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Abstract
We present an agent-based model (ABM) to simulate a hepatic inflammatory response

(HIR) in a mouse infected by Salmonella that sometimes progressed to problematic propor-

tions, known as “sepsis”. Based on over 200 published studies, this ABM describes interac-

tions among 21 cells or cytokines and incorporates 226 experimental data sets and/or data

estimates from those reports to simulate a mouse HIR in silico. Our simulated results repro-

duced dynamic patterns of HIR reported in the literature. As shown in vivo, our model also

demonstrated that sepsis was highly related to the initial Salmonella dose and the presence

of components of the adaptive immune system. We determined that high mobility group

box-1, C-reactive protein, and the interleukin-10: tumor necrosis factor-α ratio, and CD4+ T

cell: CD8+ T cell ratio, all recognized as biomarkers during HIR, significantly correlated with

outcomes of HIR. During therapy-directed silico simulations, our results demonstrated that

anti-agent intervention impacted the survival rates of septic individuals in a time-dependent

manner. By specifying the infected species, source of infection, and site of infection, this

ABM enabled us to reproduce the kinetics of several essential indicators during a HIR,

observe distinct dynamic patterns that are manifested during HIR, and allowed us to test

proposed therapy-directed treatments. Although limitation still exists, this ABM is a step for-

ward because it links underlying biological processes to computational simulation and was

validated through a series of comparisons between the simulated results and experimental

studies.

1. Introduction
Sepsis is initially activated by the presence and growth of pathogens in an organism. Under
normal healthy circumstances, intruding pathogens are eliminated by the activation of immune
cells, such as tissue macrophages and activated neutrophils, in the immune system [1, 2]. If an
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overwhelming immune response occurs, an unbalanced response between immune cells and
cytokines may lead to unexpected harmful outcomes for patients, resulting in sepsis. In clinics,
sepsis is defined as a potentially life-threatening complication of disease accompanied by
symptoms such as high fevers, elevated heart rate, and altered mental status. If sepsis progresses
to severe sepsis or septic shock, organ dysfunction occurs, leading to a high chance of death
[3].

Severe sepsis and septic shock during an infection are the major causes of death in intensive
care settings [4]. An average of 250,000 deaths per year in the United States (US) are caused by
sepsis [5]. Among patients in intensive care units (ICUs), sepsis ranks as the second highest
cause of mortality [6] and the 10th leading cause of death overall in the US [7]. An average of
750,000 sepsis cases occur annually, and this number continues to increase [6]. Care of patients
with sepsis can cost as much as $60,000 per patient, resulting in a significant healthcare burden
of nearly $17 billion annually in the US [8, 9]. Sepsis in a hospitalized patient can lead to
extended hospital stays and subsequently increase financial burdens. Cross and Opal [10] dis-
cussed the lack of rapid, reliable assays available to identify the stage or severity of sepsis and to
monitor the use of immunomodulatory therapy. Such assays are unavailable because of the
complexity of the inflammatory response and the unpredictable nature of septic shock in indi-
vidual patients; consequently increasing the difficulty of monitoring single or multiple compo-
nents of inflammation with specific supportive therapies [10, 11].

A significant past focus on modeling immune responses during sepsis has emerged in an
effort to explore the complicated dynamic presentation of cells, tissues, and cytokines during
infection. In 2004, Kumar et al. [12] presented a simplified 3-equation system dynamics mathe-
matical model (SDMM) to describe mathematical relationships between pathogen, early pro-
inflammatory mediators, and late pro-inflammatory mediators in sepsis progression. In 2006,
Reynolds et al. [13] proposed a mathematical model for acute inflammatory response (AIR)
that included a time-dependent, anti-inflammatory response in order to provide insights into a
variety of clinically relevant scenarios associated with inflammatory response to infection.
Using a series of known and hypothesized kinetics of biological system components from the
literature, mathematical models describe infectious disease processes by measuring steady
states of various components in the immune system [14]. Unfortunately, these models fail to
capture heterogeneous information of various components in the simulations and fail to
account for deviations from various components’ aggregated behaviors [15].

The agent-based model (ABM), a powerful computational modeling technique, simulates
complex nonlinear relationships between components and intuitively maps a realistic biologi-
cal system by incorporating spatial effects and the stochastic nature of the immune response
into model construction [16, 17]. One key element of ABM includes agents, a collection of
decision-making entities classified into types based on components described in the real-world
system. Each type of agent executes behaviors that can mimic the system they represent when
aggregated. Implementation of a predefined set of rules allows agents to move in a designed
direction and arbitrarily interact with other agents in a spatial environment. Agent behaviors
are updated in various locations according to update rules executed at discrete time steps.
ABM inherently captures repetitive spatial interactions between agents in a stochastic process
or under a known probability distribution, making it a powerful tool to render valuable infor-
mation and simulate a biological system. Implementation of ABM requires well-established
technology that relies on computers to explore dynamics beyond the reach of pure mathemati-
cal methods [18, 19]. The inherent nature of computational structure allows ABM to be effi-
ciently implemented on parallel computers [20].

An and his collaborators [21–23] developed a series of agent-based models to simulate
behaviors of cells and cytokines in both the innate and adaptive immune system of a
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generalized inflammatory response. In 2011, Wu et al. [24] proposed an integrated ABM
embedded with a mathematical model to simulate AIR progression at the interface between
blood vessels and cells within a hypothetical generalized organ. Recently, Dutta-Moscato et al.
[25] proposed a multi-scale agent-based silicomodel of liver fibrosis using an ABM to simulate
an HIR. In addition to modeling interactions between cells, Dong et al. [26] proposed an ABM
framework to model intracellular dynamics of the NF-kB signaling cascade, illustrating subse-
quent intercellular interactions among macrophages and T-helper cells through the up-regula-
tion of inflammatory mediators. Their approach explored hypothetical scenarios of AIR and
potentially improved the understanding of molecular behaviors that could develop and expand
to emergent behavior of the entire AIR system. In addition to these related work, there are
studies that presented the application of agent-based models to simulate various types of dis-
ease progression [27–30].

Existing ABMs provide evidence that agent-based modeling is a valid approach for simulat-
ing disease progression [21, 22, 24–26]. In this study, we proposed an integrated-mathemati-
cal-multi-agent-based model (IMMABM) to simulate mouse HIR caused by Salmonella at the
tissue level. By specifying the infected species, source of infection, and site of infection, the
scope of the IMMABM allowed us to improve modeling approach accuracy without loss of
generality. This IMMABM required that each interaction incorporated into the model was
based on actual data from observations made during experimental infections in vivo or mea-
surements made ex vivo or in vitro, thereby resulting in an incorporation of 226 experimental
data from 210 publications related to mouse hepatic inflammation induced by Salmonella.
When data were not available, we extrapolated from related Gram-negative bacteria or other
pathogens, keeping in mind that fidelity to actual Salmonella infections was necessary. There-
fore, we summarized interactions among cells, tissues, and cytokines during mouse HIR and
we calibrated quantitative changes in the HIR with experimental data and necessary mathemat-
ical expressions for agent modeling. We attempted to calibrate variables based on unit relation-
ships observed in the experimental systems. A key objective of our IMMABM was to
incorporate available experimental data into the computational simulation.

Simulated results from IMMABM showed that four distinct dynamic patterns emerge dur-
ing mouse HIR: a healing response, persistent infection, a hyperinflammatory response, and
organ dysfunction. Emerging simulations were verified through a pattern-oriented analysis
found in available mouse experimental studies. Furthermore, simulated results from IMMABM
determined that expression of high mobility group protein 1 (HMGB-1), C-reactive protein
(CRP), interleukin 10 (IL-10): Tumor necrosis factor alpha (TNF-α) ratio, and the CD4+ T
cell: CD8+ T cell ratio are highly correlated with the outcomes of mouse HIR. We also corre-
lated mouse HIR to the initial Salmonella challenge level during IMMABM simulation. Most
importantly, we observed that the survival rates during HIR are dependent on the time of
administering antimicrobial or anti-cytokines (anti-TNF-α and/or anti-HMGB-1) treatments.

2. Materials and Methods

2.1 Simulation environment of the IMMABM for HIR
This IMMABM attempted to simulate a Salmonella infection in the mouse liver. The liver,
enriched with resident tissue macrophages (Kupffer Cells), is recognized as a key organ of the
immune system that is vital for elimination of a Salmonella infection [31, 32]. We chose Salmo-
nella as a “targeted” pathogen strain because it is responsible for millions of deaths in develop-
ing countries every year [33]. Furthermore, immune responses to Salmonella infections have
been investigated extensively [34–39]. Therefore, an abundance of data is available for accurate
incorporation of relationships among variables (agents) in order to support our IMMABM.
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2.2 Software platform
We used NetLogo 5.1.0 [40], a platform with a simplified programming environment, easily
implemented tool sets, and well-established documentation support, in order to implement the
IMMABM [41]. The primary user interface of NetLogo is comprised of two-dimensional (2D)
grids, and agents can be divided into two categories: “patches” and “turtles.” "Patches" are fixed
agents placed on background grids in the model workspace. “Turtles” are mobile agents that
occupy a position or move freely on the surface of patches and execute certain functions or
actions regulated by the simulated system. NetLogo also applies a class called “breed” to define
agent types with similar behaviors or types that are controlled by the same mechanism. The
concept of “breed” allows the modeler to define a class of agents with a set of common state
variables and establish various functions or actions (autonomous behaviors) for agent types.
The interface of NetLogo allows the modeler to set initial parameters and observe simulation
results.

