—(1)
the role of h, (2) the irreducible role of measuring instruments in defining quantum phenomena,
(3) discreteness, (4) complementarity, (5) entanglement, (6) quantum nonlocality, and (7) the irreducibly
probabilistic or statistical nature of quantum predictions, which pertains to our quantum theories
rather than quantum phenomena. It might be desirable to have a fewer such features and derive the
rest from them, perhaps only one such feature. I am not saying that it is in principle impossible to do so,
as has been suggested in the case of QM, although not quantum phenomena, by recent (reconstruction)
projects of deriving QM for discrete variables. Notably, such derivations do not share the same single
feature distinguishing quantum and classical theories. Two such cases are “the continuity axiom”
of Hardy’s derivation [7] and “the purification postulate” of that of D’Ariano et al. [8]. In the RWR
context, it is tempting to argue, following Bohr, that, if there is any single feature distinguishing
classical and quantum physics, it is the irreducible role of measuring instruments in defining quantum
phenomena, which makes it impossible to represent or even conceive of quantum objects and their
independent behavior of quantum objects. One might, however, prefer to err on the side of caution and
consider all features listed above in their interactions, which may still not be exhaustive in defining
quantum phenomena.

The concept of reality without realism, RWR, is grounded in more general concepts of reality and
existence, assumed here to be primitive concepts and not given analytical definitions. These concepts
are, however, in accord with most, even if not all (which would be impossible), available concepts
of reality and existence in realism and nonrealism alike. By “reality” I refer to that which is
assumed to exist, without making any claims (defining realism) concerning the character of this
existence. The absence of such claims allows one, as in the RWR view, to place this character beyond
representation or even conception. I understand existence as a capacity to have effects on the world
with which we interact; indeed, the very assumption that something is real, whether representable
or conceivable, or not, is made on the basis of such effects. Following L. Wittgenstein, I understand
“the world” as “everything that is the case” [42] (p. 1). While in physics the primary reality considered
is that of matter, a reality, including reality without realism, can be mental, as in mathematics [43].

To ascertain observable effects of physical reality entails a representation of them but not of
how they come about. This implies that a given theory or interpretation might assume different
forms of idealizations of reality, some allowing for a representation or conception and others not.
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Thus, following Bohr, the present, RWR-type, interpretation assumes two forms of idealization.
The behavior of the macroworld and specifically of the observable parts of measuring instruments,
defining quantum phenomena, is idealized as representable. By contrast, the RWR-type reality
responsible for these phenomena is idealized (in terms of quantum objects and their behavior) as
that which cannot be represented or even conceived of. There are macroscopic quantum objects,
although their quantum nature is defined by their microscopic constitution. They can, however, only
be established as quantum by means of observations made in measuring instruments. The RWR view,
even the strong RWR view, which places the ultimate nature of reality beyond thought, is still a product
of thought and as such is an idealization. But then, so is any other view of reality. While this need not
mean that no material reality exists independently of us, as G. Berkeley argued, the assumption of this
existence is still a (nonfalsifiable) assumption that can only be practically justified.

Bohr’s position, in his ultimate interpretation, represents the strong RWR view, even if not the
strongest possible one. For, if, as Bohr says in the elaboration cited above, we are “not being any
longer in a position to speak of the autonomous behavior of a physical object, due to the unavoidable
interaction between the object and the measuring instrument” [32] (p. 87), this behavior, or the reality
so idealized, must also be beyond conception. For, if we had such a conception, we would be able to
says something about it. It is true that there is a difference between some conception of this reality
and a rigorous conception that would enable us to provide a proper representation of it by means
of a theory. Bohr, however, says that we are no longer in a position to speak of the autonomous
behavior of quantum objects or the reality thus idealized at all. Thus, we cannot have a conception of
this reality either, because it would allow us to say something about it. The question then becomes
whether our inability to do so only (A) characterizes the quantum-mechanical situation as things stand
now, or (B) reflects the possibility that this reality is beyond the reach of our thought altogether, ever.
While Bohr at least assumes (A) and while it is possible that he entertained (B), he never stated so,
which leaves whether he assumed (B) to an interpretation. Logically, once (A) is the case, then (B)
is possible too. There does not appear to be any experimental data compelling one to prefer either.
Both views are equivalent as far as physics is concerned. They are, however, different philosophically
in defining how far our mind can reach in investigating the ultimate constitution of nature. While I
am inclined toward (B), for the purposes of this article (A) would suffice. One of the reasons for
entertaining (B) is that our neurological machinery and, with it, our thinking (including mathematics)
and language have evolutionarily developed in interacting with objects consisting of billions of atoms.
Accordingly, there is no special reason to assume that we should be able describe how nature ultimately
works at its smallest scales, or at its largest scales. This type of point was made by both Bohr and
Heisenberg, although, as discussed below, Heisenberg’s believed more than Bohr did in the power of
mathematics to go beyond other conceptual means in representing the ultimate constitution of nature.

The qualification “as things stand now” applies, however, to (B) as well, even though it might
appear otherwise, given that this view precludes any conception of the ultimate reality not only now
but also ever. It applies because a return to realism is possible. This return may take place either
because quantum theory, as currently constituted, is replaced by an alternative theory that requires
a realist interpretation, or because (B), or (A), becomes obsolete even for those who hold it and is
replaced by a realist view of QM or QFT in its present form. It is possible, however, that the RWR view,
weak or strong, will remain viable. It is also conceivable that a theory would emerge, perhaps the one
bringing gravity and other forces of nature into a harmony, even if not unifying them, that will be
neither realist nor the RWR, difficult as it may be to imagine such a theory now.

