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An increasing number of biomolecules have been shown to phase-separate into biomolecular con-
densates — membraneless subcellular compartments capable of regulating distinct biochemical pro-
cesses within living cells. The speed with which they exchange components with the cellular environ-
ment can influence how fast biochemical reactions occur inside condensates and how fast condensates
respond to environmental changes, thereby directly impacting condensate function. While Fluores-
cence Recovery After Photobleaching (FRAP) experiments are routinely performed to measure this
exchange timescale, it remains a challenge to distinguish the various physical processes limiting
fluorescence recovery and identify each associated timescale. Here, we present a reaction-diffusion
model for condensate exchange dynamics and show that such exchange can differ significantly from
that of conventional liquid droplets due to the presence of a percolated molecular network, which
gives rise to different mobility species in the dense phase. In this model, exchange can be limited
by diffusion of either the high- or low-mobility species in the dense phase, diffusion in the dilute
phase, or the attachment/detachment of molecules to/from the network at the surface or throughout
the bulk of the condensate. Through a combination of analytic derivations and numerical simula-
tions in each of these limits, we quantify the contributions of these distinct physical processes to
the overall exchange timescale. Demonstrated on a biosynthetic DNA nanostar system, our model
offers insight into the predominant physical mechanisms driving condensate material exchange and
provides an experimentally testable scaling relationship between the exchange timescale and con-
densate size. Interestingly, we observe a newly predicted regime in which the exchange timescale

scales nonquadratically with condensate size.

INTRODUCTION

Recent discoveries have found that living cells exploit a
type of phase transition known as liquid-liquid phase sep-
aration for intracellular organization. This new paradigm
challenges the traditional textbook view of the cell that
organelles are mostly membrane-bound. Rather, subcel-
lular structures can take the form of dynamic, liquid-like
networks of molecules called “biomolecular condensates”
[1, 2]. These condensates are dense assemblies of dis-
tinct proteins and nucleic acids that are driven by mul-
tivalent interactions to segregate out of the intracellu-
lar milieu. They enable functions vital for life, includ-
ing gene regulation [3-5], signal transduction [6-8], and
stress response [9-11], and when misregulated, they have
been implicated in various diseases, most notably neu-
rodegeneration [12-14] and cancer [15-18]. Understand-
ing how condensates form and evolve over time in cells
can deepen our physical understanding of emergent self-
organization in biological systems and potentially inform
human health.

The earliest measurements of condensate physical
properties were made on Caenorhabditis elegans germ
granules, or P granules, which were shown to be liquid-
like — they constantly fuse with each other, flow under
applied shear stresses, and undergo internal rearrange-
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ment [19]. Often essential for their biological functions,
the liquid-like nature of condensates enables them to ex-
s change materials with the surrounding dilute phase. For
33 instance, metabolic condensates, such as purinosomes
50 [20, 21], are enriched in enzymes, substrates, and other
s biomolecules involved in specific metabolic pathways [22].
s Regulating metabolic activity in condensates requires not
«2 only that reactants can partition into them, but also that
.3 products can later escape. However, with viscosities or-
« ders of magnitude larger than conventional oil droplets
[23], condensates are thought to experience slow internal
s diffusion, limiting the exchange dynamics. More broadly,
the speed of material exchange can influence the response
s of condensates to environmental changes, as well as the
w0 number, size, and spatial distribution of condensates via
so Ostwald ripening [24, 25]. Collectively, these effects can
s1 impact condensate function, motivating a need for tools
to accurately measure and interpret the exchange dynam-
53 1CS.
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s The timescales of molecular exchange are commonly
ss measured with an experimental technique known as Flu-
orescence Recovery After Photobleaching (FRAP) [26-
29]. In a typical FRAP experiment, fluorescently labeled
ss molecules are photobleached within a region of interest
so (ROT) upon irradiation with a high-intensity laser. The
e fluorescence intensity in the ROI then recovers over time
61 due to molecular exchange with the surroundings until
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constant intensity is eventually restored. Photobleaching
can be performed on a subregion within a droplet, known
as partial FRAP, or on an entire droplet, known as full
FRAP. Exchange dynamics have been studied in a range
of experimental condensate systems [6, 10, 30-33], and
complementary theories were developed to extract mean-
ingful physical quantities from measured fluorescence re-
covery curves [34-37]. Notably, all of these studies made
an assumption that the exchange dynamics were limited
by molecular diffusion. However, recent studies suggest
that condensate material exchange can also be limited by
other physical processes due to the complexity of molecu-
lar interactions [38-42], e.g., interface resistance [41, 42].

The exchange dynamics of condensates are ultimately
determined by the constituent biomolecules and their
microscopic structures and interactions. While phase-
separating molecules often exhibit a complex set of in-
teractions, they generally conform to a “sticker-spacer”
architecture [43, 44], where “stickers” represent residues,
nucleotide segments, or larger folded domains capable of
forming reversible physical cross-links that drive phase
separation, and “spacers” exclude volume and connect
the stickers to form polymers. In the sticker-spacer
framework, it follows that phase-separating molecules of-
ten form dynamically restructuring networks that go be-
yond traditional liquid-liquid phase separation (Fig. 1a),
sometimes referred to as “phase separation coupled to
percolation” [45, 46]. In the modified physical picture
(Fig. 1b), attachment/detachment of molecules to/from
the percolated network intuitively gives rise to differ-
ent mobility populations within the condensate for the
same type of molecule. The low-mobility population (re-
ferred to as “species 1”) represents molecules bound to
the network, and the high-mobility population (referred
to as “species 2”) represents freely diffusing molecules
detached from the network. Indeed, multiple mobility
populations have been reported in the dense phase of an
in vitro reconstituted postsynaptic density system [47]
as well as single-component A1-LCD condensates [48].
However, a theory to interpret such experimental results
has been missing. Here, we present a model that accounts
for a condensate’s molecular network and discuss some of
its implications for the exchange timescale.

