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ABSTRACT: In the present work, we address the problem of
utilizing machine learning (ML) methods to predict the thermal
properties of polymers by establishing “structure−property” relation-
ships. Having focused on a particular class of heterocyclic polymers,
namely polyimides (PIs), we developed a graph convolutional neural
network (GCNN), being one of the most promising tools for
working with big data, to predict the PI glass transition temperature
Tg as an example of the fundamental property of polymers. To train
the GCNN, we propose an original methodology based on using a
“transfer learning” approach with an enormous “synthetic” data set
for pretraining and a small experimental data set for its fine-tuning.
The “synthetic” data set contains more than 6 million combinatori-
cally generated repeating units of PIs and theoretical values of their
Tg values calculated using the well-established Askadskii’s quantitative structure−property relationship (QSPR) computational
scheme. Additionally, an experimental data set for 214 PIs was also collected from the literature for training, fine-tuning, and
validation of the GCNN. Both “synthetic” and experimental data sets are included into a PolyAskInG database (Polymer Askadskii’s
Intelligent Gateway). By using the PolyAskInG database, we developed GCNN which allows estimation of Tg of PI with a mean
absolute error (MAE) of about 20 K, which is 1.5 times lower than in the case of Askadskii QSPR analysis (33 K). To prove the
efficiency and usability of the proposed GCNN architecture and training methodology for predicting polymer properties, we also
employed “transfer learning” to develop alternative GCNN pretrained on proxy-characteristics taken from the popular quantum-
chemical QM9 database for small compounds and fine-tuned on an experimental Tg values data set from PolyAskInG database. The
obtained results indicate that pretraining of GCNN on the “synthetic” polymer data set provides MAE which is almost twice as low
as that in the case of using the QM9 data set in the pretraining stage (∼41 K). Furthermore, we address the questions associated
with the influence of the differences in the size of the experimental and “synthetic” data sets (so-called “reality gap” problem), as well
as their chemical composition on the training quality. Our results state the overall priority of using polymer data sets for developing
deep neural networks, and GCNN in particular, for efficient prediction of polymer properties. Moreover, our work opens up a
challenge for the theoretically supported generation of large “synthetic” data sets of polymer properties for the training of the
complex ML models. The proposed methodology is rather versatile and may be generalized for predicting other properties of
different polymers and copolymers synthesized through the polycondensation reaction.

1. INTRODUCTION
The development of modern approaches to predict polymer
properties is usually associated with the rapid development of
computer-aided design. First of all, here we should mention
atomistically detailed Molecular Dynamics simulations that
accurately predict the properties of very complicated polymers,
even before their synthesis.1−3 However, the focus of current
computational development of new materials is shifting to the
use of less resource-consuming data-driven approaches based on
machine learning (ML) methods.4−6 Considering the fact that

the total number of possible small organic molecules is
estimated7 at 1060, and the number of currently known ones
does not exceed8 108, it becomes obvious that a successful search
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for new chemical compounds, especially polymers, with the
desired properties can only be achieved by a reasonable
application of ML methods.

However, the solution of such an inverse (or backward) task,
i.e., looking for the chemical structure of a polymer with required
properties, should be based on the excellently operating ML
models predicting the physical properties of any new polymer
from its chemical structure (the so-called direct task or forward
calculations). The standard approach to solve this direct task
using ML methods is impossible without handling with “big
data”, which is a challenge in the case of polymers,9 even for the
temperature of the glass transition Tg.

When developing new polymers, Tg is one of the most
important characteristics that should be predicted. Tg for
thermoplastic polymers characterizes their heat resistance10 and
can be used to predict the limiting temperature value at which
materials creep begins to play a significant role in determining
their mechanical properties.11 Moreover, Tg may serve as an
intermediate (“proxy”) characteristic for training ML models to
solve the “inverse” task with the so-called “transfer learning”
approach.12 For this reason, Tg can be very handy to try new
approaches in ML applications for polymer design.

Generally, the application of computational methods to
predict Tg of polymers is a nontrivial issue that has a long-
standing history. First of all, the classical quantitative structure−
property relationship (QSPR) computational schemes proposed
by van Krevelen,13 Bicerano,14 and Askadskii15,16 should be
mentioned among the first examples of applying ML philosophy
to establish “structure−property” relationships for polymers
including Tg prediction (for brief overview of the classical
computational schemes for Tg prediction we refer the reader to
the Section S1 in the Supporting Information file).

In recent years, classical QSPR schemes have been gradually
replaced by various ML models serving as more versatile and
optimizable tools for each specific case. Regarding polymer Tg
prediction, plenty of such models were reported in the
literature.17−38 For example, a support vector regression
(SVR) model was proposed by Varnek et al.37 as a unified
approach of Tg prediction of both cross-linked and linear
polymers of any type. To construct the model, the authors used a
data set of Tg values for 389 polymers collected from the
literature (270 values for training and the remaining 119 for
testing), which is still a quite small data set taking into account
the diversity of polymer types. Performance tests showed a root-
mean-square error (RMSE) of 35.9 K on the testing set. Another
example is the study by Pilania et al.36 who addressed the
problem of predicting Tg of polyhydroxyalkanoate homopol-
ymers and copolymers. They used a random forest ML model
with 20 descriptors as a primary algorithm, which was shown to
outperform the kernel ridge regression (KRR) model. As a
result, they reported an RMSE value of 11.12 K on the testing
set, which seems overly optimistic. Some criticism of these
results is related to the extremely small size of the database used
for training (120 values) and testing (13 values). The estimation
of the Tg value is also available on the recently developed
“Polymer Genome” online platform introduced by Ramprasad
et al.38 The underlying ML model is based on Gaussian process
regression (GPR) with 68 descriptors for polymer representa-
tion. The database used for the development of this ML model
consists of 451 values of Tg with 360 and 91 values in training
and testing sets correspondingly. The best RMSE on the testing
set was shown to be 24 degrees. Finally, Cheng et al.35 examined
different training methods to construct a predictive ML model

for polyimide (PI) Tg prediction. The authors used a database of
225 PIs with 225 Tg values (160 and 65 values in training and
testing sets, correspondingly). The best performance of the ML
model with 197 descriptors (the mean absolute error is about
20 K) is achieved if the training and testing data sets are
statistically representative of the entire data set, subject to
additional optimization of the ML model.