2.3 Simulation initial setting
We generated a 401 × 401 2D grid in NetLogo as the simulation interface, designed to simulate
a 2D projection of a mouse liver. We focused on the cellular interactions between liver sinusoid
and hepatocytes in mouse. The interface of cellular interactions is comprised of five main com-
partments: liver sinusoid, sinusoid endothelial cells (SECs), the space of Disse, the site of hepa-
tocytes, and portal triad (Fig 1A) [42]. The Portal triad is a complex area including the hepatic
artery, portal vein, and bile duct [42]. Blood flows from the portal triad area to the liver sinu-
soid, which carries blood-borne pathogens (i.e. Salmonella) to the site of hepatocytes. Hepato-
cytes are separated from the liver sinusoid by the space of Disse and sinusoid endothelial cells
[42]. Kupffer Cells are distributed along sinusoid endothelial cells, and are able to ingest and
kill the blood-borne Salmonella [43]. To mimic this liver structure, we divided the entire inter-
face of NetLogo into five regions to represent the liver sinusoid, SECs, the space of Disse, the
site of hepatocytes, and portal triad in the liver [43]. In the silico simulated environment, the

Fig 1. A comparision between liver structure in mouse and simulated liver structure in NetLogo at simulation step equal to 0. (A)
Diagrams of 2D liver structure in mouse. (B) Simulated area of the HIR in the NetLogo interface at simulation step equal to 0.

doi:10.1371/journal.pone.0161131.g001
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probabilities that different agents (cells, cytokines) interact are more important than the actual
physical morphology, which in vivo determines how these agents will interact. The choice of
agents is directly comparable to the cell types and tissue organization formed in the liver.
Therefore, the NetLogo setup is appropriate for this model. The initialized interface of NetLogo
is shown in Fig 1B. Kupffer Cell numbers are approximately one-fourth the number of hepato-
cytes in the liver [42]. SEC numbers are approximately one-third the number of hepatocytes,
and approximately one-eighth the number of mast cells exist compared to the number of hepa-
tocytes [42, 44]. The initial number of hepatocytes was determined by an automated process of
filling the region with hepatocytes in a 401 × 401 2D grid. For simulation size presented in this
paper, the number of hepatocytes was initialized to 80,200. Considering the numeric propor-
tion between hepatocytes, Kupffer Cells, SECs, and mast cells, we set the initial number of
Kupffer Cells to 20,160, SECs to 26,466, and mast cells to 10,426. Detailed information on the
initialization process of the IMMABM is provided in S1 Table.

2.4 Process of IMMABM development
IMMABM was developed as an agent-oriented computer program to describe agent rules and
behaviors. Each agent type was defined as “breed” in NetLogo, and each “breed” in IMMABM
had specific state variables. By assigning various values to the state variables, the agents were
regulated to execute a series of functions based on various locations and environmental inter-
faces. Interactions between agents were highly stochastic, and we incorporated mathematical
expressions such as logistic growth functions, mass-action kinetics, Michaelis-Menten kinetics,
and decay functions to quantitatively measure complicated biological processes. Furthermore,
the process of writing computer codes strictly followed conditional statement “if-then” rules.
Those rules conformed to biological mechanisms of HIR.

The primary objective of our IMMABM was to incorporate available experimental data into
the computational simulation. Data such as infiltration time of immune cells, replication rate
of Salmonella, and degradation rate of associated mediators allowed us to advance the ABM
application by mapping biological processes that occur during HIR to our IMMABM. By inte-
grating experimental data and mathematical expressions derived from hypothesized kinetics,
we attempted to quantitatively simulate dynamic patterns of HIR. In addition, a global variable
defined as “Infection Time” in IMMABM reflected simulation execution time and mimicked
kinetic associations between a series of responses. In our simulation, 1 tick (representing 1 sim-
ulation step in the simulation software) represented 1 hr in an actual biological process, and
numeric counts of an agent were updated per tick to correspond to the biological response
time in the experiments.

Incorporation of data from 210 publications and our experience with Salmonella infections
and infectious disease processes motivated us to select a total of 23 essential cells and cytokines
as agent types in this IMMABM. In this paper, we use italic format to highlight agent type for
convenience. Each agent type, further defined as “breed”, could contain multiple entities.
Among the 23 types of agent, we defined 20 primary agent types: Hepatocyte,Hepatocyte
Debris, Kupffer Cell, Salmonella,Mast Cell, Resting Neutrophil, Activated Neutrophil, Resting
Monocyte,MDMI (monocyte-derived type 1 macrophage),MDMII (monocyte-derived type 2
macrophage), TNF-α (tumor necrosis factor-α), HMGB-1 (high mobility group box-1), IL-10
(interleukin-10), CD4 T Cell, CD8 T Cell, B Cell, Antibody, CRP (C-reactive protein), NET (neu-
trophil extracellular traps), and Histamine. We also defined three auxiliary agent types: SEC
(sinusoidal endothelial cell), Signal, or Anti-Signal. The rule system for these agents was based
on the literature. A sequence of interactions among primary agents and primary agent behav-
iors during interactions are introduced in Section 2.4.1.
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2.4.1 Primary agent behaviors. Salmonella, a “trigger” to begin HIR, was the first agent to
move and interact with Kupffer Cells, thereby initializing HIR. The percentage of Salmonella
killed by Kupffer Cells was set from 15% to 16% of the total Salmonella population per hour
because 90% to 95% of Salmonella were phagocytosed (engulfed) by Kupffer Cells in 6 hrs [45].
Salmonella that survived in Kupffer Cells turned Kupffer Cells into an “apoptotic” state and
“proliferated” within Kupffer Cells [46, 47]. “Die” in Netlogo occurs when an agent in the simu-
lation is forced to disappear, but “proliferate” is defined as new agent generation in the simula-
tion. State variables associated with agent type were used to define various states of individual
agents. Implementation of state variables is introduced in section 2.4.3. The maximum number
of Salmonella that “proliferate” within one Kupffer Cell was limited to 50 [31]. The newly gen-
erated Salmonella were released to liver tissue after “apoptotic” Kupffer Cells “died” between 6
and 14 hrs [46]. These released Salmonella were assigned to a state variable “SalmonellaNew-
lyReleasedFromKupfferCell” in order to express aborted interaction with Kupffer Cells and pre-
pare for “proliferation” in surrounding Hepatocytes or SECs [31, 48]. When Activated
Neutrophils orMDMIs were recruited to the site of infection, Neutrophils orMDMIs “killed”
Salmonella [45, 46, 49, 50]. Experimental data showed that every neutrophil phagocytized
approximately 3 to 13 Salmonella per hour, and everyMDMI phagocytized approximately 1 to
7 Salmonella per hour [51]. In addition to immune cells, CRP released fromHepatocytes and
Antibody released from B Cells also contributed to the “killing” of Salmonella [52–56].

Hepatocytes account for approximately 60% of the total number of cells in the liver [42]. In
our IMMABM, Hepatocytes were primary locations for Salmonella “proliferation”, and the
Hepatocytes become “apoptotic” once they interacted with Salmonella or TNF-α [32, 45, 48].
“Apoptotic”Hepatocytes released acute stress proteins such as CRP, or cytokines such as TNF-
α, andHMGB-1 [52, 53, 57, 58]. In addition, “Apoptotic” Hepatocytes could undergo a natural
aging process or interact with infiltrating Activated Neutrophils [59–61]. “Apoptotic” Hepato-
cytes that interacted with Activated Neutrophils “died” immediately and released their inter-
acted Salmonella to the liver tissue [45]. Alternatively, “Apoptotic” Hepatocytes underwent
natural aging and became Hepatocyte Debris after 2 or 3 hrs [62]. In addition to death, Hepato-
cyte was also regenerated at a rate of 1.32×10−3 to 6.80×10−3 per hour to simulate proliferation
ofHepatocyte in a mouse’s liver [63].