In the RWR view, the character of quantum objects and behavior as an idealization, very different
from that of classical physics, is defined by the following circumstance. While what is observed in a
measuring instrument, as quantum a phenomenon, is always uniquely (classically) defined, what can
be considered as the object under investigation and what is considered as the measuring instrument,
beyond its observable stratum, are not uniquely defined. The difference between them is, nevertheless,
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irreducible, as against classical physics, where it can be disregarded, because the interference of
observation can be neglected. According to Bohr:

This necessity of discriminating in each experimental arrangement between those parts of the
physical system considered which are to be treated as measuring instruments and those which
constitute the objects under investigation may indeed be said to form a principal distinction
between classical and quantum-mechanical description of physical phenomena. It is true
that the place within each measuring procedure where this discrimination is made is in both
cases largely a matter of convenience. While, however, in classical physics the distinction
between object and measuring agencies does not entail any difference in the character of the
description of the phenomena concerned, its fundamental importance in quantum theory . . .
has its root in the indispensable use of classical concepts in the interpretation of all proper
measurements, even though the classical theories do not suffice in accounting for the new
types of regularities with which we are concerned in atomic physics. In accordance with
this situation there can be no question of any unambiguous interpretation of the symbols
of quantum mechanics other than that embodied in the well-known rules which allow to
predict the results to be obtained by a given experimental arrangement described in a totally
classical way [37] (p. 701).

Before I discuss the significance of this elaboration for understanding the nature of the idealization
defining quantum objects in RWR-type interpretations, I would like to address two common
misunderstandings to which this and related statements by Bohr have led. First, Bohr’s statement
may suggest that, while observable parts of measuring instruments are described by classical physics,
the independent behavior of quantum objects is described or represented by the quantum-mechanical
formalism. While, however, this view has been adopted by some, such as P. Dirac [44] and von
Neumann [28], it was not Bohr’s view, at least after he revised his Como argument. Bohr does not say
that the independent behavior of quantum objects is described by the quantum-mechanical formalism,
the “symbols” of which are assumed here, as elsewhere in Bohr, to have only a probabilistically or
statistically predictive role. He only says that quantum objects cannot be treated classically.

Secondly, Bohr’s view of the indispensability of classical physical concepts is often misunderstood
as well, in part by disregarding the quantum aspects of measurement. Bohr does insist on
“the indispensable use of classical concepts in the interpretation of all proper measurements,
even though the classical theories do not suffice in accounting for the new types of regularities
with which we are concerned in atomic physics” [37] (p. 701). The instruments, however, also have
quantum strata, through which they interact with quantum objects. This interaction is quantum and
thus cannot be observed. It is “irreversibly amplified” to the macroscopic classical level, such as a spot
left on a silver screen [15] (Volume 2, p. 73). The nature of this “amplification” is part of the problem of
the transition from the quantum to the classical, which and related subjects, such as “decoherence,”
are beyond my scope here. Bohr does not expressly refer to the quantum stratum of the apparatus,
but the presence of this stratum is implied by what he says about the interaction between the object
and the instrument. How could an instrument interact with a quantum object otherwise?

This situation considered in Bohr’s passage is sometimes seen in terms of the arbitrariness
of the “cut” or, because the term cut [Schnitt] was favored by Heisenberg and von Neumann,
the “Heisenberg-von-Neumann cut.” As Bohr noted, however, while “it is true that the place within
each measuring procedure where this discrimination [between the object and the instrument] is made is
. . . largely a matter of convenience,” it is true only largely, but not completely. This is because “in each
experimental arrangement and measuring procedure we have only a free choice of this place within a
region where the quantum-mechanical description of the process concerned is effectively equivalent
with the classical description” [37] (p. 701). In other words, the ultimate constitution of the reality
responsible for quantum phenomena observed in measuring instruments is always on the other side
of the cut. So are those quantum strata of the measuring instruments through which the latter interact
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with this reality. It is the reality that is always on the other side of the cut that quantum objects and
their behavior idealize. What is a quantum object can be different in each case, including something
that, if considered by itself, would be classical, as Carbon 60 fullerene molecules, which were observed
as both classical and quantum objects [45]. However, a quantum object is always on the other side
of the cut, and what is responsible for its quantum behavior is defined by the microscopic RWR-type
reality that is never on the measurement side of the cut. The concept of “quantum object” could of
course be defined otherwise, including on more realist lines, as in [46].

The features of quantum phenomena that are manifested in many famous experiments and that
led to RWR-views defy our basic assumptions concerning the workings of nature and thought alike.
These assumptions, arising, again, due to the neurological constitution of our brain, have served us
for as long as human life, and within certain limits, are unavoidable, including in physics, although,
while fully respected by classical physics, their scope, as noted, was already challenged by relativity.
QM have made this challenge much greater. Thus, it is humanly natural and even unavoidable to
assume that something happens between observations. However, in the RWR view, the expression
“something happened” is ultimately inapplicable to the independent behavior of quantum objects,
or the reality they idealize. According to Heisenberg:

There is no description of what happens to the system between the initial observation and the
next measurement. . . . The demand to “describe what happens” in the quantum-theoretical
process between two successive observations is a contradiction in adjecto, since the
word “describe” refers to the use of classical concepts, while these concepts cannot be
applied in the space between the observations; they can only be applied at the points of
observation [47] (pp. 57,145).

