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Abstract: The conventional magnetic resonance imaging (MRI) evaluation and staging of cervical
cancer encounters several pitfalls, partially due to subjective evaluations of medical images. Fifty-six
patients with histologically proven cervical malignancies (squamous cell carcinomas, n = 42; adenocar-
cinomas, 1 = 14) who underwent pre-treatment MRI examinations were retrospectively included. The
lymph node status (non-metastatic lymph nodes, 1 = 39; metastatic lymph nodes, n = 17) was assessed
using pathological and imaging findings. The texture analysis of primary tumours and lymph nodes
was performed on T2-weighted images. Texture parameters with the highest ability to discriminate
between the two histological types of primary tumours and metastatic and non-metastatic lymph
nodes were selected based on Fisher coefficients (cut-off value > 3). The parameters’ discriminative
ability was tested using an k nearest neighbour (KNN) classifier, and by comparing their absolute
values through an univariate and receiver operating characteristic analysis. Results: The KNN
classified metastatic and non-metastatic lymph nodes with 93.75% accuracy. Ten entropy variations
were able to identify metastatic lymph nodes (sensitivity: 79.17-88%; specificity: 93.48-97.83%). No
parameters exceeded the cut-off value when differentiating between histopathological entities. In
conclusion, texture analysis can offer a superior non-invasive characterization of lymph node status,
which can improve the staging accuracy of cervical cancers.

Keywords: cervical cancer; computer-aided diagnosis; gynecological malignancy; magnetic reso-
nance imaging; MRI; radiomics; texture analysis
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1. Introduction

Cervical cancer is the third most common gynaecological malignancy worldwide with
an estimated incidence of more than 500,000 new cases and more than 250,000 deaths per
year [1]. These tumours continue to be the fourth most prevalent malignancy and the fourth
most common cause of cancer death in women despite advances in their identification
and treatment. [2]. There is an obvious discrepancy in the diagnosis, management, and
survival between developed and developing countries [3]. In the latter, these differences
are partially caused by limited access to healthcare services, including advanced imaging
techniques.

There are two main types of uterine cervix carcinomas. Squamous cell carcinomas
(SQCs) are the most common histological entity, while adenocarcinomas (ADKs) account
for 10-25% of all cases, with a gradually increasing incidence in recent years [4]. Most
studies consider ADKs as having a worse prognosis [5,6], while other research did not
detect significantly different outcomes of squamous and non-squamous carcinoma in early
cancer stages [7]. Therefore, the histologic impact on tumoral prognosis is still in debate.

According to the International Federation of Gynecology and Obstetrics (FIGO) criteria,
adopted in 1958 and revised in 2018, cervical cancer is currently the only gynaecological
malignancy that is still staged clinically. [8]. The latter introduces cross-sectional imaging
in the staging of these tumours, which brings two major benefits: the assessment of
retroperitoneal lymph nodes with the inclusion of a new stage (IIIC), and the 2-cm cut-off
dimension of primary tumours used for fertility-sparing trachelectomy [8]. However, it is
not stipulated which imaging technique is best suited for assessing cervical tumours and
lymph node status.

The radiological characterization of cervical cancers has a great impact on their sub-
sequent management. The classical imaging modalities used for the morphological char-
acterization of these malignancies include ultrasonography, computer tomography (CT),
and magnetic resonance imaging (MRI) [9]. Additionally, relatively newly developed imag-
ing techniques, such as positron emission tomography-computed tomography (PET-CT),
diffusion-weighted imaging (DWI) with the measurement of the apparent diffusion coef-
ficient (ADC), and dynamic contrast-enhanced imaging (DCE) via perfusion parameters,
have the potential to improve the diagnosis of these tumours [10-12].

Despite the rapid development of these techniques, there are still several pitfalls
in assessing parametrial invasion and adenopathy detection. The sensitivity of imaging
modalities in the diagnosis of parametrial invasion can range between 53-74% for MRI
and 42-55% for CT [9,13]. However, the lymph node status is more difficult to establish.
Lymph node metastases (LNM) can be detected with a 29% to 86% sensitivity by common
imaging techniques, mostly because micro-metastatic lymph nodes with a normal size are
not detected through the macroscopic evaluation of medical images [14,15]. It is crucial
to improve these issues, since the oncological treatment depends on the tumoral staging,
which is modified by the detection of parametrial and lymph node involvement [16].