We modeled five primary phagocytic cells in our IMMABM, including Kupffer Cell,Mast
Cell, Activated Neutrophil,MDMI, andMDMII. Kupffer Cells reside principally within the
lumen of liver sinusoids, adherent to SECs that comprise blood vessel walls [43]. The first
phagocytic cells that interacted with Salmonella in the liver [64–66] were Kupffer Cells that
killed approximately 90% to 95% of the Salmonella population in 6 hrs; however, 5% to 10% of
Kupffer Cells were killed by Salmonella during the same time period [45]. Kupffer Cells released
cytokines such as TNF-α which helped recruit other phagocytic cells such as Activated Neutro-
phils to the site of infection or incurs further damage to Hepatocytes [32, 67]. Kupffer Cells also
released IL-10. IL-10 represents anti-inflammatory cytokines in this model and is capable of
inhibiting the release of TNF-α. As typical phagocytic cells, Kupffer Cells “killed” various types
of cell debris such as hepatocyte debris (to represent their scavenging or “clean up” function),
Antibody-opsonized Salmonella, and CRP-opsonized cell debris [54, 55]. The apoptosis of
Kupffer Cells occurs at a rate of 4.20 ×10−3 to 3.20×10−2 per hour [68]. Replenishment of Kupf-
fer Cells came fromMDMIs andMDMIIs at a rate of 6.30×10−3 to 7.90×10−3 per hour [68].
Similar to Kupffer Cells, Activated neutrophils also “killed” Salmonella, Antibody-opsonized
Salmonella, CRP-opsonized cell debris, and released cytokines such as TNF-α or IL-10 [54, 55,
69, 70]. Biologically, Activated Neutrophils were recently recognized to release NETs to elimi-
nate Salmonella [71, 72]. Activated Neutrophils underwent natural aging or were “killed” by
Kupffer Cells [43]. “Apoptotic” Activated neutrophils underwent apoptosis, indicated by a state
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variable labeled “apoptotic.” The “apoptotic” Activated Neutrophils were killed byMDMIs [73].
MDMIs were activated fromMonocytes between 6 hrs to 24 hrs post-infection [74, 75]. The
activation level ofMonocytes was dependent on the existing number of Salmonella, TNF-α,
HMGB-1, “apoptotic” Activated neutrophil, CD4+ T cell, and CD8+ T cell. The activation
amount was calculated based on Michaelis-Menten kinetics, as discussed in Section 2.4.4.
Upon activation,Monocyte becameMDMI orMDMII [73].MDMI “killed” Salmonella and
released TNF-α [73], whileMDMII “killed” “apoptotic” Activated Neutrophils and released
HMGB-1 and IL-10 as mediators to resolve the inflammation [73, 76].MDMI andMDMII
helped activate T cell recruitment [77], and bothMDMI andMDMII released IL-10 when they
“killed” apoptotic CD4+ T Cell or CD8+ T Cell [78].

CD4+ T Cell, CD8+ T Cell, and B Cell occupied spaces in the portal triad [55, 79]. Activation
of CD4+ T Cell, CD8+ T Cell, or B Cell occurred whenMDMI orMDMII were detected [77], at
which point the activated CD4+ T Cell, CD8+ T Cell, or B Cellmoved from the portal triad to
the liver sinusoid [80]. CD4+ T Cell released TNF-α or IL-10 when they interacted with phago-
cytic cells interacting with Salmonella, and CD 4+ T Cell improved the phagocytic rate of
phagocytic cells [56]. CD8+ T Cell “killed” phagocytic cells that interacted with Salmonella [55,
56]. CD4+ T Cell and CD8+ T Cell underwent natural apoptosis, and both “apoptotic” CD4+ T
Cell and CD8+ T Cell were “killed” byMDMI orMDMII [78]. B Cell released Antibody to form
an Antibody-Salmonella complex, and the Antibody-Salmonella complex was killed by phago-
cytic cells, simulating opsonization [56]. The binding process is described in Section 2.4.2.

TNF-α,HMGB-1, and IL-10 are cytokines released from phagocytic cells. TNF-α was
released from Kupffer Cell,Mast Cell, “apoptotic” Activated Neutrophil,MDMI, andHepatocyte
[32, 43, 70, 73, 81–84]. TNF-α caused Hepatocyte to become “apoptotic” [32].HMGB-1 was
released fromMDMII and “apoptotic” Hepatocyte [85–87], and IL-10 was released from Acti-
vated Neutrophil,MDMII, and CD4 T Cell [69, 73, 81, 87–89]. IL-10 prevented secretion of
TNF-α, HMGB-1, and IL-10 from interacting with phagocytic cells or T cells [88, 90–94]. Pro-
cedurally, TNF-α, HMGB-1, and IL-10 “died” to reflect their clearance away from the simula-
tion. An overview of agent behaviors is provided in S1 Table.

2.4.2 Agent and agent complex movement. Agent movement in IMMABM was deter-
mined by agent behaviors described in S1 Table. For example, Resting Neutrophils or Resting
Monocytesmoving to SECs were driven by Signals released from cytokines or cells [56, 59, 67,
73, 85, 95–97]. When Signals appeared on SECs, Resting Neutrophils or Resting Monocytes
moved to SEC locations. Mass-action kinetics determined the number of moving Resting Neu-
trophils or Resting Monocytes, as described in Section 2.4.4. Biological interaction between two
agents occurred in IMMABM simulation if two agents occupied the same patch.

Salmonella that replicated within Kupffer Cells,MDMIs, SECs, and Hepatocytes [31, 46–48,
73] were released to nearby patches when infected cells “died”. Released Salmonella randomly
moved to the nearest Hepatocytes and damaged those Hepatocytes.

We used a “link” breed to model movements of the Antibody-Salmonella complex or CRP-
cell complexes because the two components of the complex need to move simultaneously. For
example, when an Antibody-Salmonella complex moved to one phagocytic cell, Antibody and
Salmonellamoved in the same direction for the same distance [55]. The Antibody-Salmonella
complex’s killing process using the phagocytic cell occurred when the distance between the
complex and the phagocytic cell was less than one patch-size.

2.4.3 State variable updates. Each agent type had its own state variables in the IMMABM.
By assigning various values to the state variables, the agents were regulated to execute a series
of functions based on locations and environment interfaces. During a simulation, some state
variable are fixed through the simulation, and others change as the simulation runs. The
change in values of state variables is based on the change of agent behaviors during the
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simulation. A detailed description of agent behaviors in vivo is provided in S2 Table. For exam-
ple, the value of some state variables was set to either 0 or 1, and the function of these state vari-
ables was similar to a switch: 0 represented “off”, and 1 represented “on”. If a state variable was
equal to 1, individual agents that had that state variable would express specific attributes or exe-
cute biological functions. For example, Kupffer Cell had a state variable named “kupfferCell-
BindToIL10”. The value of the state variable was equal to 1 when Kupffer Cell interacted with
IL-10, and individual Kupffer Cells that had the state variable “kupfferCellBindToIL10” equal
to 1 did not release TNF-α. Salmonella that proliferated within Kupffer Cell had a state variable
named “SalmonellaReplicateWithinKupfferCell” equal to 1; Salmonella that had “SalmonellaR-
eplicateWithinKupfferCell” equal to 1 generated new agents until the state variable “Salmonel-
laReplicateWithinKupfferCell” was reset to 0. Kupffer Cell was assigned to a state variable
named “kupfferCellKillBy Salmonella” equal to 1 when Kupffer Cells interacted with Salmonella
that had the state variable “SalmonellaReplicateWithinKupfferCell” equal to 1. Kupffer Cells
had the state variable “kupfferCellKillBy Salmonella” equal to 1 “die” after 6 simulation ticks,
and the state variable “SalmonellaReplicateWithinKupfferCell” of interacted Salmonella was
reset to 0. Resting neutrophil were activated in order to move to SECs in response to signaling
by TNF-α, HMGB-1, or Salmonella signaling, consequently becoming Activated neutrophil.
Activated neutrophilmoved to the “apoptotic” Hepatocytes with a state variable labeled “hepa-
tocyteUndergoApoptosis” equal to 1. “Apoptotic” Hepatocytes that interacted with Activated
neutrophils “died” immediately due to the killing process of “apoptotic”Hepatocyte by Acti-
vated neutrophil [49, 74]. A comprehensive description of agent rule updates is presented in
S1 Table.

2.4.4 Mathematical equations in programming. In order to calibrate quantitative
changes in agent number during HIR, we used a standard logistic function to measure cell pop-
ulation increases, Michaelis-Menten kinetics to calibrate cytokine release, mass-action kinetics
to calibrate the activation process of circulating neutrophils and monocytes, and a decay func-
tion to measure the natural process of apoptosis by cells or catabolism of cytokines.

For example, we calibrated the Salmonella population to increase using a standard logistic
growth function [98] as follows:

dP
dt

¼ kpgP 1� P
P1

� �
ð1Þ

In Eq (1), P represents the Salmonella count, Kpg represents a constant growth rate for Sal-
monella, and P1 represents maximum carrying capacity of the Salmonella. Growth rates and
carrying capacities of Salmonella varied when Salmonella replicated within various cells. Corre-
sponding experimental data is presented in S3 Table.