The same would apply to the word “happen” or “system,” or any word we use, whatever concept
it may designate, including reality, although when “reality” refers to that of the RWR-type, it is a word
without a concept attached to it. As Heisenberg says: “But the problems of language are really serious.
We wish to speak in some way about the structure of the atoms and not only about ‘facts’—the latter
being, for instance, the black spots on a photographic plate or the water droplets in a cloud chamber.
However, we cannot speak about the atoms in ordinary language” [47] (pp. 178–179). Nor is it possible
in terms of ordinary concepts, from which ordinary language is indissociable, or, in the RWR view,
even in terms of physical concepts.

This situation reflects what may be called “the quantum indefinitiveness postulate,” which is
a consequence the strong RWR view. It dictates the impossibility of making definitive statements
of any kind, including mathematical ones, concerning the relationship between any two individual
quantum phenomena or events, indeed to definitively ascertain the existence of any such relationship.
It does allow for making definitive statements concerning an individual phenomena or events,
statements related to measurements, which define them. It also allows statements concerning the
relationships between multiple events, in this case statements statistical in nature, such as those which
correspond to correlations between distant events in the case of quantum entanglement. It is crucial
that the postulate only concerns event that have already happened, rather than possible future events,
in which case one can make probabilistic statements on Bayesian lines.

Precluding the possibility of any mathematical connections between individual events, makes the
postulate stronger than Heisenberg’s claim, which still allows for the mathematical representation
of what happens between experiments. As Heisenberg said on an earlier occasion, mathematics is
“fortunately” free from the limitations of ordinary language and concepts [25] (p. 11). At the time,
Heisenberg, adopting the RWR view, used this freedom construct QM as a theory only designed to
predict the probabilities or statistics of events observed in measuring instruments. It is equally fortunate
that nature allows us to do so! By contrast, in his later writings, in part in view of QFT, he assumed
the possibility of a mathematical representation of the ultimate constitution of reality, while excluding
physical concepts (at least in their customary sense found in classical physics or relativity) as applicable
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to this constitution [47] (pp. 145, 167–186). Heisenberg speaks of this representation in terms of
symmetry groups and defines elementary particles accordingly, without considering them as particles
in any physical sense. The concept of elementary particle can be given a mathematical sense insofar as
the corresponding representation of the group is irreducible [48].

I am now ready to consider indeterminacy and probability in QM. My comments cannot do
justice to the subject, extensively discussed in literature (e.g., [49,50]). They are only aimed to address
a few points relevant to my argument. I recall first that the RWR view makes the absence of classical
causality automatic, because assuming this nature to be classically causal would imply at least a partial
conception or even representation of this reality as concerns the law that governs it. This, as explained
earlier, does not mean that interpretations of QM or alternative theories of quantum phenomena
that are realist and classically causal are impossible. However, they can only concern what underlies
quantum phenomena, because one cannot track individual quantum objects, in the way one can
individual classical objects, by separating the behavior of quantum objects from their interactions with
measuring instruments. One can only deal with the effects of these interactions under the constraints
of the uncertainty relations, which, too, are independent of any theory. This leaves no room for
determinism, but only, in Schrödinger’s language for “expectation-catalogs” of outcomes of future
experiments [31] (p. 154).

Hence, while in classical physics or relativity, where all systems considered are classically
causal, some of them can be handled deterministically and others must be handled probabilistically
or statistically, in quantum physics all systems considered can only be handled probabilistically
or statistically. Nor do they need to be assumed to behave classically causally, and they are
not in RWR-type interpretations, which, however, allows for alternative probabilistic concepts
of causality [4] (pp. 203–206) and [51,52]. Roughly, as defined by this author [4] (pp. 203–206),
“quantum causality” is the probabilistic or (if the experiment is repeated) statistical determination of
what may happen in a future observation at time t2 as a result of what has happened previously as a
quantum event, defined by our decision which experiment to perform at an earlier moment in time
t1. A quantum event defines a set of probabilistically or statistically predictable future events and,
by complementarity, excludes certain other types of events.