It is desirable that certain histopathological features of cervical cancers could also be
reflected in medical images, but they are impossible to be quantified by the naked eye.
As a novel technique to extract quantitative data (texture parameters) from almost all
types of imaging examinations, texture analysis (TA), has recently gained popularity in
the imaging research field. TA appraises pixel intensity and distribution patterns, offering
an objective description of image content [17]. Previous research evaluating the utility
of TA applied to MRI images of cervical cancers yielded promising results. Becker and
colleagues [18] showed that texture parameters extracted from DWI images can predict
tumour differentiation and nodal status; another study conducted by Meng et al. [19]
showed that parameters computed from T2 sequences and ADC maps could predict
cervical cancer’s recurrence, and Sun and colleagues [20] concluded that TA parameters
extracted from T1- and T2-weighted images can be used as pretreatment predictors of
chemotherapy response.
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The objective of this study was to assess the usefulness of TA applied to T2-weighted
images of cervical cancers in the pre-treatment stage. Our goal was to determine whether
texture criteria may help discriminate between FIGO stages, identify the histological tumour
type, and assess the lymph node status.

2. Materials and Methods
2.1. Study Group

This single-institution, retrospective pilot study has been approved by the institutional
review board (Ethical Committee of the “Iuliu Hatieganu” University of Medicine and
Pharmacy Cluj-Napoca; No 50/11.03.2019). Written informed consent was provided by
all patients.

A keyword search in our institution’s database was conducted in order to identify all
patients with cervical cancer who underwent abdominopelvic MRI examinations before
surgical or radio-chemotherapy treatment between November 2018 and May 2020, using
the words: “cervical + cancer/+ tumor/+ mass” and “cervix + cancer/+ tumor/+ mass”.
The original search showed 271 reports, which were inspected by one researcher. All the
cases without uterine cervical cancer were excluded (n = 32). The remaining 229 partic-
ipants” medical records were collected from our healthcare unit’s archive and examined
for information on illnesses. The following exclusion criteria were applied: subjects who
did not undergo colposcopy with biopsy in our healthcare unit (n = 29), those with a
lack of initial FIGO staging (n = 3), patients who did not undergo oncological or surgical
treatment and follow-up after the initial MRI examination (n = 43), those who received
follow-up examinations after surgery or chemoradiation therapy (1 = 97), and those for
whom imaging artifacts affected the T2-weighted sequences (n = 11).

2.2. Imaging Protocol

Abdominopelvic MRI acquisitions were performed with a 1.5 T scanner (General
Electric Sigma Excite®, GE Medical Systems, Milwaukee WI, USA). The administration of
20 mg hyoscine butyl bromide (Buscopan®, Sanof SA, Paris, France) was used to diminish
intestinal peristalsis. For the pelvic protocol, a phased array coil was used, and the following
sequences were performed: axial T1 fast spin-echo (FSE), sagittal T2 fast recovery fast spin-
echo (FRFSE), oblique axial T2 FRFSE, oblique axial T2 FRFSE, axial T2 FRFSE, axial
diffusion-weighted sequences with three b values (0, 800, 1000 s/mm?). For abdominal
examination, a phased array coil was used, and the following sequences were performed
with breath-hold: axial and coronal two-dimension (2D) fast imaging employing steady-
state acquisition (FIESTA), axial T2, axial T1 fast spoiled gradient echo (FSPGR) with fat
saturation (FatSat). Subsequently, 18-20 s following intravenous injection of gadolinium
dimeglumine (Magnevist®, Berlex, Wayne, NJ, USA) 0.1 mol/L per kg body weight, a three-
dimensional (3D) liver acquisition with volume acceleration (LAVA) and a post-contrast
axial T1 FSPGR FatSat were obtained. Pelvic post-contrast imaging was acquired 5 min
after intravenous injection with axial T1 FSE. Each MRI acquisition included an oblique
axial T2 FRFSE (echo time (TE), 102; repetition time (TR), 3350; field of view (FOV), 26 cm,
section thickness, 5 mm; spacing, 0 mm; and number of excitations (NEX), 3) and a sagittal
T2 FRFSE sequences (TE, 85; TR, 3100; FOV, 24 cm; section thickness, 5 mm; spacing,
0.5 mm; and NEX, 4), which were the only ones further processed in the current study. The
oblique axial T2 FRFSE and the sagittal T2 FRFSE were the only sequences used for the
texture analysis.