The activation process of circulating neutrophils was promoted by the pro-inflammatory
mediator TNF-α, Salmonella, and HMGB-1 [56, 59, 67, 85, 95]. We used a mass-action kinetics
equation [99] to calibrate the activation process of circulating neutrophils as follows:

dN
dt

¼ rNR T� þ P� þ H�ð Þ ð2Þ

In Eq (2), N represents Activated Neutrophil count and NR represents Resting Neutrophil
count. T� denotes concentration of TNF-α, P� denotes concentration of Salmonella, and H�

denotes concentration of HMGB-1.
The release of cytokines obeyed trafficking machinery, and cytokines were released via pro-

tein-protein interactions initiated by ligand binding to receptors [100, 101]. Therefore, we used
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Michaelis-Menten kinetics [102] to calibrate the cytokine release process as follows:

dC
dt

¼ KmaxCell
Cellhalf þ Cell

ð3Þ

In Eq (3), C represents cytokine count and Kmax represents the maximum production rate
of cytokines secretion by the cell. Cell denotes current numbers of the cell intending to release
the cytokine and Cellhalf denotes cell numbers when half the maximum production rate of the
cytokine was reached in the IMMABM.

Natural cell apoptosis or cytokine catabolism occurred at every tick; thus, we assumed that
the decrease in cell or cytokine counts followed a simple decay function as follows:

dC
dt

¼ KcC ð4Þ

In Eq (4), C represents cell or cytokine count and Kc represents a constant decay rate for
cells or cytokines.

2.4.5 Model calibration and parameter estimation. In addition to mathematical models,
we calibrated experimental data such as replication rates of cells, production rate of cytokines,
killing rates of Salmonella by phagocytic cells, activation rates of circulating neutrophils or
monocytes, and apoptotic rate of cells or catabolism of cytokines from existing experimental
studies. These data were incorporated into IMMABM as system parameters. We collected
experimental data from studies that were most similar to our simulation setting. We also esti-
mated parameters during simulation if data were not available from experimental studies. For
example, we estimated that the CRP-opsonized debris moved to inflammatory cells (e.g. Kupf-
fer Cell, mast cell, neutrophils, MDMI, and MDMII) with an equal chance of 0.2. An overview
of estimated experimental data is provided in S3 Table.

In order to smoothly translate estimated experimental data to agent-based modeling, we
made corresponding assumptions in terms of data estimation. In general, we assume the
change in rate is constant because we observed changes in data of interests in most of experi-
mental studies following linear curves. Some experimental data is comprised of multiple linear
segments, and therefore we calibrated rates for each linear segment to measure various rates
for multiple responding time periods. These multiple rates are explained in S3 Table. The
release/secretion rates of various cytokines (TNF-α, HMGB-1 and IL-10) by inflammatory
cells such as neutrophils, Kupffer Cells and monocyte-derived-macrophages are described as a
function of time, by possibly incorporating the effect of decay/catabolism. Experimental data
are integrated into our agent-based model as inputs by ignoring different experimental condi-
tions/settings such as different initial loads of bacteria injection, different bacteria strains, dif-
ferent animal models, etc. This limitation could be reduced by additional experiments done
under the same experimental conditions/settings. It was not possible to extrapolate the data for
our agent-based model from one simple experimental model. The strategy we used was to
focus on mouse Salmonella infection studies that were published in papers available in the
NCBI. When necessary, we used data from broader systems such as Gram-negative infections
(i.e. E. coli) or even Gram-positive bacterial infections. Therefore, we are aware that some of
these assumptions may not be correct.

In IMMABM, we used agent count to represent cell number with the awareness that cyto-
kine production rate has a unique experimental unit compared to cell number. Thereby, cyto-
kine production rate had to be transformed into an agent number in order to make the
experimental data consistent in IMMABM. Therefore, we used one agent count to represent
one real experimental unit. For example, we estimated that one phagocytic cell can bind
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1.23×10−17 g IL-10 from experimental data [103]. Therefore, we used one IL-10 agent count to
represent 1.23×10−17 g IL-10 in real experiments. Similarly, 1.25×10−11 g CRP could bind to
one phagocytic cell based on our calibration [104]. Thus, we used one CRP agent count to rep-
resent 1.25×10−11 g CRP in real experiments. Data showed that 2.82×10−17 g TNF-α damaged
one hepatocyte per hour [105], so we used one TNF-α agent count to represent 2.82×10−17 g
TNF-α in order to transform experimental units into the agent count. Unfortunately, however,
NET structure is fragile, thereby making it difficult to quantify NETs in experiments [106]. The
rate at which NETs kill Salmonella was also difficult to establish [107]. Therefore, since neutro-
phil elastase (NE) is required for NET formation and NE is an essential component of NET
[71], we used the rate at which NE kill Salmonella to substitute for the rate at which NETs kill
Salmonella.

3. Results

3.1 Statistical analysis
Results are expressed as mean ± standard error (SE). Data normality was checked using both
histogram and quantile-quantile (Q-Q) plot. For normally distributed data, group comparisons
were performed using one-way analysis of variance (ANOVA). For non-normally distributed
data, Mann-Whitney U tests were conducted to compare groups. All tests were performed
using R 3.1.2. [108]. A P< 0.05 was considered statistically significant at the significance level
α = 0.05.

3.2 Change in selected indicator levels observed under various
Salmonella loads
The IMMABM generated quantitative results by running simulations with various initial Sal-
monella counts (equivalent to infection dose). The input data, converted as described to mathe-
matical expressions and incorporated into the computer code, assembled cellular and
molecular variables in order to generate a hypothetical immune response. Clinical and experi-
mental data showed that the risk of patients dying from sepsis is significantly correlated to the
initial dose of pathogen [109, 110]. Therefore, we hypothesized that HIR would have a higher
likelihood of progressing to septic shock and death if the infection was initially high. To test
this hypothesis, the IMMABM in silico simulations were carried out using Salmonella doses of
200 counts, 600 counts, 800 counts, and 1200 counts, and 100 replicated runs for each pro-
posed Salmonella dose to explore the possible stochastic nature of the model. Results from
these simulations were initially generated to identify dynamic patterns of indicators in HIR
with various initial Salmonella doses, as shown in Fig 2.

One significant finding from the simulations was that outcomes of HIR were highly corre-
lated to initial Salmonella “counts” (the in silico equivalent to colony forming units, CFU,
although there is not a 1:1 correlation between counts and CFU). We observed that Salmonella
counts, phagocytic cell (MDMI andMDMII) counts, and pro- and anti-inflammatory cytokine
(TNF-α,HMGB-1 and IL-10) counts increased as Salmonella infection (load) increased.
Specifically, the number of phagocytic cells and the concentration of inflammatory cytokines
significantly increased (based on one-way ANOVA tests with significance level α = 0.05 and
P< 0.05) when Salmonella infection (load) increased from 800 counts to 1200 counts. A signif-
icant decrease (based on one-way ANOVA tests with significance level α = 0.05 and P< 0.05)
in hepatocyte counts was also observed when Salmonella infection (load) increased from 800
counts to 1200 counts. The dose-response hypothesis test initially indicated that the HIR was
correlated to Salmonella infection, which was consistent with experimental outcomes [109].
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Fig 2. Response of different variables (agents) over the first 24 hrs after Salmonella infection (load) of
200 counts, 600 counts, 800 counts, and 1200 counts.Mean counts of indicators were measured at each
simulation time point (replications = 100).

doi:10.1371/journal.pone.0161131.g002
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3.3 Dynamic patterns of HIR resulting from Salmonella infection
We found four identifiable patterns in simulated HIR. Corresponding changes in the interface
of NetLogo simulation were captured. The simulated results and changes in the interface of
NetLogo are shown in Figs 3–11.

When the initial infection with Salmonella was 200 counts, the number ofHepatocyte Debris
and CRP increased for the first 18 hrs of simulation but then progressively decreased to 0, dem-
onstrating no additional pathology at later stages of the simulation. The Salmonella counts,
Activated Neutrophil, NET, TNF-α,HMGB-1,MDMI, andMDMII levels in the simulation
sharply increased at the beginning of the infection but progressively decreased as the infection
progressed. We inferred that this combination of variables is similar to a host curing an infec-
tion, so we referred to it as a healing process (Fig 3). We detected that a small number of hepa-
tocytes (less than 0.3% of total hepatocyte counts) were damaged at simulation step 15 (Fig
3B). We also found that only a few neutrophils and monocytes (less than 200 cell counts) were
activated when the initial Salmonella infection was 200. Ultimately, damaged hepatocytes were
replaced with new (healthy) hepatocytes as the simulation proceeded (Fig 4).