I shall now define the concepts of indeterminacy, randomness, chance, and probability, as I
understand them, because, as other standard terms used here, they can be defined otherwise. In the
present definition, indeterminacy or chance is a more general category, while randomness will refer
to a most radical form of indeterminacy, when a probability cannot be assigned to a possible event,
which may also occur unexpectedly. Indeterminacy and chance may also be understood as different
from each other. These differences are, however, not germane in the present context, and I shall
only refer to indeterminacy. Both indeterminacy and randomness only refer here to possible future
events and define our expectations concerning them. Once an event has occurred, it is determined.
An indeterminate event, once it occurs, may or may not result from some underlying classically causal
processes, whether this process is accessible to us or not. The first eventuality defines indeterminacy in
classical physics or relativity, where they are assumed as underlain by a classically causal architecture;
the second in QM in in RWR interpretations, which do not make or preclude this assumption. It is,
it might be added, impossible to ascertain that an apparently random sequence of events, events that
occurred apparently randomly, was in fact random, rather than connected by some rule, such as that
defined classical causality, and there is no mathematical proof that any sequence is [53]. The sequences
of indeterminate events that allow for probabilistic predictions concerning them is a different matter,
although there is still no guarantee that such sequences are not ultimately underlain by classically
causal connections in the case of quantum phenomena, which would imply that an RWR-type
interpretation does not correspond the ultimate nature of reality. As discussed earlier, factually,
quantum phenomena only preclude determinism, because identically prepared quantum experiments,
as concerns the state of measuring instruments, in general lead to different outcomes. Only the statistics
of multiple identically prepared experiments are repeatable.
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The difference between probability and statistics is important in quantum theory.
“Probabilistic” commonly refers to our estimates of the probabilities of either individual or collective
events, such as that of a coin toss or of finding a quantum object in a given region of space.
“Statistical” refers to our estimates concerning the outcomes of identical or similar experiments,
such as that of multiple coin-tosses or repeated identically prepared experiments with quantum objects,
or to the average behavior of certain objects or systems. (The standard use of the term “quantum
statistics” refers to the behavior of large multiplicities of identical quantum objects, such as electrons
and photons, which behave differently, in accordance with the Fermi-Dirac and the Bose-Einstein
statistics, for identical particles with, respectively, half-integer and integer spin.) There are many
different versions of the Bayesian view (e.g., [54] vs. [55]). Most generally, however, it defines
probability as a degree of belief concerning a possible occurrence of an individual event on the basis
of the relevant information we possess. This makes probabilistic estimates, generally, subjective,
although there may be agreement (possibly among a large number of individuals) concerning such
estimates. The frequentist understanding, also referred to as “frequentist statistics,” defines probability
in terms of sample data by emphasis on the frequency or proportion of these data, which is considered
more objective. In quantum physics, exact predictions are, again, impossible even in dealing with
elemental individual processes and events. This fact could, however, be interpreted either on Bayesian
lines, under the assumption that a probability could be assigned to individual quantum events, or on
frequentist lines, under the assumption that each individual effect is strictly random. An example
of a Bayesian approach, which is nonrealist in the present definition, is Quantum Baeysianism,
QBism [56]. Although most of my argument would apply if one adopts a Bayesian view, I prefer the
frequentist, RWR-type, view, considered in detail in [4] (pp. 173–186) and [19]. Bohr appears to have
been inclined to a statistical view as well [4] (pp. 180–184). It is worth noting that there have been
quite a few statistical interpretations of QM, commonly on realist lines. Two instructive examples
are those of A. Khrennikov [14,57] and A. E. Allahverdyan, R. Balian, and T. Nieuwenhuizen [58].
While Khrennikov’s approach is realist, that of Allahverdyan et al. may be seen as consistent with
the RWR view. This is because the authors argue that one should only interpret outcomes of pointer
indications, and leave the richer quantum structure, which has many ways of expressing the same
identities, without interpretation. In RWR-type interpretations, this structure would only be seen as
enabling statistical predictions, without representing the ultimate reality responsible for the outcomes
of quantum experiments and thus pointer indications.

Finally, probability introduces an element of order into situations defined by the role of
indeterminacy in them and enables us to handle such situations better. Probability or statistics
is about the interplay of indeterminacy and order. This interplay takes on a unique significance in
quantum physics, because of the existence of quantum correlations, such as the EPR or (in the case of
discrete variables) EPR-Bell correlations. These correlations are properly predicted by QM, which is,
thus, as much about order as about indeterminacy, and about their unique combination in quantum
physics. The correlations themselves are collective, statistical, and thus do not depend on either
Bayesian or frequentist view the individual events involved.

The circumstances outlined in the preceding discussion imply a different reason for the recourse
to probability in quantum physics, in RWR-type interpretations, which may be designated as
“RWR-probability”. According to Bohr:

[I]t is most important to realize that the recourse to probability laws under such circumstances
is essentially different in aim from the familiar application of statistical considerations as
practical means of accounting for the properties of mechanical systems of great structural
complexity [in classical physics]. In fact, in quantum physics we are presented not with
intricacies of this kind, but with the inability of the classical frame of concepts to comprise
the peculiar feature of the elementary processes. [15] (Volume 2, p. 34)
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This statement should, again, be seen as expressing the RWR-type interpretation adopted by Bohr
here, because some interpretations of QM, or alternative theories assume classically causal views of the
behavior of quantum objects, with probability or statistics brought in by measurement. “The classical
frame of concepts” may appear to refer to the concepts of classical physics, and it does include these
concepts. By this time (in 1949), however, Bohr adopts the RWR view, which places the ultimate
nature of reality responsible for quantum phenomena beyond conception, at least as things stand
now. This gives the phrase “the classical frame of concepts” a broader meaning: all concepts that we
can form are classical. The question is only whether our concepts could one day become applicable
in quantum theory or what will replace it. Purely mathematical concepts are a possible exception,
which, as noted, eventually led Heisenberg to a form of mathematical realism, while assuming that
QM or QFT does not represent quantum objects and behavior by physical concepts. Bohr, by contrast,
rejected the possibility of a mathematical representation of quantum objects and behavior or, again,
the reality thus idealized, along with a physical one, at least in his ultimate, RWR-type, interpretation.