The above-mentioned ML models are based on thorough
calculations of various descriptors, which are typically
performed by quantum chemistry or Molecular Dynamics
simulations. This approach is rather complicated due to the
variability of the results of additional simulations and statistical
analysis of the descriptors sets and sometimes leads to the lost
information about chemical structure. Deep neural networks
(DNN) that directly operate with a graph representation (so-
called graph neural networks, GNN) of polymer repeating units
are free from these limitations and may, therefore, be extremely
useful.39

However, the lack of experimental data hinders further
intensive application of DNN for predicting polymer properties.
An original solution of this problem is the so-called “transfer
learning” approach,40,41 wherein ML models are developed in
two stages. First, the ML model is pretrained by using proxy
characteristics, which correlate with the desired property, while
at the second stage the model is fine-tuned under the available
restricted data set in order to make final prediction of target
property.

The “transfer learning” approach has been extensively tested
in studies devoted to the prediction of the properties of small
molecules.42−48 Various DNN have appeared to be more
accurate if they have been pretrained in advance on large
amounts of “synthetic” (i.e., theoretically calculated) data, and
only then fine-tuned with other more precise computational or
experimental data.45−48 For small molecules, these results were
obtained using specifically developed quantum-chemical data-
bases comprising up to hundreds of thousands of compounds
and their properties (including, for example, the well-known
quantum-chemical QM9 database,49 the Materials Project
database,50 and the Open Quantum Materials Database51).

While analyzing these studies, an important question arises
regarding the usefulness of such databases for the development
of DNN for predicting polymer properties. One may assume
that a large amount of uniformly obtained data for low
molecular-weight compounds in quantum-chemical databases
may be also used at the stage of pretraining.

An important test of this assumption was made by Yoshida et
al., who developed a fully connected neural network for
predicting the thermal conductivity of novel polymers.12 The
authors pretrained their model on a large data set of specific heat
at constant volume from the QM9 database of small molecule
properties (133 805 records), followed by fine-tuning (using
“transfer learning”) on a small experimental data set (28
records) on thermal conductivity values of known polymers.
This enabled them to reduce the mean absolute error (MAE) of
thermal conductivity by 40% compared to that of a random
forest model trained directly using the 28 data points.
Ramprasad et al. also have shown the advantage of using data
of different fidelity for developing machine learning models.52,53

Particularly, in ref 53 a multifidelity information fusion model
based on the co-kriging method was developed for predicting
crystallization tendency of polymers. During training of their
model, the authors used database comprised of a low-fidelity
data set for 429 polymers calculated by means of the van
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Krevelen’s group contribution method and high-fidelity
experimental data set for 107 polymers. As a result, their
model was found to be by 23% more accurate than the standard
Gaussian process regression model trained only with high-
fidelity data set. However, comprehensive testing of the
applicability of the “transfer learning” approach was beyond
the scope of these works, and consequently, rather simple
architectures were used for the neural networks and a very
limited amount of data was used for their development.

Nevertheless, more complex models and larger data sets have
been considered by other authors.54,55 St. John et al. applied
“transfer learning” for the development of message passing
neural networks (MPNN) to predict the electronic properties of
polymers.54 For this purpose, they used two data sets composed
of the results of density functional theory (DFT) calculations
performed on different levels. Both data sets contained
monomer properties and corresponding approximated values
for polymers. During “transfer learning”, the authors pretrained
their MPNN on the data set of lower level DFT data and fine-
tuned it with a lower amount of high-quality DFT. The results of
the study have shown that this MPNN provided three times
more accurate predictions for polymer bandgap values than
other MPNN whose weights were randomly initialized instead
of being pretrained. Shi et al. also demonstrated the enhance-
ment of the electronic property predictions for long oligomers if
a graph convolutional neural network (GCNN) was pretrained
in advance on the DFT data for monomers and then fine-tuned
with a smaller amount of corresponding data for larger
molecules composed of them.55 This enabled them to improve
the accuracy of the prediction by 37% compared with the results
for the model developed without “transfer learning”.

However, in the aforementioned studies, the data sets used
were primarily constructed on the basis of time-consuming DFT
calculations for oligomers, while “transfer learning” was tested
only inside the “synthetic” domain of data. Obviously, this is
related to the fact that the amount of data on polymers in the
literature which could be effectively used at the pretraining stage
is very limited. To avoid this limitation, an alternative strategy
was recently proposed by Hasebe, who suggested the use of a
novel DNN architecture called the knowledge-embedded
message-passing neural network (KEMPNN) for the prediction
of the polymer glass-transition temperature.56 The key idea of
this approach is to introduce manual annotations about the
influence of the chemical graph composition on the target
properties. The performance of the KEMPNN was also tested
for polymers. In this case, Bicerano’s database comprising 315
polymers and their Tg values was used for training. As a result,
RMSE = 33.6 ± 5.2 K was achieved, which is lower by almost 5 K
than RMSE = 38.5 ± 6.4 or a baseline MPNN model without
knowledge embedding. However, these results lay within the
same interval if one takes the RMSE uncertainty into account.

Therefore, despite the results of the works discussed above,
the potential of “transfer learning” in developing DNN for
polymer properties predictions remains unexplored due to the
absence of purely “synthetic” huge data sets of polymer
properties which may be used at the pretraining stage.