Experimental studies in mice have shown early expression of pro-inflammatory cytokines
in response to Salmonella infection [111]. A comparison of the peak level ofHMGB-1 to the
peak level of TNF-α reveals that the peak level ofHMGB-1 is higher and that the time required
to reach maximum concentrations of TNF-α was less than the time required for HMGB-1
(average of 9 hrs versus 24 hrs post infection) [82, 112, 113]. Our simulated results recapitu-
lated this TNF-α and HMGB-1 pattern. We found that the peak level of TNF-α ranged from
1.40 × 10−3 to 2.64 × 10-3pg. Because we modeled liver dimensions based on the model size
(401 × 401 2-D grid), we assumed that TNF-α secretion was proportional to the model size and
that intensity of TNF-α secretion was proportional to the initial challenge of Salmonella dose.
Under those two assumptions, this response paralleled TNF-α levels (160 to 210 pg) found in a
mouse model responding to 107 CFU Escherichia coli (a medium dose) [31, 82]. Similarly, the
kinetics and amounts of secreted HMGB-1 correlated with the peak level of an HMGB-1
response seen in experimental observations if model size was taken into account [112]. We
observed that the increase inHMGB-1 levels began later in our model compared to production
kinetics observed in in vitro stimulation assays [112], However, kinetics of our model were con-
sistent with the delayed contribution HMGB-1 is proposed to have during sepsis [114].

Recruitment of monocytes to the liver rose sharply around 24 hrs after infection in our
model, which is consistent to approximately 1 day in an actual experimental system [115].
There was approximately a 50% Salmonella decrease within 6 hrs after initiation of HIR (Fig
3A), paralleling kinetics previously observed in mice [116]. During actual infections, the
decrease in bacterial load correlated with the influx of neutrophils [116]. We observed a similar
trend in the simulation (Fig 4). We used CRP levels andHepatocyte Debris to reflect the level of
tissue damage that occurred after infection. CRP is released by the liver in response to stress,
infection, and/or damage [52, 54, 117], and the debris simulates dead and dying hepatocytes.
Our simulated results showed that CRP rose initially after infection, but CRP concentration fell
sharply after the infection was cured as part of the “Healing Response”. A similar pattern of
CRP concentrations was identified in healthy patients infected by bacteria in clinical cases
[118].

In some simulation replications, when the initial Salmonella infection was 600, the outcome
more closely resembled a persistent infection, defined as the state in which Hepatocyte Debris,
CRP, and Salmonella levels initially declined but subsequently increased to much higher levels
before the infection was resolved at approximately 90 hrs. (Fig 5). Under this condition, Acti-
vated Neutrophil numbers declined along with the decline in bacterial numbers and NET values
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did not return to baseline for approximately 50 more hrs. We also observed oscillations in lev-
els of cytokine mediators TNF-α and HMGB-1 as the infection was resolved (Fig 5). Moreover,
this resolution correlated with oscillating Salmonella numbers during the waning 25 to 60 hrs

Fig 3. Healing response after Salmonella infection (load) of 200. (Mean counts ± SE) of indicators were
measured at each simulation time point (replications = 100).

doi:10.1371/journal.pone.0161131.g003
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Fig 4. Examples of the NetLogo interface at selected time points (5–240 hrs) after infection with 200
Salmonella. Note: 1 step is equivalent to 1 hr. post infection.

doi:10.1371/journal.pone.0161131.g004
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of the infection. Others have observed oscillatory patterns in host responses to other types of
bacteria in mouse infections [119]. Therefore, we were reassured that the simulation captured
the essence of a real infection. The CRP pattern during persistent infection (Fig 6) was signifi-
cantly distinct from the CRP pattern observed in the healing response (Fig 3). As shown in Fig

Fig 5. Persistent infection after Salmonella infection (load) of 600.Counts of different variables (agents) were
measured at each simulation time point of one selected simulation.

doi:10.1371/journal.pone.0161131.g005
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6, the CRP level rose initially after the infection and waxed and waned for another 2 to 3 days.
On the 4th day after infection, CRP levels diminished sharply and damaged hepatocytes began
their recovery, similar to the CRP pattern reported in a clinical study [118].

Fig 6. Persistent infection after Salmonella infection (load) of 600. (Mean counts ± SE) of different variables
(agents) were measured at each simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g006

Agent-Based Model of a Hepatic Inflammatory Response to Salmonella

PLOSONE | DOI:10.1371/journal.pone.0161131 August 24, 2016 16 / 39



Fig 7. Examples of the NetLogo interface at selected time points (10–240 hrs) after infection with 600
Salmonella. Note: 1 step is equivalent to 1 hr. post infection.

doi:10.1371/journal.pone.0161131.g007
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Detectable hepatocyte damage began at simulation step 10 (10 hrs post infection), and a sig-
nificant increase in hepatocyte damage was observed beginning at stimulation step 15 (15 hrs
post infection). Hepatocyte damage was persistently observed for 7 days. As the persistent
infection proceeded, a large area of hepatocyte damage, which would translate to liver damage

Fig 8. Hyperinflammatory response after Salmonella infection (load) of 800. (Mean counts ± SE) of indicators
were measured at each simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g008
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in an animal model, was observed (Fig 7). Our simulated results paralleled hepatocyte damage
seen in vivo after experimental infections where recovery (or “healing”) of hepatocytes was
detected after 7 days and continued for approximately 30 days [120]. These data are consistent
with the idea that a persistent infection will induce a higher mortality rate compared to a heal-
ing response because acute tissue damage is more detrimental to the host (Fig 6B). Remarkably,
we observed that oscillations in agent counts were damped when calculated mean values of the
agent counts for simulation replications (Fig 6). The oscillations we observed in a single simu-
lation run (Fig 5) of IMMABM indicate that the individuals with persistent infection could
have identifiable oscillated patterns during HIR.

HIR could also result in a pattern we termed as a hyperinflammatory response (Figs 8 and
9). During this type of response, Salmonella counts dropped within the first 24 hrs of HIR (Fig
8A). However, a significant elevation in phagocytic cells (Fig 8E, 8H and 8I) and inflammatory
cytokines was observed (Fig 8J, 8K and 8L) compared to the healing and the persistent infec-
tion responses, causing severe hepatocyte damage that could lead to death (Fig 8B). Interest-
ingly, we observed that the ranges of agent counts in the hyperinflammatory response (Fig 8)
were more variable compared to the healing and persistent infection responses (Figs 3 and 6).
This made it difficult to accurately predict outcomes in this type of HIR. However, we suggest
that when the mean values of TNF-α,HMGB-1 and IL-10 exceeded the mean values identified
in the hyperinflammatory response (Fig 8J, 8K and 8L), this serves as a warning signal of HIR
progression to a hypothetical death status as the simulation proceeded. In a few simulation rep-
lications, we observed that all the hepatocytes were killed or damaged (Hepatocyte count = 0)

Fig 9. Examples of the NetLogo interface at selected time points (9–24 hrs) after infection with 800
Salmonella showing the HMGB1 (green) or TNF-alpha (yellow) that accumulate in situ. Note: 1 step is
equivalent to 1 hr. post infection.

doi:10.1371/journal.pone.0161131.g009
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within the first 48 hrs of infection during HIR characterized as hyperinflammatory (data not
shown). These data suggest that a hyperinflammatory response could lead to a higher mortality
rate compared to a persistent infection because of the acute and severely damaged hepatocytes
observed.

Fig 10. Organ dysfunction after Salmonella infection (load) of 1200. (Mean counts ± SE) of indicators were
measured at each simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g010

Agent-Based Model of a Hepatic Inflammatory Response to Salmonella

PLOSONE | DOI:10.1371/journal.pone.0161131 August 24, 2016 20 / 39



The last pattern of HIR that we observed was characterized by progressively increasing Sal-
monella counts. Under this condition, Salmonella and inflammatory cytokines continued to
rise as the simulation proceeded. Therefore, we classified the combined pattern of increasing
Salmonella counts and inflammatory cytokine counts (TNF-α, HMGB-1, and IL-10) as “organ
dysfunction”, as shown in Figs 10 and 11. Organ dysfunction appeared to be so problematic
because in HIR the liver contained less than 1/4 of the healthy hepatocytes after 24 hrs com-
pared to the number present at the time of the initial infection (Fig 10). Specifically, the simula-
tion stopped under the condition that no more healthy hepatocytes existed. We only calibrated
the data of organ dysfunction for the first 24 hrs of HIR because healthy hepatocytes died out
at 24 hrs of simulation in some replications. According to our simulations, a sign of organ dys-
function might be characterized by continued increases in Salmonella, TNF-α and, HMGB-1
counts and continued high levels of CRP. The acute rise and a slow decrease in CRP levels
observed in our model were consistent with CRP concentration patterns identified in patients
with septic shock [121]. This adds validity to the simulated results from our IMMABM.