2.3. Texture Analysis Protocol

The radiomic method entails four stages: image segmentation utilizing a region of
interest, feature extraction, feature selection, and prediction. Two radiologists (with a
combined expertise of 10 years in pelvic genital oncology MRI) who were aware of the final
diagnosis assessed all of the exams on a dedicated workstation.
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MRI imaging features and pathological analysis were considered when assessing
the lymph node status. A maximum lymph node diameter of less than 1 cm and no
morphological tumour changes were considered as advocating for benignancy. LNM was
considered when at least two of the following criteria were met: a short lymph node axis of
>1 c¢m, the presence morphological changes advocating for malignancy (necrosis, invasive
contour, advanced architectural disorganization), or when indicated by the pathological
analysis following surgical dissection. On the sagittal T2-weighted images (T2WI), the same
radiologists correlated the lymph nodes’ imaging appearance with the available medical
data and selected and marked only one lymph node considered representative from every
patient. Tumour evaluation was performed on the oblique axial T2WI. The examinations
were then anonymized, and the two T2-weighted sequences were retrieved in DICOM
format (Digital Imaging and Communications in Medicine).

A third radiologist, blinded to the clinical outcome, imported the sequences in a
freely available texture analysis software, MaZda version 5 [21]. Each primary tumour and
selected lymph node were separately segmented using a 3D region of interest (ROI) which
crossed all the slices in the sequence where the targeted lesions were observed. For the
definition of each RO, a semi-automatic level-set technique was used supervised by the
same radiologist who also made the necessary adjustments (Figure 1). Texture analysis’
results are influenced by inter- and intrascanner effects [22,23]. To diminish these effects,
the ROI contents were normalized between the mean and three standard deviations.

Figure 1. (A) Oblique axial T2-weighted image of a 55-year-old patient with squamous cervical
carcinoma (red arrow) and (B) a three-dimensional (3D) region of interest (ROI) (red) covering the
tumour. (C) Sagittal T2-weighted image of a 61-year-old patient with histologically proven metastatic
lymph node (green arrow) and (D) the 3D ROI (red) covering the lesion.

Over 300 parameters were extracted from the texture analysis of each ROI These param-
eters, originating from the texture analysis of each RO, yielded more than 300 parameters.
These parameters were calculate using the absolute gradient, the run-length matrix, the co-
occurrence matrix (GLCM), wavelet transformation, and histogram analysis. A reduction
technique was applied to narrow the number of parameters, since such large data cannot be
statistically analysed. In order to find the most relevant parameters to differentiate between
groups, the Fisher selection method was applied. This method provided the selection of ten
texture features that have a high discriminatory potential [24]. Fisher coefficients (F, the ratio
of between-class to within-class variance) which had a value of at least 3 were considered as
having good discriminatory potential.

Regarding the parameter name generated by the MaZda software, it represents an
abbreviation of the particular feature produced by the extraction algorithm. The first letter
designates the colour channel, whereas the letter “C” indicates that a black-and-white
image was computed. The next letters (H, V, Z, and N) symbolize the four directions
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between the pixels taken into account (horizontal, vertical, 45°, and 135°, respectively).
The letter “S” symbolizes a p £ 30 (n = grey-level mean; and o = grey-level standard
deviation) method used for the normalization of ROIs. The number following the direction
code defines the distance in the GLCM algorithm between the pixels being taken into
account [25].

2.4. Image Classification and Statistical Analysis

Comparisons of texture parameters were performed to distinguish between the two
histopathological entities of cervical carcinoma (SQCs and ADKs) and between non-
metastatic and metastatic lymph nodes. Two methods were used to assess the discrimina-
tory power of the texture features.

Firstly, the set of ten parameters selected by the Fisher method was further imported
into the B11 program, part of the MaZda package, which allowed us to further investigate
the utility of selected texture features to discriminate between selected groups by the
use of classifiers. A classifier based on k nearest neighbour (KNN) was used to test the
ability of texture parameters to distinguish between selected groups. The KNN test’s
performance was quantified through its accuracy (expressed as a percentage of correctly
classified lesions/total).