In the present work, we attempt to answer the question
regarding the possibility of applying “transfer learning” to
develop GCNN for polymer property prediction by using
enormous “synthetic” data sets of artificially generated polymer
structures and their macroscopic properties, calculated by means
of classical computational schemes, instead of huge databases of
small molecules, at the stage of ML model pretraining. In spite of

previously used “transfer learning” from lower to higher fidelity
methods52,53 our training methodology is tested on GCNN of a
novel architecture. This class of models appears to be one of the
versatile models for operating with large amounts of data.57 The
models have been used to solve various tasks in different areas,
including materials chemistry. However, GCNN were mainly
applied to predict the properties of small molecules or
crystals,44,46,58−62 while a few works consider polymers,55,63−65

and just one of these consider “transfer learning”55 restricted,
however, by a “synthetic” domain of data.

For this purpose, we apply a specially developed “synthetic”
data set of PI Tg values from our PolyAskInG (Polymer
Askadskii’s Intelligent Gateway) database (http://polycomplab.
org/index.php/ru/database.html). The choice of PIs as a class of
testable heterocyclic polymers in the present study is dictated by
the possibility of generating their chemical structure from simple
chemical groups, such as in the LEGO set66 and by their high
potential in various industrial applications.67 Due to its
universality, for calculating the PI Tg values in our “synthetic”
data set, we chose Askadskii’s computational scheme.15,16 It is
not parametrized for some particular class of compounds, as, for
example, in the case of simple regression ML models, and
provides more versatility for predicting the properties of various
polymers having diverse chemical structures without the need to
take into account a large number of correction factors.

As a result, we compare MAE for three methods of predicting
PI Tg values: Askadskii’s computational scheme,15,16 GCNN
pretrained on the QM9 database,59,60 and GCNN pretrained on
the “synthetic” data set of our PolyAskInG database (both of
which are fine-tuned with the experimental data set of the
PolyAskInG database of PI Tg values).

In addition, we address the “reality gap” problem that arises
from the differences in the size of the experimental and
“synthetic” data sets influencing the GCNN training quality.
This problem has been first explored in the area of deep learning
in computer vision tasks:68−76 “synthetic datasets” may contain
rather huge values with fail-proof ground-truth labeling; a large
amount of data could significantly decrease the model
performance on real data. Regarding this issue, we derive
important estimates about the necessary amount of data on
pretraining stage for the effective development of GCNN to
predict polymer properties.

The rest of the paper is organized as follows. In section 2
(Materials and Methods) we describe the data sets from the
QM9 database and the PolyAskInG database and discuss the
principles of a combinatorial generation of PI repeating units,
our GCNN architecture, its training, and testing methods. In
section 3 (Results and Discussion) we present the obtained
results on the efficiency of GCNN pretrained on a data set from
QM9 or on a “synthetic” part of the PolyAskInG database by
comparing the predictions of these GCNNs with the
experimental data. The conclusions are given in section 4.

2. MATERIALS AND METHODS
2.1. PolyAskInG Database of Polyimide Tg Values. In

order to develop GCNNs, in the present work, we have used
different data sets. The PolyAskInG database is made up of the
experimental and “synthetic” data sets of PI Tg values.
2.1.1. Experimental Data Set. The collection of data on the

macroscopic properties of polymers represents a challenging
task, even in the case of Tg. It is well-known that polymer Tg
depends on many specific factors, such as polymer molecular
weight, polydispersity, the presence of chemical cross-links,
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residual solvents, thermal prehistory of the sample, presence of
crystalline regions, etc.77−83 Moreover, the experimental Tg
value may be measured by various methods: differential
scanning calorimetry (DSC), thermal mechanical analysis
(TMA), dynamic mechanical thermal analysis (DMTA),
softening experiments, etc. Also, it is worth mentioning the
early experiments reporting the so-called softening temperature
(Tsoft) closely related to the glass transition temperature of
polymers but not equal to it. The dependence of Tg on the
method of its determination is well-known not only in
experimental studies but also in computational approaches, for
example, in Molecular Dynamics simulations.84 Moreover, Tg
measured by using each of the above methods depends on a
particular experimental setup used: cooling rate (in DSC
experiments or in simulations), a type of atmosphere (in TMA
or DMTA experiments), etc. Particularly, the effect of the
cooling rate has been shown for polystyrene85 and in our
previous work on Molecular Dynamics simulations of
polyimides.86 Finally, the temperature range of the glass
transition region of a particular class of polymers under
investigation may also be an important factor, since the width
of this region may alternate for different classes of polymers.
Thus, the variability of Tg values obtained for the same polymer
by different experimental methods can reach 20−25 degrees.

The problems discussed above introduce a certain arbitrari-
ness in the collected data. Since many of the influencing factors
are simply neither mentioned nor thoroughly discussed in the
relevant works, the size of uniformly obtained databases that
could be developed on the basis of such data will be extremely
small. From this point of view our “synthetic” data set is free
from this shortcoming.

The experimental data set of the PolyAskInG database was
compiled on the basis of the published results87−90 and the
references therein and contains 214 PI repeating units
composed of 7 atom types (C, H, O, N, F, S, and Cl) and 607
values of PI Tg. Some PIs were not selected from the published
data because their chemical structure included rarely occurring
types of atoms (such as Br or Si) or extra-large bulky groups.

Taking into account the diversity of the experimental
approaches used to investigate glass transition, we have classified
Tg values regarding the measurement method and the
corresponding conditions: TMA (in various environments),
DMTA, DSC, TBA, dilatometry, softening experiments (to
measure so-called softening temperature Tsoft), and “unknown
method” (when information is not presented in the original
source). All structures and corresponding Tg values, exper-

imental methods, and measurement conditions were addition-
ally checked and verified. This verification allowed us to correct
many errors and misprints that are present in the values of Tg or
even in the chemical structure of the PIs (for the details we refer
the reader to Section S2 in the Supporting Information).

The chemical structures of the PIs in the database are
represented in the SMILES format91 for convenience in
operating with the database in the future. Figure 1(a) contains
a frequency plot of different experimental methods’ exploitation,
while the distribution of Tg values is shown in Figure 1(b).