4. Quantum Correlations, Reality without Realism, and Quantum Information

During the last half a century, following Bell’s and the Kochen-Specker theorems, the debate
concerning quantum foundations has shifted towards the questions of quantum correlations and
quantum nonlocality, although the questions of completeness of QM and realism, at stake in EPR’s
original argument and Bohr’s reply, have remained an unavoidable background [29,37]. Most of the
key findings and arguments involved in more recent debates deal with discrete variables and Bohm’s
version of the EPR experiment. The main reason is that the original thought-experiment proposed by
EPR cannot be performed in a laboratory. Bohm’s version of the EPR experiment can and has been
performed, confirming the existence of quantum correlations, which can be ascertained experimentally,
apart from any theory. Among the best known are those of D. M. Greenberger, M. Horne, A. Zeilinger,
and L. Hardy, and, from the experimental side, A. Aspect’s experiment and related experimental work,
such as that by A. Zeilinger and his group [59–62]. I only cite some of the key earlier experiments.
There have been numerous relevant experiments performed since. The meanings of these findings
have been debated as well. I shall bypass these debates here. The literature dealing with these subjects
is immense, and I shall only mention a very small portion of it. Among the standard treatments
are [63–67]. There are also realist and causal views of quantum entanglement and correlations, either in
realist interpretations of QM, such as the many worlds interpretation, or in alternative theories, such as
Bohmian mechanics or that of classical random fields [14,57]. Superdeterminism is another realist
view, which explains away the complexities discussed here by denying one’s decision of performing
one or the other EPR measurements is an individual (or collective) local decision and claiming it to be
determined in advance since the beginning of the Universe in the Big Bang (e.g., [68,69]).

What is quantum nonlocality? As with other foundational concepts discussed here (such as reality,
causality, or indeterminacy), there is no single or simple answer to this question. EPR and Einstein
in his other arguments on the subject only considered nonlocality in the sense of an instantaneous
physical connection between spatially separated quantum systems, “a spooky action at a distance”
[spukhafte Fernwirkung], as Einstein famously called it [70] (p. 155). I shall call this nonlocality
“Einstein-nonlocality.” The term “quantum nonlocality” was introduced, along with several definitions
of it, in the wake of Bell’s theorem. I shall adopt one such definition, by taking advantage of the
fact that one might in the case of quantum phenomena speak of spooky predictions at a distance
without assuming a spooky action at a distance [4] (pp. 128–130), [22] (pp. 269–271) and [38,71].
It should be noted first that there is nothing spooky or mysterious about quantum correlations in
terms of the mathematics of their predictions, or any quantum predictions. This mathematics is clearly
defined. The physics and epistemology of quantum correlations and predictions is, however, a different
matter. These predictions are spooky insofar as, against classical physics or relativity, there is,
at least in RWR-type interpretations, no concept of how these correlations or, in the first place,
quantum phenomenain general come about or why these predictions by QM are possible. At the
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same time, these predictions need not entail nonlocality in Einstein’s sense, including in the EPR-type
experiments, where they are (ideally) possible with the probability one. I define “quantum nonlocality”
as the existence of such correlations between distant quantum events and the possibility of predicting
these correlations. Indeed, it may be shown that all quantum predictions are predictions at a distance,
without implying an action at a distance [71].

Quantum nonlocality is sometimes defined in terms of violations of Bell’s or related inequalities,
or still other mathematical features, dealing with the data obtained in the corresponding experiments.
These features need not be those of QM, as the inequalities pertain to these data itself. Such definitions,
however, leave space for their physical interpretation, and quantum nonlocality as just defined provides
such an interpretation, among other possible interpretations, some of which interpret quantum
nonlocality as Einstein-nonlocality. On the other hand, the existence of interpretations of quantum
phenomena and QM, such as those of the RWR-type, which only entail quantum nonlocality and avoid
Einstein-nonlocality, suggest that the latter is not necessarily a feature of quantum phenomena or QM,
while quantum nonlocality may well be. I have considered quantum nonlocality from the present
perspective in more detail in [71], in response to several recent papers by Khrennikov [72–77]. I should
only add here that Einstein eventually admitted that Einstein-nonlocality could be avoided if one
assumed that QM is only a statistical theory that does not provide a representation of the behavior of
individual physical objects and, correlatively, deterministic predictions concerning this behavior in the
way classical mechanics or relativity does. He was, however, not satisfied with this alternative, because
it was in conflict with his conviction that a fundamental physical theory should do both. It did not help
either that how QM was able to make its predictions remained unexplained. For Einstein, QM was
more akin to magic, “Jacob’s pillow” of Göttingen and Copenhagen, than physics [70] (pp. 155,205)
and [78] (pp. 83–84).

My discussion of quantum correlations will proceed via A. Fine [79] and Mermin [63]
(both consider the Bohm-Bell version of the EPR-type experiment for discrete variables). Fine does
not speak in terms of realism or the lack thereof. His primary focus is on “indeterminism:”
the “undetermined” nature of individual quantum events, including those comprising correlated
multiplicities of them. Fine’s concept of “undetermined events” is, thus, in accord with the present
definition of indeterminacy as a more general category, with randomness defined as a specific form
indeterminacy, when no probability is assigned to a possible future event. (I prefer “indeterminate”
as more in accord with “indeterminacy” as a noun.) Both concepts thus only refer to possible future
events, rather than events that have already happened, which are always determined. Although, as I
said, I adopt the view of individual quantum events as strictly random and hence the statistical
(RWR) interpretation of correlations, my argument in this section equally applies to probabilistic,
such as Bayesian, interpretations of correlations. Coupling indeterminism to “nonessentialism,”
also, juxtaposed to a certain, realist, form of “explanationism,” brings Fine’s view closer to the
RWR-view, including in Bohr’s reply to EPR, to which Fine refers [79] (p. 184–185). While, however,
Fine sees Bohr’s analysis of measurement in the EPR case, in Bohr’s reply as “the whole different
topic” [79] (p. 184, n. 2), it is, I would argue, indissociable from the subject of correlations. Bohr’s reply
is beyond my scope here, and I shall only note few key points supporting this claim. I have considered
Bohr’s reply in detail elsewhere [4] (pp. 136–154), [22] (p. 237–312) and [71].