Secondly, the Mann-Whitney U test was used to compare the absolute values of
texture parameters which were greater than the Fisher coefficients” cut-off value. The
parameters having p values less than 0.05 on the univariate analysis were subjected to
receiver operating characteristic (ROC) analysis, and the area under the curve (AUC) was
determined with 95% confidence intervals (CIs). Independent predictor factors for the
diagnosis of LNM were found using multiple regression analysis using a “enter” input
model, and the coefficient of determination (R-squared) was calculated. ROC analysis
was used to assess the predictors’ diagnostic value. A dedicated piece of software called
MedCalc version 14.8.1, which is available for purchase, was used for statistical analysis
(MedCalc Software, Mariakerke, Belgium).

3. Results

Following application of the inclusion and exclusion criteria, 56 of the 271 patients re-
ferred to our department throughout the study period were included in the analysis. (mean
age, 51.93 years; age range, 28-77 years; standard deviation, +12.43 years). Histopathologi-
cal diagnosis after biopsy identified squamous carcinoma in 42 subjects and adenocarci-
noma in 14 patients. The clinical staging was assessed using the 2018 FIGO classification:
IB (in 7 patients), IIA (in 8 patients), IIB (in 24 patients), IIIB (in 3 patients), and stage IIIC
(in 13 subjects).

Imaging and pathology results were referenced when assessing the lymph node status.
Thirty-nine patients were considered as having no tumoral lymph node involvement, as
having a short lymph node axial diameter of less than 1 cm and no morphological changes
advocating for malignancy. The short axis of all considered LNMs exceeded 1 cm. Surgical
removal followed by pathological confirmation of lymph node tumoral involvement was
performed for 12 patients. Morphological changes advocating for malignancy were repre-
sented by (necrosis, n = 1; irregular and infiltrative contour, # = 1; advanced architectural
disorganization, n = 3). No paraaortic lymph node met the inclusion criteria. The texture
parameters with the highest discriminative potential selected by the Fisher method for
every comparison are shown in Table 1.

The comparison between squamous cell carcinomas and adenocarcinomas showed
that no texture parameter exceeded the Fisher coefficient cut-off value. The KNN system
misclassified all data vectors from ADKs. The highest-rated texture feature (F = 0.65) in the
comparison between the two histological types of malignancy was the inverse difference
moment (CZ556InvDfMom). The median values of this parameter were higher for SQCs
(median value, 16.5; interquartile range (IQR), 0.11-210.13) than for ADKs (median value,
0.11; IQR, 0.05-0.16).
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Table 1. Texture parameters selected by the Fisher method as having the highest discriminatory
potential between compared groups. Parameters with adequate discriminatory potential (F > 3) are
marked in bold.

Compared Groups

Texture Parameter Sets

Squamous cell carcinoma and

adenocarcinoma

CZ556InvDfMom (F = 0.65), Teta4 (F = 0.65), Teta3 (F = 0.65), CN3S6InvDfMom (F = 0.63),
CV3S6Contrast (F = 0.58), CV3S6Correlat (F = 0.58), CZ2S6DifVarnc (F = 0.57),
CV4S6Contrast (F = 0.57), CV4S6Correlat (F = 0.55), CZ1S6DifVarnc (F = 0.54)

Benign and metastatic lymph nodes

CZ1S6Entropy (F = 6.25), CN4S6Entropy (F = 4.98), CV2S6Entropy (F = 4.91),
CH2S6Entropy (F = 4.9), CH3S6Entropy (F = 4.88), CZ2S6Entropy (F = 4.88),
CN5S6Entropy (F = 4.88), CN3S6Entropy (F = 4.78), CN2S6Entropy (F = 4.75),
CV4S6Entropy (F = 4.68)

F (value of Fisher coefficient), InvDfMom (inverse difference moment), Teta4 (parameter 64), Teta3 (parameter
03), Contrast (contrast), Correlat (correlation), DifVarnc (difference variance), Entropy (entropy), RLNonUni (run
length nonuniformity), GLevNonU (grey level nonuniformity).