To conclude, we found that a healing response, where Salmonella, other phagocytic cells,
and inflammatory cytokines quickly fell below threshold levels, was more likely to occur when
the initial Salmonella load was low. We identified a persistent infection pattern if inflammatory
responses were active (characterized as when Salmonella and inflammatory cell levels oscillate
during infection). However, if the initial Salmonella load was high, a hyperinflammatory
response or organ dysfunction was most likely to occur, leading to the death of infected indi-
viduals. In addition, when these simulated results were compared to experimental data, the
simulations paralleled indicator patterns reported in actual mouse experiments [112, 115, 116,

Fig 11. Examples of the NetLogo interface at selected time points (9–24 hrs) after infection with 1200
Salmonella. Accumulation of Salmonella bacteria (black areas) and TNF-alpha (yellow areas) in situ. Note: 1 step
is equivalent to 1 hr. post infection.

doi:10.1371/journal.pone.0161131.g011
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118–120, 122]. It also became clear that predicting a final outcome from the emerging dynamic
patterns of HIR became more difficult when initial Salmonella loads were above 500 counts
(See Section 3.4).

3.4 Outcome assessment
To examine how the model behaved when parts of the immune response were absent we ran
IMMABM simulations with and without acquired immunity using initial Salmonella doses
ranging from 100 counts to 3200 counts. We thought that this would be an effective test of the
model since we hypothesized that the absence of acquired immunity would negatively impact
the host’s ability to heal. In these experiments, doses were increased in increments of 100
counts with 100 replications per dose for a total of 4500 replications in the IMMABM. In the
absence of acquired immune components, HIR outcomes clearly skewed toward a healing
response at doses less than 500 counts. However, as the initial Salmonella doses increased, it
became clear that the dynamic patterns of HIR could diverge in the health outcomes (healing
response vs. persistent infection vs. hyperinflammatory response vs. organ dysfunction). For
example, when the initial Salmonella load was 800 counts, all four dynamic patterns of HIR
could emerge. Nevertheless, when initial Salmonella counts were below 500, the healing
response was identified over 98% of the time. However, when the initial Salmonella count
exceeded 1300 counts, only hypothetical death status (hyperinflammatory response or organ
dysfunction) was identified from IMMABM simulations. In order to compare potential sur-
vival and mortality rates of HIR under various initial Salmonella challenge loads, we generated
a probability histogram that ended with the healing response, persistent infection, hyperin-
flammatory response, or organ dysfunction of HIR against various Salmonella initial loads (Fig
12). The probability of HIR ending in each possible outcome clearly changes as the dose
increases from 100 counts to 1400 counts (Fig 12).

When CD4+ T cells, CD8+ T cells, B cells, and antibody were added to IMMABM, there
continued to be a dose response as seen in Fig 12. These data show the importance of innate
immunity in the control of Salmonella infections [123, 124]. However, the likelihood of organ
dysfunction dropped compared to when acquired immune components were missing (Fig 13).

Fig 12. Probabilities of leading to healing response, persistent infection, hyperinflammatory response, and
organ dysfunction when the Salmonella initial loads range from 100 to 1400 counts. This experiment
excluded adaptive immunity in IMMABM (i.e. excluded CD4+ T cells, CD8+ T cells, B cells, and antibody).

doi:10.1371/journal.pone.0161131.g012
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It took substantially higher challenge doses to induce more severe infections (S2 Fig). There-
fore, the model seemed to accurately reflect the relative contributions of innate and acquired
immunity during Salmonella infections [39, 125, 126].

As Salmonella initial loads increased from 1800 to 3200, the chance of a hyperinflammatory
response was significantly higher than organ dysfunction (S2 Fig). Although both conditions
can be detrimental to the host, the model reflects subtle changes in the infection and the rapid
and overwhelming pro-inflammatory response induced by a high initial loads of Salmonella.
Interestingly, the overwhelming pro-inflammatory response damages hepatocytes at an early
stage of HIR results in few Salmonella replications within hepatocytes. It is also interesting to
note that in other Gram-negative bacterial infections, the absence of T cells results in prolonged
neutrophila (hyperinflammtion) in the lung [2]. Again, suggesting that the model is beginning
to reflect the in vivo situation.

The experimental data and stochastic processes embedded in IMMABM were essential to a
computational simulation because an HIR is an inherently stochastic process. Experimental
data show that cellular and soluble mediator interactions and concentrations change and their
levels are dependent on location and time. For example, the Salmonella killing rate by one neu-
trophil can range from 2.94 to 12.94 Salmonella/per neutrophil/hr according to a human
model [51]. The data illustrated in Figs 12 and 13 suggests that IMMABM was able to capture
the stochastic nature of the host response during HIR by showing that interactions among
agents and the outcomes of the simulations varied for each run. Consistent with its embedded
stochastic nature, the IMMABM allowed us to determine the probability of each possible out-
come in individuals, thereby allowing reasonable predictions of HIR outcomes. For example,
the simulated results in Figs 12 and 13 demonstrated as Salmonella initial loads increased, the
probability increased that HIR would end with hyperinflammatory response or organ dysfunc-
tion. In contrast, lower initial challenge doses were more likely to be identified as healing
response or persistent infection.

Fig 13. Probabilities of leading to heading response, persistent infection, hyperinflammatory response, and organ dysfunction in the
presence of Acquired Immunity. Salmonella initial loads range from 100 to 1400 counts.

doi:10.1371/journal.pone.0161131.g013
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3.5 Biomarkers of HIR
As described in Section 3.3,HMGB-1 and CRP emerged as biomarkers for HIR because their
expression patterns closely correlated to HIR outcomes. Similar to our simulated results, persis-
tent elevation ofHMGB-1 and CRP was also observed in experimental studies [121, 127, 128].

In clinical practice, the IL-10: TNF-α ratio is one recommended biomarker used to monitor
the progression of sepsis [129, 130]. Therefore, we calculated the average IL-10: TNF-α ratio
for a healing response, a hyperinflammatory response, and organ dysfunction during infection
in 10 simulation runs. Results in Fig 14 show that the average IL-10: TNF-α ratios in both the
hyperinflammatory and organ dysfunction were significantly lower compared to the healing
response (P = 0.0061 and P = 0.0152, respectively, using the Mann-Whitney U tests). There-
fore, the IL-10: TNF-α ratio in the IMMABM accurately captured the elevated IL-10: TNF-α
ratio associated with patients’ healing process [129].

The ratios of CD4+ T cell: CD8+ T cell are relatively lower in patients with sepsis, compared
to non-sepsis patients [131, 132]. The results in Fig 15 show that in IMMABM there was a

Fig 14. Comparison of IL-10: TNF-α ratio among healing response, hyperinflammatory response, and
organ dysfunction responses vs. infection time.Mean values of IL-10: TNF-α ratios were measured at each
simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g014

Fig 15. Comparison ofCD4+ T Cell: CD8+ T Cell ratio among healing response, hyperinflammatory
response, and organ dysfunction response vs. time after infection.Mean values of CD4+ T cell: CD8+ T cell
ratios were measured at each simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g015
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significantly lower CD4+ T cell: CD8+ T cell ratio when the HIR progressed to hyperinflamma-
tory (P = 0.0083) or organ dysfunction responses (P = 0.0041) after 15 hours of infection.
Therefore, this basic clinical measure of T cell response [131, 132] also appears to be accurately
reflected in the IMMABM.

Our simulated results showed that theMDMII:MDMI ratio was less significantly correlated
to the outcomes of HIR compared to the IL-10: TNF-α ratio and the CD4+ T cell: CD8+ T cell
ratio. During the healing response, theMDMII:MDMI ratio was not significantly higher
(P = 0.2623) than the ratio during hyperinflammatory response but it was significantly elevated
(P = 0.0019) compared to the ratio in organ dysfunction, as shown in Fig 16. Although it is
clear thatMDMI polarization is common in bacterial infections [133], it is less clear if macro-
phage polarization is associated with host dysfunctional responses. Therefore, it is possible that
our simulated data reflect the in vivo ambiguity. Alternatively,MDMII:MDMI ratio may not
be appropriate in the liver compartment. Refinement of the model will be necessary to help
resolve this. In spite of this, the IMMABM in its current format, has identified some biomark-
ers that reflect the in vivo situation (Table 1). This suggest that the IMMABM is beginning to
function in a useful manner by paralleling actual host responses.

3.6 Therapy-directed experiments in silico
We designed an experiment using a hypothetical antimicrobial agent (i.e. an antibiotic that
could kill Salmonella), an anti-TNF-α agent (i.e. an antibody therapy), and a combination of

Fig 16. Comparison ofMDMII:MDMI ratio among healing response, hyperinflammatory response, and
organ dysfunction response vs. infection time.Mean values ofMDMII:MDMI ratios were measured at each
simulation time point (replications = 10).

doi:10.1371/journal.pone.0161131.g016

Table 1. Relationship between dynamic patterns of hepatic inflammatory response and dynamic patterns of essential biomarkers in IMMABM.