Fine is suspicious about invocations of “mystery” [79] (p. 190). There are reasons to be. On the
other hand, the RWR view allows for a certain sense of mystery, but in the absence of any mysticism,
“foreign to the spirit of science” [15] (Volume 2, p. 63). Quantum correlations are, as I said,
mysterious only insofar how they or quantum phenomena in the first place come about is beyond
representation or conception. This, however, is not because there is some mystical agency in charge of
this situation, as in the so-called mystical or negative theology, which presupposed such an agency,
while denying that any humanly conceivable properties could be attributed to it. Mermin, on the
other hand, is not hesitant to appeal to quantum mysteries, with a similar understanding in mind.
According to Fine:
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If we adopt an indeterminist attitude to outcomes of a single, repeated measurement, we see
each outcome as undetermined by any factor whatsoever. Nevertheless we are comfortable
with the idea that, as the measurements go on, the outcomes will satisfy a strict probabilistic
law. For instance, they may be half positive and half negative. How does this happen?
What makes a long run of positives, for example, get balanced off by the accumulation of
nearly the very same number of negatives? If each outcome is really undetermined, how can
we get any strict probabilistic order? Such questions can seem acute, deriving their urgency
from the apparent necessity to provide an explanation for the strict order of the pattern,
and the background indeterminist premise according to which there seems to be nothing
available on which to base an explanation. [79] (p. 191)

My added emphases highlight the essentially statistical, in contrast to classically causal, nature of
this order, defined by the informational structure of the observed data. Fine then contests the
explanationist attitude, which is essentially realist in my terms:

Once we accept the premise of indeterminism, we open up the idea that sequences of
individually undetermined events can nevertheless display strict probabilistic patterns.
When we go on to wed indeterminism to rich probabilistic theory, like the quantum
theory, we expect the theory to fill in the details of under what circumstances particular
probabilistic patters will arise. The state/observable formalism of the quantum theory, as is
well known, discharges these expectations admirably. The indeterminism opens up the space
of possibilities. It makes room for the quantum theory to work. The theory specifies the
circumstances under which patterns of outcomes will arise and which particular ones to
expect. It simply bypasses the question of how any pattern could arise out of undetermined
events, in effect presupposing that this possibility is among the natural order of things.
. . . What then of correlations?

Correlations are just probabilistic patterns between two sequences of events. If we treat
the individual events as undetermined and withdraw the burden of explaining why a
pattern arises from each of two sequences, why not adopts the same attitudes towards the
emerging pattern between the pairs of outcomes, the pattern that constituted the correlation?
Why, from an indeterminist perspective, should the fact that there is a pattern between
random sequences require any more explaining than the fact there is a pattern internal to the
sequences themselves? [79] (pp. 191–192)

As Fine’s formulation suggests, “the quantum theory,” insofar as it “specifies the circumstances
under which patterns of outcomes will arise,” must involve the specification of the corresponding
experimental arrangements, which in the present definition of a quantum theory, referring to its
mathematical formalism, is part of an interpretation. Fine might be using the quantum theory because
the term is sometimes adopted to distinguish the quantum theory for discrete variables from QM
for continuous variables. I use QM for both. The existence of correlations is, again, independent of
any theory.

Fine’s position, according to which the quantum theory is “bypass[ing] the question of how
any pattern could arise out of undetermined events, in effect presupposing that this possibility is
among the natural order of things,” is, thus, defined by renouncing the demand for an explanation
how correlations come about. This is different from the RWR view, especially, the strong RWR
view. In this view, it is not merely a matter of “an arbitrary renunciation” of a such an explanation.
Instead, to return to Bohr’s language, at stake is “a recognition that a more detail analysis of atomic
phenomena” that would provide such an explanation or even a conception of the reality responsible
for quantum phenomena and thus for correlations is “in principle excluded,” at least as things stand
now [15] (Volume 2, p. 62). Importantly, the nature of future individual events, which then become
correlated events, as undetermined or, in the present terms, indeterminate, is part of this situation as
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well. While the combination of individual indeterminacy and correlations may be especially striking,
it is equally legitimate to ask why such individual events are indeterminate, for example, in view of
correlations, which suggest indeterminacy as little as indeterminacy suggests correlations. The idea
of indeterminacy apart from a classically causal order has, in Bohr’s words, “hardly been seriously
questioned until Planck’s discovery of the quantum of action” [80] (p. 94). The ultimate reality was
assumed to obey such an order, and the recourse to probability was merely a practical matter of
difficulty of accessing it.

Fine’s and the present position agree on two key counts. First, as I have done from the outset,
Fine takes for granted both the nature and structure, informational structure (although Fine does
not speak in these terms), of quantum phenomena and that QM predicts this structure, correlations
included, in accord with the available experimental evidence. Secondly, as this article does, Fine rejects
the essentialist (realist) attitude toward explanation [79] (p. 193). He also states reasons for this rejection
and for taking correlations for granted:

There was a time when we did not know this [that correlational patterns may arise between
the matched events in EPR-type sequences], when the question of whether the theory
was truly indeterminist at all was alive and subject to real conjecture. Foundational work
over the parts fifty years, however, has pretty much settled that issue (although, of course,
never beyond any doubt). The more recent work related to EPR and the Bell theorem has
shown, specifically (although again, not beyond all doubt), that the correlations too are
fundamental and irreducible, so that the indeterministic ideal extends to them as well.
It is time, I think, to accept the ideals of order required by the theory. It is time to see
patterns between sequences as part of the same nature order as patterns internal to sequences
themselves.