The median lymph node diameter was 7.31 mm (IQR, 3.2-9.64 mm) for benign (non-
metastatic) and 17.83 mm (IQR, 12.7-20.6 mm) for malignant (LNM) nodes. When differen-
tiating metastatic from non-metastatic lymph nodes, all parameters from the Fisher-selected
set exceeded the cut-off value. The entire feature set consisted of computation variations
of the entropy parameter. The ANN misclassified 6.25% (accuracy, 93.75%) of the data
vectors, all consisting of images of metastatic nodes that were considered non-malignant.
The comparison between the two lymph node statuses, based on the absolute values of
each parameter, was statistically significant (p < 0.0001) (Table 2). The individual ROC
analysis showed adequate discriminatory potential for each entropy variation (Table 3). In
multivariate analysis, according to multiple regression, only one parameter (CZ1S6Entropy)
was an independent predictor of metastatic lymph node (R2 = 0.587) (Table 4). This was
also the parameter that held the highest Fisher coefficient (F = 6.25). Considered together,
the ten variations of the entropy parameter were able to predict metastatic lymph nodes
with 87.5% (67.6-97.3%) sensitivity and 93.48% (82.1-98.6%) specificity. The ROC curve
comparison between CZ1S6Entropy and the multivariate analysis did not yield statistically
significant results (p = 0.427) (Figure 2). Figure 3 displays visual maps generated on the
basis of texture parameters.

Table 2. The median values of the best-suited parameters for distinguishing metastatic and non-
metastatic lymph nodes and the univariate analysis results. Between the brackets, values correspond-
ing to the interquartile range.

Entropy Variation Non-Metastatic Lymph Nodes Metastatic Lymph Nodes Univariate Analysis (p)
CZ1S6 246 (2.21-2.63) 2.71 (2.41-2.9) <0.0001
CN4S6 2.37 (2.23-2.53) 2.76 (2.67-2.92) <0.0001
CV2S6 2.5 (2.39-2.57) 2.76 (2.69-2.85) <0.0001
CH2S6 2.5 (2.38-2.57) 2.78 (2.67-2.86) <0.0001
CH3S6 2.49 (2.37-2.6) 2.79 (2.69-2.9) <0.0001
CZ256 2,51 (2.4-2.57) 2.79 (2.69-2.88) <0.0001
CN5S6 2.3 (2.11-2.49) 2.75 (2.63-2.92) <0.0001
CN3S6 2.43 (2.29-2.57) 2.78 (2.68-2.92) <0.0001
CN2S6 2.49 (2.33-2.59) 2.78 (2.7-2.89) <0.0001
CV4S6 247 (2.35-2.59) 2.77 (2.69-2.89) <0.0001




Diagnostics 2023, 13, 442 7 of 12

Table 3. Receiver operating characteristic analysis results of the parameters that showed statistically
significant results at the univariate analysis.

\]/Ear;:ra(t)ilz};l AUC Sigrljief‘i,ce;;nce Youden Index ACsrsi(’::i?(t;d Sensitivity (%)  Specificity (%)
CZ156 (0_852'_951;833) <0.0001 0.8148 525913 88 (68.8-97.6) (82?3;‘;88_ 6
CN4S6 (0‘8%9_%?989) <0.0001 0.8148 >2.5872 88 (68.8-97.5) (82?13;‘;88. 6
CV256 (o.sgigj)% 0) <0.0001 0.7783 >2.6486 80 (59.3-93.2) (88?;;239.9)
CH2S6 o 82;%?979) <0.0001 0.7965 52,6386 84 (63.9-95.5) (85?;;259_ 5)
CH3S6 (0'82%9_%%978) <0.0001 0.7783 >2.674 80 (59.3-93.2) (88?57;339'.9)
C7256 (0.8262.1978) <0.0001 0.7783 >2.6748 80 (59.3-93.2) (88?;;5;39.9)
CN5S6 0957 <0.0001 0.8148 >2.549 88 (68.8-975)  93.48(52.1-98.6)

(0.881-0.991)
CN3S6 (0'8505'3‘(1).1983) <0.0001 0.7565 52,6692 80 (59.3-93.2) (85?5’;259. 5)
CN2s6 (0.85039_?6,7981) <0.0001 07699 >2.6823 (57.7;19;.9) (88?;239.9)
CV4S6 (0.8;)%?983) <0.0001 0.7783 52,6727 80 (59.3-93.2) (88?57;%39.9)