The distribution of PI Tg values in experimental data set is
almost Gaussian (R2 = 0.88) with a peak at 547 K and a mean Tg
value of 557 (±59) K. Furthermore, the analysis of the
experimental database shows that the Tg values obtained by
various methods or conditions (within the same method) may
differ between each other by up to several tens of degrees.
2.1.2. “Synthetic” Data Set. The “synthetic” data set contains

chemical structures of PI repeating units composed of seven
atom types (as in the experimental data set) in SMILES format91

and the corresponding Tg values. The database was developed in
two stages.

At the first step, the ChemLG program (version 0.6.0)66,92

was used to generate separately diamines (5075 units) and
dianhydrides (322 units) according to fixed combinatorial rules,
followed by combinatorial generation of 6 726 950 PIs. The
repeating unit of any PIs is composed of diamine and
dianhydride, Figure 2(a). In turn, diamines and dianhydrides
usually consist of an alternating sequence of flexible (“linkers”)
and bulky (“moieties”) groups, Figure 2(b,c), as was recently
rightly emphasized by Afzal et al.66 Based on this work, as well as
by analyzing the PI structures in the experimental data set of the
PolyAskInG database, we have identified 7 “linkers” and 28
“moieties” most frequently appearing in the PI repeating units,
Figure 2(b,c). For further details about the generation of
polyimide repeating units we refer the reader to the Section S3.1
in the Supporting Information.

At the second stage, the calculation of the Tg values for each PI
was performed according to Askadskii’s computational scheme
implemented in the “Cascade” program.15,16 A comprehensive
description of Askadskii’s computational scheme for calculating
Tg is given in the Section S3.2 of the Supporting Information. It
should be noted that the PIs with Tg values greater than 800 K
(15 repeating units in total) were excluded from the final version
of the “synthetic” data set because of the absence of such Tg
values for PIs in the experimental data set of the database. As a
result, the final number of PIs in the “synthetic” data set of the

Figure 1. (a) Number of experimental Tg values for PIs in the experimental data set of the PolyAskInG database. (b) Distribution of PI Tg values in the
experimental data set of the PolyAskInG database. The red line indicates the fitting with the Gaussian function with R2 = 0.88 (peak at 547 K).
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database is 6 726 935. The distribution of PI Tg values in
“synthetic” data set is almost Gaussian (correlation coefficient
R2 = 0.997) with a peak at 493 K and a mean Tg value of
501(±43) K, Figure 3.
2.1.3. Quantum-Chemical Data Set. The QM9 quantum-

chemical database comprises the geometric, energetic, elec-
tronic, and thermodynamic properties of 133 885 small organic

molecules calculated using the density functional theory
(B3LYP/6-31G(2df,p) level of theory).49 During recent years,
the developing ML model using the QM9 database has become a
so-called “golden standard” in relevant areas of chemistry. The
elemental composition of molecules includes only 5 elements
(H, C, N, O, and F). However, for the polymers and for the PIs,
in particular, repeating units could also contain S and Cl atoms.

Figure 2. (a) Principal structures of diamines and dianhydrides used in the combinatorial generation of PI repeating units in the “synthetic” data set of
the PolyAskInG database. Diamines and “Ra” residues in dianhydrides represent the combinations of “linkers” (b) and “moieties” (c).
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Such repeating units were also included in our “synthetic” data
set of PI Tg values described above (see Section 2.1.2 for details).
For our GCNN pretraining, we used subsets corresponding to
isotropic polarizability (α), energy of highest occupied
molecular orbital (ϵHOMO), and energy of lowest unoccupied
molecular orbital (ϵLUMO). Previously, these characteristics were
successfully used as descriptors in different ML models for the
prediction of polymers Tg.

23,24,26

2.2. Neural Network Architecture and Training.
2.2.1. Data representation. Recently, Lee et al. showed that
GCNNs better predict the properties of polymers if the input
molecular graphs represent repeating units of polymers rather
than their oligomers or monomers end-capped with hydrogen
atoms.65 Thus, in the presented model, the molecular graph of
the PI repeating unit is used as input; see Figure 4.

The molecular graph contains the most important informa-
tion about the chemical structure of small molecules (QM9) or
polymer repeating units (PolyAskInG database). Each molec-
ular graph is represented by a set of vertices (atoms) and edges
(valence bonds). To describe the molecular graph, we encode
the following characteristics of the vertices: atom type (C, N, O,
S, F, Cl, or H); valence of atom; number of bonded hydrogen
atoms; belonging of atom to aromatic ring (bool: 0−no, 1−yes).
In turn, to encode the properties of the edges, we use the
following features: bond type (single, double, or triple) and
bond length.

For encoding atom and bond types, as well as valences of
atoms, we use one-hot encoding, meaning that a vector of a fixed

length is filled with 0 (if property does not match) and 1 (if
property matches). Since we would like to predict the Tg value of
the polymers, we also encode a specific cyclic connection in the
molecular graph for them (see the gray line in Figure 4).

For the simplicity of the data collection and representation we
have not used the information about the phase state of
polyimides during developing our experimental data set. We
supposed that all the data was obtained for amorphous polymer
samples. Also, no information about the configuration of
polymers or their dynamics was used.
2.2.2. Proposed GCNN Architecture. Our GCNN has a

classical architecture for graph classification/regression. It
contains three main parts: Graph convolution part, i.e., the
sequence of graph convolutional layers (GCL); Feature
aggregation, i.e. the pool (aggregation) function that maps a
set of hidden vectors to output vector; Multilayer perceptron
(MLP) part, i.e., MLP at the top of GCNN, for the final
prediction.

We use the modified Gated graph convolution93 with gated
recurrent unit94 as a basic operation for our GCNNs. We
account the edge features using the learnable message function,
which uses the edge feature vector as an input and applies the
k × k matrix A implemented by MLP to transform it. This MLP
is trained simultaneously with the GCL layer.