A nonessentialist attitude toward explanation can help us make this transition, for it leads us
to accept that what requires explanation is a function of the context of inquiry [79] (p. 193).

As he explains earlier in his article:

The search for “influences” or for common causes is an enterprise external to the quantum
theory. It is a project that stands on the outside and asks whether we can supplement
the theory is such a way as to satisfy certain a priori demand on explanatory adequacy.
Among these demands is that stable correlations require explaining, that there must be some
detailed account for how they are built up, or sustained, over time and space. In the face of
this demands, the tangled correlations of the quantum theory [which resist or even defy such
explanations] can seem anomalous, even mysterious. However, this demand represents an
explanatory ideal rooted outside the quantum theory, one learned and taught in the context
of a different kind of physical thinking [79] (p. 192).

Both Heisenberg and Bohr rejected such classical demands already at the time of the discovery of
QM. In fact, correlational patterns, too, entered the theory virtually from its emergence. The interference
patterns observed in the double-slit experiment, “the greatest of all quantum conundrums,” as Mermin
calls it, is a correlational pattern, and Mermin expressly relates it to EPR-type correlations [66] (p. 108).
Fine is right to note that there are still doubts that “foundational work over the parts fifty years,
however, has pretty much settled that issue” or that “the more recent work related to EPR and the Bell
theorem has shown . . . that the indeterministic ideal extends to [correlations] as well.” He appears,
however, to underestimate them. These doubts have never subsided in the way Fine appears to believe
and are still wide spread now, twenty years after Fine’s position, which, as does the present one,
represents a minority view.

According to Fine, the quantum theory should “specify the circumstances under which patterns
of outcomes will arise and which particular ones to expect,” even as it “simply bypasses the question
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of how any pattern could arise out of undetermined events” [79] (p. 191). As noted, in the present
definition of quantum theory, which equates it with its mathematical formalism, this specification
would belong to an interpretation rather than the theory, as they appear to do, along with the formalism,
in Fine. This difference does not affect the fundamentals of the situation, however. In Bohr’s and,
following Bohr, the present view, these circumstances are those of quantum measurements, which are
independent of any particular quantum theory, as far as its mathematics is concerned, although not of
theoretical considerations in general, for example, insofar as specifying these circumstances involves
(the idealization of) classical physics. These circumstances compel those who adopts the RWR
view, beginning with Bohr, to go beyond merely “bypass[sing] the question of how any pattern
could arise out of undetermined events,” and to adopt interpretations in which an explanation or
even conception of how correlations or quantum phenomena, in the first place, come about is “in
principle excluded”. These interpretations respond to the quantum-nonlocal nature of quantum
correlations between arbitrarily far spatially separated quantum events and to the capacity of QM
to predict them, while avoiding Einstein-nonlocality (an action at a distance between these events).
Although Fine sees correlations as Einstein-local, he appears to dismiss “nonlocality”, perhaps too
easily, although he might only be rejecting essentialist attempts of explaining the nonlocal aspects of
correlations [79] (pp. 183–190, 194).

It is instructive to consider in this connection Mermin’s conclusion of his analysis (on lines of
Bell’s theorem) of correlations. It reveals a subtle nuance to the question of quantum nonlocality,
a nuance consistent with the strong RWR view. According to Mermin:

[It] is wrong to apply to individual runs of the experiment the principle that what happens
at A does not depend on how the switch is set at B. Many people want to concluded from
this that what happens at A does depend on how the switch is set at B, which is disquieting
in view of the absence of any connections between the detectors. The conclusion can be
avoided, if one renounces the Strong Baseball Principle, maintaining that indeed what
happens at A does not depend on how the switch in set at B, but that this [independence] is
only to be understood in its statistical sense, and most emphatically cannot be applied to
individual runs of the experiment. To me this alternative conclusion is every bit as wonderful
as the assertion of mysterious [spooky] action at a distance. I find it quite exquisite that,
setting quantum metaphysics entirely aside, one can demonstrate directly from the data and
the assumption that there are no mysterious [spooky] actions at a distance, that there is no
conceivable way consistently to apply the Baseball Principle [what happens at A does not
depend on how the switch in set at B] to individual events [66] (p. 109).

This is equivalent to the difference between the Einstein-nonlocality of spooky action at a distance
and quantum nonlocality of spooky predictions at a distance, spooky, because, in the RWR view,
we do not know or even cannot conceive how they come about or why QM correctly predicts them.
The impossibility of definitively claiming the relationships between any two single events at A and B
to be either independent or dependent in this way would be a consequence, an intriguing consequence,
of the quantum indefinitiveness postulate, which precludes any claims concerning the relationships
between two individual quantum events, including either the existence or absence of Einstein-nonlocal
connections between them. Hence, the RWR view, especially the strong RWR view, equally handles
the indeterminate nature of individual quantum events (again, as concerns predicting them) and
correlations between certain sequences of quantum events. We cannot predict these correlations
correctly on the basis of the data observed in one detector: “There is no way to infer from the data at
one detector how the switch was set in the other. Regardless of what is going on in detector B, the data
for a great many runs at detector A is simply a random string of R’s [red signals] and G’s [green signals]”
[66] (p. 107). We can only predict these data correctly if we know both settings. If, however, somebody,
unbeknown to us, will change the setting in one detector, for example and in particular to registering a
complementary spin direction, our predictions will no longer correspond to what is actually observed,
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and there would be no way to confirm them. This circumstance is important for understanding the
role of complementarity in EPR-type experiments and is central to Bohr’s reply to EPR . The violation
of Bell and related inequalities can also be linked to these circumstances and thus to complementarity,
as is clear, for example, from Fine’s argument [79] (pp. 177–180). Accordingly, there is no experimental
basis to ascertain that any quantum object can be assigned both “elements of reality”, one found in one
setting and the other in the other, before the detector flashes. As Mermin notes, the EPR-Bohr exchange
“could be stated quite clearly" in term of his thought experiment, “a direct descendant of the rather
more intricated but conceptually similar" EPR experiment [66] (pp. 90–91). Mermin’s conclusions are
in accord with those of Bohr in his reply to EPR, and his position is closer than that of Fine to the RWR
view, according to which, rather than merely renounced, as in Fine, any knowledge or even conception
of how quantum correlations or, in the first place, quantum phenomena are possible is “in principle
excluded,” at least as things stand now.