Table 4. Multivariate analysis of factors independently associated with the presence of metastatic

lymph nodes.
Independent Variable Coefficient Standard Error p VIF

CZ1s6 4.0480 1.9353 0.0408 62.276
CN4S6 2.0173 2.7817 0.4712 339.770
CV2s6 —0.3968 2.2414 0.8601 99.692
CH2S6 —1.4639 2.5142 0.5626 136.360
CH3S6 2.7820 2.6989 0.3068 194.855
CZ256 —2.7008 2.3955 0.2641 136.320
CN5S6 0.4381 1.3913 0.7539 120.521
CN3S6 —2.0360 2.9980 0.4997 308.708
CN2S6 —1.9234 2.5207 0.4485 174.031
CV4s6 0.9889 1.8063 0.5861 93.673

Sign. level <0.0001

R? 0.587
R? adjusted 0.5170
M.R. Coef. 0.7661

p, significance level; VIF, variance inflation factor; R?, coefficient of determination; R? adjusted, coefficient of
determination adjusted for the number of independent variables in the regression model; Sign. level, significance
level of the multivariate analysis; M.R. Coef., multiple correlation coefficient.
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Figure 2. Receiver operating characteristic (ROC) curve for the multivariate analysis in metastatic
lymph node detection compared to CZ1S6Entropy.

Lu -E & ».J

Figure 3. (A) A sagittal T2-weighted image of a non-tumoral lymph node in a 58-year-old patient;
(B) generated map of this image based on CZ1S6Entropy parameter (blue arrow pointing to the
lesion). (C) A sagittal T2-weighted image of a 61-year-old patient with pathologically confirmed
metastatic lymph node; (D) generated map of this image based on CZ1S6Entropy parameter (green
arrow pointing to the lesion).

4. Discussion

Squamous cell carcinomas and adenocarcinomas are the most common histopatholog-
ical types of uterine cervical cancers [26]. Because classic imaging diagnostic techniques
are not able to differentiate the two histological tumour types, a colposcopy with biopsy
remains mandatory [7]. However, oncological management does not significantly differ
for the two types, and therefore the histopathological appurtenance can be considered an
independent prognostic factor [27].

This study failed to differentiate between the two types of cervical primary tumours
based on texture features. The KNN classifier did not recognize any ADKs as being
a separate histological entity from SQCs. However, ADKs measured higher values of
the InvDfMom parameter compared to SQCs. This parameter measures the degree of
homogeneity within an image. Its values rise when more pixel pairs are close to the grey-
scale value, resulting in higher values for homogeneous images [28]. This fact is probably a
consequence of the unequal distribution of groups. Since the SQC group comprised almost
three times more cases than the ADK, it is possible that some of the lesions comprising
the first group had more heterogeneous differentiation degrees, or the MRI appearance
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was contaminated by necrosis or bleeding. A similar study conducted by Becker et al. [18]
also observed no correlation between texture parameters extracted from the ADC maps
and the histological subtype of cervical carcinomas. On the contrary, the research of
Ciolina et al. [29], which also extracted texture features from T2WI but used different
software (TexRad) for analysing the data, concluded that ADKs and SQCs can be well
differentiated by the parameters mean and skewness (p = 0.002). These good results may
be due to the use of more advanced software used for image processing. TexRad allows
the appliance of multiple anatomical filters that enhance intensity-variation features of
different sizes corresponding to the spatial scale of the filter itself [29]. It is possible that
the application of these filters would result in parameters that better analyse the intrinsic
properties of the examined tissues.

Lymph node involvement in cervical cancer is an important prognostic factor, requiring
a radical change in treatment [30]. Even following specific therapy, patients with LNM
show a reduction in the overall 5-year survival rate [31]. Additionally, Meng J et al. [19]
demonstrated that tumour recurrence is significantly higher in patients with positive lymph
nodes, compared to the negative group. In addition, LNM has a similar incidence in early
(10-30%) compared to locally advanced cervical cancer (15-30%) [32,33].

There are a few pitfalls in the conventional MRI evaluation of LNM in cervical cancer.
By simple qualitative assessment, LNM could be diagnosticated with high specificity (91%)
but low sensitivity (57%) in a study conducted by Liu B et al. [34]. Size measurements
can predict LNM in cervical cancer with a high specificity (96.8-97.9%) but again low
sensitivity (43.5-62.2%) [35,36]. More advanced MRI techniques, such as DWI via the
ADC values, were proven to be more accurate in identifying LNM (83.3% specificity,
74.7% sensitivity, and 78.4% accuracy) [37]. However, later research [37] included only
lymph nodes that exceeded 5 mm in diameter, most likely because of the ADC maps’ low
resolution. Nonetheless, the gold standard for lymph node diagnosis remains surgery
followed by pathological analysis. However, unnecessary lymphadenectomy may lead
to post-surgical morbidities, such as infection or nerve or vessel lesions [38]. Therefore,
it is beneficial to detect the presence of lymph node metastases before treatment using
non-invasive imaging techniques.