Since a typical molecular graph of a polyimide repeating unit
may contain up to about several tens of vertexes, a lot of
iterations are required to pass information from one vertex to
another. For this reason, along with the graph neural network
(GNN) part we use an additional 2-GNN part in our GCNNs,
which distinguishes our network from that used in refs 54 and
63. Previously, Grohe et al. have shown that adding a 2-GNN
part increases the expressive ability of ordinary graph neural
networks, which is usually limited.95 Our preliminary tests have
also demonstrated that adding a 2-GNN part in parallel to the
original graph neural networks improved its performance. A
schematic illustration of the proposed GCNNs architecture is
presented in Figure 5.

Each of our GCNNs has five GCLs. There are three GCLs
before the “2-graph” conversion procedure and two graph
convolutional layers after it. After each GCL, we use Rectified
Linear Unit (ReLU) activation.

For each GCL, we apply three message passing sessions. In
addition, we use the two-layer MLP with a linear layer consisting
of 256 neurons followed by a linear layer consisting of 4096

Figure 3.Distribution of Tg values of the PI in the “synthetic” data set of
the database. The black line indicates the fitting with the Gaussian
function with R2 = 0.997 (peak at 493 K).

Figure 4. Illustration of the encoding procedure of a molecular graph. Each vertex (atom) is described within a feature vector with parameters: the
atom type, valence of atom, number of connected hydrogen atoms, and belonging of an atom to an aromatic ring. Each edge (bond) is described within
a feature vector with parameters: bond type (single, double, triple, or aromatic) and bond length (in nanometers). The gray line indicates a cyclic
connection between repeating units.
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neurons (the dimension of A matrix is 64 × 64) with ReLU
nonlinearity in between in order to compute A matrix. For
readout, we use ordinary sum operation. After readout, stage,
and concatenation, the resulting vector is processed by a linear
layer with 256 neurons with ReLU to get the final feature vector.
Then we use a one-neuron layer to get the final prediction. The
dimensions of the input graph features are reduced to a fixed size
with 64 channels using two linear layers (one for the node
features and one for the edge features).

For a more comprehensive review about our GCNN
architecture, we refer the reader to Section S4 in the Supporting
Information. Testing code and pretrained models are available
on https://github.com/polycomplab/GCNN_PI_glass_
transition.git.
2.2.3. Training and Testing Details. Modern deep neural

networks require really big data sets for training because they
contain a huge parameter set that needs to be tuned. As noted
above, public data sets in chemistry are much smaller than, for
example, computer vision data sets (e.g., the most popular
ImageNet data set contains 1 million images96). Only several
huge databases are known in chemistry (such as QM9 for low
molecular-weight compounds mentioned above49). Contrary to
such theoretical data sets, the creation of comprehensive
experimental data sets for ML is almost impossible in this
research area, since it requires time-consuming and expensive
experiments. Even databases containing several-thousands
polymers of a single type are practically unavailable. To
overcome this problem, one may use the “transfer learning”
approach.

On the other hand, one of the most popular ML ideas for
operating with small experimental data sets is to expand them
using mathematical simulation (artificial data modeling). We
use a similar approach for Tg prediction. Our “synthetic” data
set, which is described above (see Section 2.1.2), contains over
6 726 935 polyimides with the corresponding Tg values. We use
this “synthetic” data set as an alternative for the data set from
QM9 for pretraining our neural network.

The development of each GCNN consisted of the following
stages: pretraining GCNN (using the data set from the QM9
database or the “synthetic” data set from the PolyAskInG
database) and fine-tuning GCNN on a small amount of available

experimental data (using an experimental data set of the
PolyAskInG database).

Thus, we will compare the results for the GCNN pretrained
on the “synthetic” data set of PolyAskInG database (using the Tg
values calculated by Askadksii’s computational scheme) and
GCNN pretrained on the QM9 data set (using proxy
characteristics similar to that used in ref 12), both of which
are fine-tuned using the experimental data set of the PolyAskInG
database. Note that GCNN pretrained on the QM9 database
was chosen as the benchmark model. Additionally, we will
obtain results for one more GCNN trained only on the
experimental data set of the PolyAskInG database. Note that the
data in the “synthetic” data sets used for pretraining were
normalized by subtracting the corresponding averaged values of
Tg and dividing them by standard deviation. This allowed us to
account for the differences in the characteristics of Tg
distributions in experimental and “synthetic” data sets.

Fine-tuned GCNN models were tested on PI Tg experimental
values, also included as a part in PolyAskInG database. However,
since our experimental data set of the PI Tg is relatively small, we
use a 10-fold cross-validation technique to obtain statistically
meaningful results about the performance of GCNNs (unless
otherwise stated). In 10-fold cross-validation, the training data
set is randomly partitioned into 10 equally sized nonoverlapping
subsets. Then we use one subset for testing and the remaining 9
subsets for training. We repeating this procedure N times, until
each of the N subsets is tested once. Then we average the results
to produce a single estimate of the mean average error (MAE)
used as a quality metrics.

Note that our experimental data set contains Tg values
obtained by different experimental techniques (TMA, DMTA,
DSC, Dilatometry, TBA, etc.). However, due to the small
amount of records, we use a single Tg value (averaged over all
experimental values for a particular polymer) as a prediction
target for each polymer in the data set. Recently, it was shown
that such approach is the best choice for developing ML
models.97

We use the PyTorch Framework98 and PyTorch Geometric
extension library99 for implementing and training our GCNNs.
The training source code is available on https://github.com/
polycomplab/GCNN_PI_glass_transition.git. The training

Figure 5. Schematic illustration of the proposed GCNN architecture. Colored bars indicate feature vectors of vertexes. G denotes input molecular
graph of the polyimide repeating unit, G′ is the input graph processed with the first GNN block (first subnet), G2 is the “2-graph” formed from the G′,
G2′ is the “2-graph” processed with the second GNN block (second subnet), and MLP is the multilayer perceptron. For the convenience of drawing the
feature vectors of the edges are not shown.
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time is about 3 days for pretraining on the “synthetic” data set
and about 1 h for fine-tuning on the experimental data (for a 2-
GPU server with Tesla P100 accelerators). In the case of using
the “synthetic” data set from the PolyAskInG database 90% of
the data set was in the training set and 10% in the validation set,
unless otherwise stated. In turn, the data set from the QM9
database was split into training, validation, and test, following an
80/10/10 ratio.