5. Conclusions

Wheeler spoke of “law without law” in quantum theory [39] (pp. 184–189). As discussed earlier,
Bohr complementarity, if interpreted, as it ultimately was by Bohr, on RWR lines, as linking “law
without law” and “reality without realism,” allows one to apply this concept to the probabilistic or
statistical laws of QM, in the absence of laws that would govern the independent behavior of quantum
objects, or the reality thus idealized, responsible for quantum phenomena. It is not surprising either
that Wheeler eventually linked this “law without law” to quantum information theory, which he
helped to usher in, along with R. Feynman, his student. For, as I have argued here, as became
apparent already with Heisenberg’s thinking leading him to his discovery of QM, quantum objects,
in their interactions with measuring instruments, create specifically organized structures of information
(composed of classical bits) and allow us to use theories, such as QM, to predict this informational data.
However, in RWR-type interpretations, we cannot know and even conceive of how these structures
come about, in particular, quantum correlations, which played a key role in the rise of quantum
information theory and such developments as quantum cryptography and computing. The ultimate
constitution of matter is, according to Wheeler, “it from bit,” “it” inferred from “bit” [6] (p. 4). In the
RWR view, this “it,” while real, is beyond thought, and as such, cannot be called “it,” any more than
anything else, including reality, unless one defines it, as in the case of reality without realism, as a
word without any concept associated to it.

Wheeler’s “it-from-bit” manifesto was in part inspired by Bohr, whom Wheeler cited at the
outset: “The overarching principle of 20th-century physics, the quantum—and the principle of
complementarity that is the central idea of the quantum—leaves us no escape, Niels Bohr tells us,
from ‘a radical revision of our attitude [towards the problem of] physical reality’ ” [6] (p. 4). I correct
Wheeler’s slight misquotation of Bohr [37] (p. 697). This revision of attitude led Bohr to his ultimate,
RWR-type, interpretation, not the least in responding to Einstein’s questioning of QM, in particular
in EPR’s paper [29], Bohr’s reply to which is cited by Wheeler here. In RWR-type interpretations,
QM is incompatible with the concept of completeness of a physical theory advocated by Einstein and
defining his discontent with QM: QM offered no representation or even conception of the behavior
of the ultimate constituents of nature and, correlatively, no deterministic predictions concerning
this behavior in the way classical mechanics or relativity, his primary model of fundamental theory,
did. QM was, for him, at most a correct statistical theory of ensembles, akin to that of classical
statistical physics. QM may, however, be seen, as it was by Bohr, as complete in a different sense. It is
as complete as nature allows our theory of (nonrelativistic) quantum phenomena to be, at least as
things stand now. Einstein admitted that “the belief that [QM] should offer an exhaustive description
of individual phenomena” by only providing the statistical predictions concerning the outcome
of repeated experiments was “logically possible without contradiction,” but he found this belief
“so very contrary to [his] scientific instinct that [he could not] forego the search for a more complete
conception” [81] (p. 375). Yet, QM remains our standard theory of nonrelativistic quantum phenomena,
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as is QFT, to which the same considerations apply, in the case of high-energy quantum phenomena.
Quantum electrodynamics, QED, the first QFT, is the best confirmed physical theory ever. The main
question in the Bohr-Einstein debate was, thus, not whether QM could do more, but whether nature
allows us to do more by means of another theory. Einstein thought it should. Bohr’s view was that it
might not, which is not the same that it never will.

As Bohr stressed, however, “this [RWR-type] argumentation does of course not imply that,
in atomic physics, we have no more to learn as regards experimental evidence and the mathematical
tools appropriate to its comprehension. In fact, it seems likely that the introduction of still further
abstractions into the formalism will be required to account for the novel features revealed by the
exploration of atomic processes of very high energy” [15] (Volume 3, p. 6). The history of QFT,
leading to the Standard Model, has amply confirmed this assessment made in 1958. So has the history
of QM during the same period. It is true that, unlike mathematical breakthroughs in QFT, such as
those that enabled the Standard Model, there have been no major changes in the mathematics of QM.
Nevertheless, the exploration of quantum correlations and the rise of quantum information theory
have been momentous developments, which opened new possibilities for the future of quantum theory
and technology. It is also possible that quantum information theory will lead to new mathematical
innovations, conceivably helping to bring quantum theory and gravity together, even though it is
difficult to predict what kind of theory it will be, possibly something that we do not expect or even
cannot imagine now. But then, nobody had expected or imagined anything like QM before it was
discovered by Heisenberg either. And yet, here we are.
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