Our results showed that the entire feature set, composed of ten computation variants
of entropy, was able to distinguish metastatic from non-metastatic lymph nodes. One
single variation, CZ1S6Entropy (entropy computed from a grey-scaled image, using a
45° direction code and an inter-pixel distance of 6, from an ROI normalization of p & 30),
proved to be an independent predictor for LNM. However, CZ1S6Entropy diagnostic
performance was not statistically different from the overall multivariate model, most
likely because the parameters were highly-corelated with each other. Entropy parameters
measure the disorder of pixel intensity within an image. The values increase when there is
a non-uniform image content, and decrease otherwise [39-41]. All ten entropy variations
held higher values for LNMs than for benign nodes, probably because the tumoral cells
produced high disorder in the normal lymph node architecture. This observation can
also be supported by the two entities” appearance on the maps generated based on the
CZ1S6Entropy parameter

Moreover, another classifier used for the same scope (based on artificial neural net-
works) showed better accuracy for LNM classification than the previously documented
ADC values [37] (93.75% versus 78.4%). Overall, texture parameters individual and com-
binate sensibility for LNM diagnosis exceeded the ones previously reported for qualities,
size, and ADC evaluations [34-37]. The individual specificity recorded by texture pa-
rameters, however, was almost equal with the one found for conventional imaging assess-
ments [34-37], and even exceeded it in a few isolated cases. These promising results indicate
that TA can augment the tumoral lymph node diagnosis and probably offer a non-invasive
alternative to the present surgical gold standard. The study conducted by Becker et al. [18]
also observed that texture analysis results were able to differentiate between metastatic
and non-metastatic lymph nodes in cervical cancer. However, the workflow was almost
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entirely different in this study [18]: TA was performed on a single slice on ADC maps
using MATLAB software (v2016b, The MathWorks Inc., Natick, MA, USA); the lymph node
status was histologically confirmed for all 23 subjects, and two parameters derived from
the histogram analysis (skewness, p = 0.04; kurtosis, p = 0.02) were statistically significant
when comparing the two groups. However, the histogram parameters only reflect the pixel
intensity characteristics, and not the actual spatial relation of pixel intensities, for which
reason they are often referred to as non-textural attributes [18,25,42-44].

In summary, our findings suggest that the whole lesion texture analysis of primary cer-
vical cancer and lymph nodes can successfully differentiate metastatic from non-metastatic,
but failed to distinguish between the two histopathological entities of primary tumours.
The presence of metastatic lymphadenopathy is one of the most important predictive factors
for the treatment and evolution of cervical cancer [34,37]. Thus, TA can offer a non-invasive
quantitative appreciation of lymph node status that also comes at a low cost, and is suitable
for access in developing countries (or smaller medical centres without modern radiology
departments), since only the radiomics software and the basic examination sequences are
needed. It is possible that our results regarding lymph node tumoral involvement could be
successfully applied to other pathologies. Additionally, because we used examinations pro-
vided by the same MRI machine and following the same protocol, we created an adequate
classification environment for the KNN.

The present study had several limitations. Firstly, the cohort was rather small: 56 pa-
tients were included, with 14 cases of ADKs. This, however, is in accordance with the overall
incidence of this histopathological entity [26]. Secondly, some of the cases were advanced
cervical cancers that were managed conservatively, so we also categorized metastatic lymph
nodes based on their imaging appearance. Thirdly, due to the retrospective nature of the
study, there may have been selection bias. In this regard, the study requires validation by
larger prospective research.

5. Conclusions

Clinical examination has supreme importance in the evaluation of cervical tumours.
Imaging is required for a detailed characterization of loco-regional extension, but the classic
imaging approaches are insufficient for lymph node assessment, which is one of the most
important prognostic factors in cervical cancer. Texture analysis can offer a superior non-
invasive characterization of lymph node status, which can improve the staging accuracy of
cervical cancers.
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