3. RESULTS AND DISCUSSION
3.1. Testing of the Pretrained GCNNs. Testing of GCNN

pretrained on the QM9 data set was performed against the
corresponding validation set. As a result, we have reached MAE
= 0.07 for α, 37.1 meV for ϵHOMO, and 34.1 meV for ϵLUMO.
These values are comparable with those commonly reached by
applying other ML models.54,100 We should emphasize that
during GCNN pretraining on QM9 database we used a slightly
different architecture of GCNN compared to its final variant�
with the last layer containing 3 outputs. However, at the fine-
tuning stage, the last layer was replaced by inner product layer
with only 1 output in order to predict the Tg value.

The results of testing of GCNN pretrained on the “synthetic”
data set of the PolyAskInG database are presented in Table 1.
Testing was performed against theoretical Tg values of PIs in the
experimental data set obtained by Askadskii’s computational
scheme.

Taking into account the significantly larger size of the
“synthetic” part of the PolyAskInG database compared to the
size of the QM9 data set, we have estimated MAE values with
respect to the size of the “synthetic” data set used during
pretraining. Our results presented in Table 1 show that MAE
reduces with increasing the size of the pretraining data set until
the number of entities in the data set reaches 100 000. A small
increase of the MAE in the case of the largest data set (from 6.5
to 7.4) may be explained by overfitting of GCNN. Nevertheless,
we should emphasize that for only pretrained GCNN the best
MAE is achieved on a “synthetic” data set comprised of 100 000
or even more entries (see the results in Table 1). Therefore,
using a massive “synthetic” data set is of considerable
significance in reaching the best accuracy for the GCNN
predictions. We assume that for the entire “synthetic” data set
from the PolyAskInG database we will obtain even smaller
values of MAE.

However, reaching the minimal values of MAE on the
validation sets was not a priority task, since the final accuracy of
the developed GCNN is dictated by fine-tuning on the
experimental data set.
3.2. Testing Fine-Tuned GCNNs: “Reality Gap Prob-

lem”. After testing pretrained GCNNs, we evaluated the
performance of the fine-tuned models. To this end, we have

performed three independent learning experiments for GCNNs
pretrained on data sets of various sizes to estimate the MAE for
experimentally predicted Tg values. During testing we used a
single value of Tg for each PI. This value is obtained by averaging
over multiple experimental values (if available) corresponding to
a certain PI.

As a result, we observe no significant differences in the MAE
values being not less than 22.5 K, Table 2.

Given that Askadskii’s computational scheme was originally
parametrized for TMA experiments, we also used an additional
experimental set for validation. In this set, there are those Tg
values which were obtained only by TMA methods. Averaging
was also performed if several TMA experiments were performed
to characterize the Tg value of a particular PI. As a result, we
observed similar MAE values (see Section S5 in the Supporting
Information).

Another important result is related to the influence of the size
of the “synthetic” data set on the GCNNs performance, Table 2
demonstrates that the “synthetic” pretraining data set containing
at least 5000 records is already enough to achieve the optimal
accuracy of the proposed GCNN regardless of the testing
method. This result is in line with the conclusions of previous
works addressing the problem of a so-called “reality” gap,
existing in the case of using both real (experimental) and
“synthetic” data for deep neural network training. Namely, the
results obtained during the application of convolutional neural
networks in the field of computer vision68−76 allow one to
conclude that the optimal ratio of real data to “synthetic” data in
any deep learning task could be about 5−20% to 80−95% (for a
more comprehensive review we refer the reader to Section S6 in
the Supporting Information). Since our current experimental
data set contains 214 PIs with 607 values of their Tg values, one
may assume that starting with about 214 real samples at the
lowest possible real-to-synthetic data ratio 5% to 95% we will
obtain just about 5000 samples in total effective real-and-
synthetic training set. Thus, we experimentally demonstrate that
such a real-to-synthetic data ratio meets the “reality gap”
problem in our case as well as in other known cases. Our
conclusion is also found to be independent of the similarity of
the “synthetic” and experimental data sets composition (for the
details we refer the reader to the Section S7 in the Supporting
Information).

Having obtained the above results, hereinafter, we will discuss
the results for GCNN pretrained on the data set comprised of
100000 PIs randomly chosen from the original “synthetic” data
set, which is almost equal in size to the QM9 data set (107 108
records).
3.3. Testing Fine-Tuned GCNNs: Polymer Vs Monomer

Pretraining Data Sets. Our main results of testing GCNNs

Table 1. Mean Absolute Error (MAE) of Tg Predicted by
Askadksii’s Computational Scheme for GCNNs Pretrained
on “Synthetic” Datasets of Various Sizes from the
PolyAskInG Databasea

No. of PI in “synthetic” data set used for pretraining MAE, K

1000 14.9
5000 10.2

100000 6.5
1000000 7.4

aMAE was calculated directly between the predicted and target sets.

Table 2. Mean Absolute Error (MAE) and Standard
Deviation (SD) Values Obtained for GCNNs Pretrained on
“Synthetic” Dataset of Various Sizes from the PolyAskInG
Databasea

No. of PI in “synthetic” data set MAE, K SD, K

5000 23.2 5.3
100000 22.5 5.1

1000000 23.2 5.7
aMAE was calculated using a 10-fold cross-validation technique.
Target Tg for each PI is an average over all corresponding
experimental values.
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and Askadskii’s computational scheme on the experimental data
set of the PolyAskInG database are shown in Table 3.