Dynamic patterns of hepatic inflammatory
response

Dynamic patterns of CRP Dynamic patterns of
HMGB-1

IL-10: TNF-α
(ratio)

CD4+ T cell: CD8+ T cell
(ratio)

Healing Response Sharply increase and
smoothly decay

Smoothly decay Low High

Persistent Infection Oscillating decay Oscillating decay Medium High

Hyperinflammatory Response Sharply increase and smooth
decay

Significantly elevated and
decay

High Low

Organ Dysfunction Sharply increase and slow
decay

Significantly elevated High Low

doi:10.1371/journal.pone.0161131.t001
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anti-HMGB-1 agent and anti-TNF-α agent. We incorporated these treatments into the
IMMABM, and compared the effects of the three hypothetical treatments to the outcomes of
HIR. Simulated data showed that the treatment effectiveness was highly correlated with treat-
ment start time during the simulation (Fig 17). Specifically, antimicrobial agents caused signifi-
cant improvement in the survival rates when started during the first hour after infection
(beginning of HIR). Interestingly, current recommendations are to administer appropriate
antibiotics within 1 hour of a diagnosis of severe sepsis or septic shock [134, 135]. In contrast,
the optimal treatment window for anti-TNF-α agents was between 6 hours and 8 hours after
infection (Fig 17), which may explain why anti-TNF-α treatment did not effectively improve
survival for patients in some clinical studies [136, 137]. The combination of anti-HMGB-1 and
anti-TNF-α was more effective in improving the survival rates when treatment was started
between 7 hours and 11 hours after infection, compared to using only anti-TNF-α (Fig 17).

Our simulated results demonstrated that effectiveness of anti-agent treatments has a specific
time window. Administration of the anti-TNF-α and/or anti-HMGB-1 at an early stage could

Fig 17. Assessment of therapy in IMMABM. Hypothetical antimicrobial agents, anti-TNF-α agents, and a
combination of anti-TNF-α and anti-HMGB-1 agents were administered to determine their impact in HIR.
The “Probability of survival” label represents the probability of HIR ending with a healing response. We assume 1
antimicrobial agent kills 1 CFU Salmonella, 1 anti-TNF-α agent degrades 2.82×10−5 pg TNF-α, and 1 anti-HMGB-1
agent degrades 2.82×10−5 pgHMGB-1. 200 antimicrobial agents, 1000 anti-TNF-α agents, or 800 anti-HMGB-1
agents were incorporated each time in corresponding experiments. The administration of the treatment therapies
was done one time in IMMABM starting at 0 hour to 24 hours (abscissa). 20 simulation replications were conducted
for each treatment regimen (1500 simulation replications were conducted for this experiment).

doi:10.1371/journal.pone.0161131.g017
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interfere with the further recruitment of phagocytes. This could lead to organ dysfunction
because there would be insufficient numbers of phagocytes to ingest and kill intruding Salmo-
nella. In contrast, administration of anti-TNF-α and/or anti-HMGB-1 at a later stage could
result in an overwhelming hyperinflammatory response because TNF-α and HMGB-1 levels
remained persistently elevated (Figs 8 and 10). A persistent elevation of TNF-α and HMGB-1
can induce a further infiltration of neutrophils and macrophages to the site of infection, which
cause an uncontrolled HIR. This could explain why an anti-HMGB-1 agent and/or an anti-
TNF-α treatment become less effective as the infection proceeds. We used a fixed amount of
anti-TNF-α and anti-HMGB-1 agent for our treatment, which fails to compromise an elevated
level of TNF-α and HMGB-1 at a later stage of infection. Furthermore, the chance of HIR end-
ing with a hyperinflammatory response or organ dysfunction was higher as the initial loads of
Salmonella increased (Figs 12 and 13). This indicates that higher amounts of anti-agents could
be necessary during treatment as Salmonella infection levels increase.

The insights provided by the therapy-directed experiment suggest that various doses of
anti-agent treatment (e.g. increase doses of anti-agent as the infection proceeds) at selected
time points could improve the survival rates for septic individuals. Moreover, these data sug-
gest additional experimental directions for the development of effective treatment bundles in
experimental animals and/or in preclinical trials.

4. Discussion
This paper describes an IMMABM developed to simulate HIR in a mouse infected with Salmo-
nella. The IMMABM described interactions between selected agents as a representation of a
HIR during Salmonella infection and required the understanding of key cellular and molecular
processes of HIR at the tissue level. Most importantly, the IMMABM was validated through a
series of comparisons between simulated results and experimental studies.

Four distinct dynamic patterns (healing response, persistent infection, hyperinflammatory
response, and organ dysfunction) were identified during the IMMABM simulation. One signif-
icant finding from the simulations was that the outcomes of a HIR were highly correlated to
the initial Salmonella counts. When the initial Salmonella counts were below 900, hepatic infec-
tion had 97% probability to develop into a healing response during 100 simulation runs (S2
Fig). When the initial Salmonella counts were between 1000 and 3200 counts, the outcomes of
HIR were uncertain (S2 Fig). As the initial counts of Salmonella increased, HIR had a higher
probability to end with hyperinflammatory or organ dysfunction responses. Furthermore,
CRP, HMGB-1, the IL-10: TNF-α ratio, and the CD4+ T cell: CD8+ T cell ratio emerged as bio-
markers during HIR. If CRP andHMGB-1 were persistently elevated, HIR was more likely to
end in a hyperinflammatory or organ dysfunction response. If the IL-10: TNF-α ratio or CD4
+ T cell: CD8+ T cell ratio dropped significantly during HIR, a hyperinflammatory or an organ
dysfunction response would occur. In the therapy-directed experiment, we observed that anti-
microbial intervention significantly improved the survival rates during the first hour. Anti-
TNF-α agents and/or anti-HMGB-1 agents improved survival rates when administered at a
later stage of infection, and it became clear that efficacy was dependent on time of
administration.

4.1 Insights into simulated results
This IMMABM began to capture the essence of adaptive immunity during HIR. T cell activa-
tion occurs within 24 hrs of HIR in vivo [138]. Therefore, we incorporated adaptive immunity,
including essential lymphocytes such as CD4+ and CD8+ T cells, as well as B cells, into our sim-
ulation. We found that incorporation of T cells and other acquired immune components could
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induce changes to the course of the infection. Indeed, in immunocompetent mice, the hyperin-
flammatory response that we identified in the simulations paralleled observations made during
mouse sepsis [138]. In addition, we found that antibodies released during HIR failed to signifi-
cantly affect organ dysfunction based on the release rate of antibodies and the binding amount
of antibody to one Salmonella we calibrated [139–141].

During dose response simulations, we observed HIR is correlated to initial loads of Salmo-
nella. Furthermore, we calibrated the probability of HIR ending in each possible outcome
under a range of initial Salmonella loads (Figs 12 and 13). Recent studies found that a high bac-
terial load is significantly associated with worse outcomes [110]. Our study reported the first
probability histogram that ended with various patterns under a range of initial Salmonella
loads. The probability histograms describe the relationship between probability of ending with
each HIR pattern and Salmonella challenge levels. Moreover, we observed that HIR could end
in various outcomes (healing response vs. persistent infection vs. hyperinflammatory response
vs. organ dysfunction) with the same initial loads of Salmonella. These observations could
explain the reason why effectiveness of therapeutic intervention is different from patient to
patient.

Our results suggest that levels of TNF-α, HMGB-1, CRP, and IL-10: TNF-α ratios, and
CD4+ T cell: CD8+ T cell ratios could be recognized as biomarkers for HIR because these indi-
cators and/or ratios have distinct patterns between a healthy state (i.e. a healing response) and
hypothetical death state (i.e. hyperinflammatory response or organ dysfunction). Specifically,
our simulation results showed that averaged IL-10: TNF-α ratios were significantly elevated in
the healing response from 8 to 14 hours compared to the ratios in the hyperinflammatory
response and during organ dysfunction (P = 0.0061 and P = 0.0152, respectively, using the
Mann-Whitney U tests, as shown in S1 Fig). These data suggest that IL-10: TNF-α ratios could
be recognized as a predictive marker for HIR at an early stage because HIR would lead to a
more likely death state if a lower ratio of IL-10: TNF-α is observed during the first 14 hrs of
infection. Although the averaged IL-10: TNF-α ratios were elevated in both the hyperinflam-
matory response and in organ dysfunction compared to those in a healing response, IL-10:
TNF-α ratios were observed to approach similar values seen during a healing response after the
first 14 hrs of infection in some replications. A possible reason for this is that because TNF-α
level dropped at a late stage of HIR, and IL-10 levels were increasing due to hyperinflammatory
responses. It appears that severe hepatocyte damage was mostly caused by a persistent eleva-
tion of inflammatory cytokines such as HMGB-1(Figs 8K and 10K). This would indicate that
our model is beginning to accurately reflect biological situations since this parallels the in vivo
experience [113, 127, 128, 142] where a persistent elevation of HMGB-1 in patients with severe
sepsis and mice with organ damage have high HMGB-1 concentrations. Therefore, HMGB-1
can be another predictive marker for HIR progression at a late stage. To conclude, our simu-
lated results suggest that clinicians should use a combination of predictive markers at different
stages (IL-10: TNF-α ratios at an early stage vs. HMGB-1 at a late stage). This approach could
be more accurate to predict the progression of HIR.