First of all, from Table 3 it follows that Askadskii’s
computational scheme provides MAE = 33.4 K in the case
when the predicted Tg values for each PI are averaged over all
experimental methods. Similar results were obtained for
GCNNs testing with respect to TMA and DSC methods (see
the Section S8 in Supporting Information).

The main reason for such rather high MAE values comes from
the fact that originally Askadskii’s computational scheme was
calibrated to predict Tg values that should be obtained by TMA
experiments. We assume that the large number of experimental
results obtained by DSC, TBA, DMTA, and dilatometry (the
number of Tg is 253 out of 607 in total) may cause a high MAE
value in the case of testing Askadskii’s computational scheme.

Comparable prediction accuracy is obtained for GCNN,
trained only on the experimental data set of the PolyAskInG
database (MAE = 28.1 K). Interestingly, this result indicates
better performance of the GCNN compared to a classical
Askadskii’s computational scheme. Nevertheless, due to limited
size of the experimental data set, further investigations are
required to test developed GCNNs on a larger experimental
database (which will be performed in the future).

Further analysis of the results in Table 3 indicates that the
GCNN developed within the “transfer learning” approach using
the data set from the PolyAskInG database is even more
accurate: MAE is 22.5 K, which is 11 degrees less than MAE for
Askadskii’s computational scheme.

Bearing in mind that the MAE for GCNN trained only on the
experimental data set of the PolyAskInG database; this result
proves the necessity of pretraining while developing more
efficient GCNN. On the other hand, we also observe better
performance of GCNNs in comparison with Askadskii’s
computational scheme, which may be due to the accounting in
GCNN for complicated relationships between Tg and chemical
structure of the PI repeating unit, as well as due to the more
accurate calibration of GCNN for prediction of experimental
results obtained by different methods.

Finally, GCNN pretrained using the QM9 data set and fine-
tuned with experimental data on PI Tg values provides
MAE = 40.6 K, which is almost two times larger than for
GCNN pretrained with “synthetic” polymer data. This
conclusion is also supported by visual analysis of the parity
plots and corresponding coefficient of determination R2 values,
Figure 6.

Otherwise speaking, using QM9 for pretraining provides a
worse result than if we used a “synthetic” polymer data set. The
reason for this may be 2-fold. On the one hand, we suppose that
accounting of the polymeric nature of the compounds under
investigation may play a crucial role in predicting polymer
properties. Obviously, pretraining on a data set of small
molecules properties does not provide such an advantage. On
the other hand, even if we ignore the above assumption, the
reason for a worse performance of QM9 may be explained by the
fact that it does not contain Tg values itself, only the
characteristics that implicitly correlate with Tg.

Additionally, we make a note about the dependence of
GCNNs performance on different accuracies of training data.
On the one hand, Tg values in the “synthetic” data set are
homogeneous; i.e., they are obtained by the application of
Askadskii’s computational scheme as a single method. From this
point of view, our experimental data set is rather heterogeneous
since Tg values obtained using various methods are reported.
This fact entails the problem of the different accuracy of training
data, which is hard to avoid due to the limited amount of
experimental data available in the literature sources which has
been obtained using a single method. However, Askadskii’s

Table 3. Mean Absolute Error (MAE) and Standard
Deviation (SD) Values for Prediction of PITg UsingDifferent
Models

Predicting model MAE,d K SD, K

Askadskii’s computational scheme 33.4 5.3
GCNN + expa 28.1 5.7
GCNN + QM9 + expb 40.6 6.9
GCNN + PolyAskInGc 22.5 5.1

aGCNN + exp: GCNN trained only on the experimental data set of
the PolyAskInG database. bGCNN + QM9 + exp: GCNN pretrained
on the QM9 database and fine-tuned with the experimental data set of
the PolyAskInG database. cGCNN + PolyAskInG: GCNN pretrained
on the synthetic data set of the PolyAskInG database and fine-tuned
with its experimental part. dMAE for Askadskii’s computational
scheme was calculated over all experimental datasets. MAE for
GCNNs was calculated using a 10-fold cross-validation technique.
MAE for Askadskii’s computational scheme was calculated directly
between the predicted and target sets. Target Tg for each PI is an
average over all corresponding experimental values.

Figure 6. Parity plots for the Tg predictions of GCNNs pretrained on the (a) QM9 data set and (b) “synthetic” polymer data set of the PolyAskInG
database. The coefficient of determination R2 is given in each subplot. Red dotted line serves as a guide for the eyes.
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computational scheme was initially calibrated for predicting Tg
values predicted by the TMA method. Therefore, we could make
rough estimates about the influence of the different accuracy of
the training data if we compared Tg values predicted by GCNN
with corresponding experimental values averaged: (a) over all
methods (Table 2) or (b) only over the TMA method (Table
S4). Testing our best GCNN over the experimental values
averaged over all methods gives MAE = 22.5 K, while the
corresponding MAE for the GCNN tests over experimental
values averaged over only TMA methods is 24.9 K. Thus, our
results indicate that different accuracy of training data has a
negligible influence on the final performance of the GCNN.

All in all, the above results clearly indicate that using
“synthetic” data sets of polymer properties for pretraining
GCNN is more preferable than applying data sets of small
molecule properties for this purpose. This result states the
overall priority of using our methodology for training deep
neural networks, and GCNN in particular, for efficient
predicting other polymer properties.
3.4. Limitations and Future outlook. Obviously, when

analyzing the results of our study, certain limitations should be
taken into account.

The efficiency of the “transfer learning” is dictated by the ratio
between the sizes of the “synthetic” and experimental data sets
(the so-called “reality gap” problem). On the one hand, more
data used during deep neural network training provide it with
better accuracy. On the other hand, better accuracy for the
predicting model will be achieved in cases where there is a larger
amount of experimental data with a fixed amount of “synthetic”
data. Therefore, one should take into account that the overall
advantage of “transfer learning” in the approach suggested is
limited by the size of the experimental database.