Strategies for sepsis treatment have been discussed extensively in recent years [10, 134–136,
143–146], but no general agreement exists regarding efficacy of these strategies. This lack of
consensus is due to the complex nature of what causes sepsis to progress, including different
clinical and experimental settings, and heterogeneous groups of patients with infections caused
by various microorganisms [147]. Our simulated results suggest that the anti-agent treatments
are effective within a constrained time window (Fig 17). These findings support contentions
that timing of therapy is critical to success [11, 148, 149]. As initial loads of Salmonella
increase, the probability of a hyperinflammtory response or organ dysfunction increases (Figs
12 and 13). Therefore, based on the modelling we predict that a higher dose of anti-agent
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treatment might be necessary during a more severe infection. Moreover, individuals with HIR
should be classified into multiple groups based on the extent of infection. Therefore, different
amounts of anti-agents should be administered to different groups of patients at multiple treat-
ment time points. Given the consistent outcome between our simulations and existing studies
[10, 134–137], it suggests that our IMMABM is beginning to accurately reflect some aspects of
HIR. IMMABM can provide an initial silico test for proposed therapeutic agents. The addition/
inclusion of different immune components can also be done to provide insights about how out-
comes can change. We saw distinct changes in the outcome of HIR when we added acquired
immune components. Although experimental studies have shown that sepsis in humans is not
a model of veterinary sepsis and implementation of an animal sepsis model to human medicine
must be further validated [148], IMMABMmodeling techniques could be applied to human
medicine and the IMMABM can be refined as human data becomes available in the future. As
the IMMABM is constructed now and by future refinements, this tool will allow us to explore
various types of treatments to evaluate their possible effectiveness and could help in the design
of future preclinical experiments.

4.2 Model simplification and generalizations
Previously, ABM has been employed to describe complex and nonlinear biological immune
processes responding to infection [41]. Compared to traditional differential equation models,
ABM is more similar to the description and representation of a true biological system because
it can incorporate stochastic and spatial processes of cell interactions in a host-pathogen sys-
tem. The IMMABM in this study simulated dynamic patterns of essential variables and cap-
tured quantitative changes in dynamic patterns of an HIR using various doses of Salmonella
“infection”. Furthermore, the IMMABM allowed us to simulate the distribution of changes,
reflected as dynamic patterns, and provided insights into the probability of those changes. The
“therapy” experiment demonstrated that this ABM could begin to provide insights about possi-
ble treatments prior clinical trials, which could save time and resources by eliminated ineffec-
tive therapies from lab experiments and more importantly, clinical trials.

Although ABMs are advantageous compared to mathematical models [15], they are limited
as an “instructive” tool and still cannot represent real immune responses in disease progression
because they fail in one-to-one mapping of components and processes to biological systems.
Since every intermediate biological processes of HIR cannot be simultaneously incorporated
into the IMMABM, reasonable assumptions and simplifications of biological responses must
be made when building an ABM. For example, in our IMMABM, we did not model that Salmo-
nella replicates within neutrophils even though we know that they are a primary replication
site in vivo [31]. Therefore, this type of Salmonella replication could be considered for inclusion
in a future model. ABM assumptions can also be more complicated than just leaving out some
biological responses because there are conflicting data or the biology is very complex.

We modeled that TNF-α induced apoptosis of hepatocytes because TNF-α secretion from
activated Kupffer Cells induces apoptosis in hepatocytes [32]. However, another study showed
hepatocyte apoptosis was induced by TNF-α only in combination with the transcriptional
inhibitor actinomycin D (ActD) [150]. Because our model considered a general concept of HIR
at the current stage, we modeled that TNF-α would induce hepatocyte apoptosis if TNF-α were
bound to hepatocytes.

Mast cells release many biologically active molecules and chemical substances, such as pro-
tease and IL-6, which decrease or increase survival rates of septic patients [151–153]. Salmo-
nella that bind to mast cells eventually die because of the substances secreted by mast cells.
Therefore, in order to simplify our ABM, we considered only some main functions of mast
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cells during inflammation. For many years, mast cells were believed to phagocytize Salmonella
[154]. However, a recent experiment showed [155] that mast cells bind to Salmonella, making
them unable to phagocytize Salmonella. Therefore, we did not model that mast cells phagocy-
tize Salmonella. Instead, we modeled that Salmonella binds to mast cells which initiates the
release of TNF-α from the engaged mast cells.

T cell subpopulations have been reported to express IL-10 under various conditions [156],
making it difficult to estimate IL-10 production. Because IL-10 levels released from T cells var-
ies due to the type or concentration of stimuli, we modeled that CD4+ T cells produce IL-10
and we estimated the average release rate of IL-10. We did not differentiate helper T cells to
specific types (e.g. Th2 or Treg) identified in biological process.

Plasma cells secrete antibody [79], but we did not incorporate this specific B cell population
into our ABM. We modeled that B cells released antibody knowing that this does not mimic
the real biological system. Likewise, when antibody is released from plasmas cells, TH cells
define the isotype of the antibody [79]. However, we did not model specific antibody isotypes
in our model. Furthermore, we ignored the fact that antibody opsonization also induces stimu-
lation of the release of various cytokines and the type of FcR engagement can alter cell function
[157, 158]. We also did not incorporate that antibody-opsonized Salmonella are phagocytized
better by neutrophils and macrophages compared to Salmonella alone [79].

We did not model natural killer cells in our ABM and we ignored effects of other pro-
inflammatory cytokines such as IL-1, IL-12, and IL-8. Also, biological immune responses to
infection are recognized as a series of complex processes including intracellular signal trans-
ductions (including activation of gene transcription) and intercellular interactions between
cells. These biological processes can be developed over time and will evolved as our under-
standing of these processes becomes more sophisticated [41]. Therefore, our IMMABM is still
under development and has the potential to incorporate many of the variables that we have left
out at the present time.

One final important consideration is that an ABM requires a high level of computational
effort in order to simulate the detailed interactions between classes of agents in the HIR. This is
particularly true because the ABM is designed to describe the aggregated level of components
by simulating individual agent behavior and interactions. These processes are occurring in par-
allel and require extensive computational effort and high computational efficiency [41]. An
average of 18 minutes was required to run 300 simulation steps in one replication of IMMABM
for a healing and persistent infection response in the IMMABM. The computational times
were significantly more for scenarios with hyperinflammatory or organ dysfunction responses.
In those cases, computational efficiency required an average of 10 minutes per simulation step
(an average of 50 hours if the run has 300 simulation steps, or a total 208.3 days (approxima-
tion) for 100 replications). Therefore, one of the factors that limits the number of variables
included in an ABM is the computer power available. This limitation directs us to improve
computer power by implementing an object-oriented programming and parallel computing in
the future.

5. Future Research
Limitations of current ABMs provide opportunities for future enhancements. A major step for-
ward will include the addition of one or more of the sophisticated cellular and molecular path-
ways discussed in Section 4.

The activation of the coagulation cascade is characteristically seen in patients with sepsis
[159]. Activated protein C (APC), as an endogenous protein with the ability to modulate coag-
ulation, has currently been approved to be the only pharmacologic therapy in the treatment of
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severe sepsis [159, 160], highlighting the importance of coagulation and fibrinolysis in sepsis
[160]. Thus, modeling complement cascades of inflammatory responses and possible progres-
sion to coagulation episodes during sepsis would also help the understanding of both inflam-
mation and coagulation and associated therapeutic targets during sepsis progression. An
explicit modeling of coagulation cascades needs to incorporate to IMMABM in order to
describe hemostasis during sepsis.

Mediator-directed treatments could be incorporated into this IMMABM in order to imple-
ment pre-clinical treatment tests in silico. Initial silico simulation of IMMABM allowed us to
recognize that a combination of anti-TNF-α and anti-HMGB-1 agents could significantly
improve survival rates in HIR. Furthermore, we also observed that the time drugs were admin-
istered also impacts HIR outcomes. This not only provides evidence that the core IMMABM is
sound, it also provides hope that it can be developed into an effective tool to assist in physicians
in their clinical decision-making process.

Current ABMs also require computational resources. For the current 401 × 401 2D grid
simulation size, the average simulation implementation time ranged from 18 mins to 50 hrs
per replication. Computational time exponentially increased as the number of interactions
among agents increased because of the numerous repetitive interactions. Therefore, another
future direction of ABM research could be to reduce this computational hurdle by designing
new and efficient computational algorithms.

Supporting Information
S1 Fig. Comparison of IL-10: TNF-α ratio among healing response, hyperinflammatory
response, and organ dysfunction responses vs. the first 14 hrs of infection time.Mean val-
ues of IL-10: TNF-α ratios were measured at each simulation time point (replications = 10).
(TIF)

S2 Fig. Probabilities of leading to heading response, persistent infection, hyperinflamma-
tory response, and organ dysfunction in the presence of Acquired Immunity. Salmonella
initial loads range from 200 to 3200 counts.
(TIF)
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