The graph convolutional neural networks developed are
optimized for a particular class of polymers, i.e., polyimides. The
transferability of our model to the other polymer classes, whose
structure is composed from a similar set of chemical groups, was
beyond the scope of the study. However, if one attempts to use
our neural network model for other polymer classes, we suggest
to start from a pretrained model and then fine-tune it with a
database for the polymer class under investigation.

Polyimide repeating units in a “synthetic” data set are
composed of similar sets of elementary structural building blocks
presented in experimental structures with combination rules
underlying their generation. Certainly, there exist plenty of other
polyimide repeating units which contain other building blocks
combined according to different rules. However, including
additional experimentally reported polyimides will immediately
lead to a considerable increase in the number of polyimide
structures in the “synthetic” data set. In the present study, we
limited ourselves to the case of affinitive structures in the
experimental and synthetic data sets in order to avoid dealing
with even larger “synthetic” data sets.

Our graph convolutional neural network model was trained to
establish correlations between the most basic (primary) features
of polyimides repeating units as molecular graphs. In other
words, no information was taken into account about the
polymers phase state, the spatial configuration, or their
dynamics. However, the phase state of polymers may be also
taken into account during GCNN development in order to
improve its accuracy. For example, GCNN may be fine-tuned
using an experimental data set extended with additional
parameters, such as, for example, the difference in the 3D
coordinates of macromolecular configurations in the amorphous

and ordered states from computer simulations, as well as values
of crystallinity degree from experiments. These investigations
will be performed in our future works.

Taking into account the aforementioned limitations, we plan
to solve the following tasks in the future works:

(1) to test other architectures that take into account
additional “synthetic” data during neural network
pretraining (for example, the 3D structure of a molecular
graph or the dynamic behavior of the molecule) to
improve the predictive power of the models;

(2) to apply our neural network models to other classes of
polymers (e.g., polyamides, polyamidoimides) and/or
properties (e.g., permeability), composed of similar sets of
building blocks, in order to test the transferability of the
models developed;

(3) to expand the training/testing database in order to refine
the results already obtained, including also the testing of
the developed neural network model for sets of
compounds which are not in the database;

(4) to compare various computational schemes for develop-
ing “synthetic” data sets of polymer properties and choose
the best one to be used for developing the most accurate
neural network model.

4. CONCLUSIONS
DNN are breakthrough models in the current ML, which is
successfully applied to solve many different tasks. In recent
years, “transfer learning” has appeared as an effective approach
for developing such models. However, the potential of this
approach has not been fully explored in the field of polymer
science, especially for the case of transfer from “synthetic” to the
real domain of data having different fidelity.

In the present work, we addressed this problem by
introducing an unprecedentedly large “synthetic” data set of
polyimides Tg values which was applied while developing
GCNN as an example of the most promising class of DNN.

For this purpose, we have developed GCNN with more
complex 2-GNN architecture which have not been previously
applied for predicting polymer properties and/or to the testing
“transfer learning” approach. The training of the GCNN was
performed by using an unprecedentedly large set of polyimides
structures, whose generation is supported by the analysis of the
polyimide repeating units reported experimentally, and
corresponding Tg values calculated using the classical computa-
tional scheme proposed by Askadskii.

We performed comprehensive testing of our GCNN and its
training methodology against other approaches by comparing
the results from Askadskii’s computational scheme, GCNN
developed with the popular QM9 database of small molecules
properties, as well as GCNN developed without using a “transfer
learning” approach (i.e., trained only on experimental data). The
outcomes are as follows:

• we have proven that using extremely large “synthetic” data
sets of properties is of critical importance for developing
GCNN, as well as for predicting polymer properties (as
indicated by the results presented in Table 1);

• we have shown that using “synthetic” polymer data sets of
properties at the pretraining stage of “transfer learning” is
more preferable for enhancing the final accuracy of the
fine-tuned GCNN in comparison to using databases of
small molecules, such as the benchmarking QM9 data set
(as indicated by the results presented in Table 2);
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• we have addressed the “reality gap” problem for polymer
property prediction that has been previously explored in
the area of deep learning in computer vision tasks: too
large amount of “synthetic” data could significantly
decrease the model performance on real data. Our
estimates show that no more than 95% of the overall
amount training data should be “synthetic” in order to
provide a reasonable accuracy of GCNN if the “transfer
learning” approach is applied to its development.

These results significantly enrich the body of knowledge on
using “transfer learning” for DNN, and in particular GCNN, and
will impact the strategy of their development through the use of
the “transfer learning” approach. On the basis of our results, we
recommend the extensive application of “synthetic” data sets of
polymer properties instead of data sets for the properties of small
molecules (such as, for example, the well-known QM9
database). To develop such “synthetic” databases, classical
computational schemes for polymer properties are the most
suitable tools to be used. At the same time, particular attention
should be paid to the collection and organization of
experimental databases of polymer properties in order to
eliminate the “reality gap” problem. By following these
recommendations, the problem of data scarcity may be
overcome, while the development and application of DNN for
solving both direct and inverse tasks of the “structure−property”
relationship in polymer science continues.

To facilitate an active development in this area, we make
available our PolyAskInG database, as well as the source code of
the developed GCNN models, on the following web servers:
http://polycomplab.org/index.php/ru/database.html and
https://github.com/polycomplab/GCNN_PI_glass_
transition.git.

We suppose that the presented PolyAskInG database will be
just the first step toward creating a comprehensive, publicly
available database for machine learning in the area of polymer
science. However, even now our “synthetic” data set of the
PolyAskInG database could be used to train multifidelity
models, along with other existing databases.101 On the other
hand, the approaches proposed in the present work also pave the
way toward solving the inverse task in the “structure−property”
relationship, which will be the subject of our future publications.
We hope that the wide community of polymer researchers will
support such activity on public polymer database assembly for
ML and that the wide ML community will be interested in
solving this attractive and sophisticated ML task.
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