RESULTS

A reaction-diffusion model for condensate exchange
dynamics

To explore how the percolated network and the pres-
ence of two mobility species impact the condensate ex-
change timescale, we first develop a reaction-diffusion
model for a phase-separated system at equilibrium. As-
suming a spherical condensate, we describe the recov-
ery dynamics of a bleached condensate (equivalent to the
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FIG. 1. Schematics of a condensate in (a) the conventional
model, which assumes uniform molecular mobility inside and
outside the condensate (depicted in grey), and (b) our pro-
posed model, in which binding kinetics with the molecular
network can give rise to multiple mobilities for the same
molecule inside the condensate. Connected blue molecules are
bound to the network, whereas individual pink molecules are
freely diffusing. By attaching and detaching, the two mobility
species can convert between one another with rates k2,1 and
k12, respectively.

exchange dynamics) by the following coupled reaction-
diffusion equations:

o I
& _y. |:Dl (Vcl - Vecéﬂ +k (ci%e2 = ier) , (1)
ot ‘1
cq
% =V {DQ <V02 - szggﬂ —k(ci%ex — cyler), (2)
Co

where ¢;(r, t) and co(r, t) are the bleached concentrations
of species 1 and 2, respectively, D;(r) and Ds(r) are
their position-dependent diffusion coefficients, ¢{%(r) and
c5}(r) are their equilibrium concentration profiles, and k
is a parameter that encodes how fast molecules convert
between species. The coordinate r is the distance from
the center of the condensate, and ¢ denotes the time.

In Egs. (1) and (2), the first terms on the right
represent conventional Fickian diffusion in a concentra-
tion gradient, and the second terms represent excess
chemical potentials that drive molecules towards nonuni-
form equilibrium concentration profiles. The third and
fourth terms account for mobility switching due to bind-
ing/unbinding with the network. Molecules can attach
to the percolated network and lower their mobility with
a rate ko_,1(r), and detach from the network and regain
higher mobility with a rate ki_o(r). Detailed balance
requires that the fluxes of association (caks—1) and dis-
sociation (c1k1,2) are equal at equilibrium, which allows
us to characterize these rates in terms of a single pa-
rameter, k(r) = koy1(r)/ci%r) = kioa(r)/c53(r). For
simplicity, we assume k to be a constant, independent of
the location of the molecule. The system reaches equi-
librium when ¢y (r, t)/c¢{(r) = ca(r,t) /52 (r) = fp, where
the constant f3 is the fraction of total molecules that are
bleached.

Analogous to a FRAP experiment, we set the initial
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s condition to be

¢i(r,0) = {C;?Q(T)’

r < R;
r>R

N 3

us for a fully bleached droplet, where i = 1,2, and R is the
us droplet radius. We impose no-flux boundary conditions
w7 to conserve total particle number in the system:

e (r,t)
or

_Ocy(r,t)

or 4)

r=0 r=-+400

us Upon solving for ¢1(r,t) and ca(r, t), we can obtain a nor-
10 malized brightness curve I(¢) for the fraction of molecules
150 inside the droplet that are unbleached at a time t:

S len(rt) + ea(r, 6)] r2dr
foR c

Tt
[¢59(r) + 2] r2dr
11 Finally, the characteristic timescale 7 of the exchange
152 dynamics is identified by fitting I(¢) to an exponential
153 function of the form 1 — e~ /7 .

Itt)=1-

()

15+ Quantifying the timescales of rate-limiting processes

155 Analytical derivations

A proxy for condensate material exchange, fluores-
cence recovery in a bleached droplet is a multi-step
process involving dilute-phase diffusion, network attach-
ment/detachment, and dense-phase diffusion. We outline
10 the rate-limiting steps of FRAP recovery in Fig. 2. First,
12 an unbleached molecule must diffuse through the dilute
163 phase to reach the droplet surface. In the limit of low
s dilute-phase concentration, we derive the dilute-phase

156

157

158

159

(2) (b)

droplet bleached

Tin
& pee <\ t

Tdil
Tcon

T2,den

droplet recovered

FIG. 2. Schematic (a) and flowchart (b) of rate-limiting pro-
cesses in the exchange dynamics of biomolecular condensates.
In order for fluorescence to recover in a bleached droplet, an
unbleached molecule first has to diffuse in the dilute phase
with a timescale 7q4;; until it encounters the droplet, and then
either attach to the network at the surface with a timescale
7int and diffuse into the droplet with a timescale 71 den, Or
diffuse through the network mesh inside the droplet with
a timescale 72 4en and subsequently attach to the network
within the droplet bulk with a timescale 7¢on.

16 diffusion timescale 745 shown in Eq. (6a). Next, in the
limit of low dense-phase concentration of species 2, the
unbleached molecule is more likely to enter the droplet by
attaching to the network at the droplet interface and sub-
sequently diffusing into the bulk dense phase as species
1. In this case, if interfacial attachment/detachment is
rate-limiting, we derive the interface-limited timescale
Tint Shown in Eq. (6b), whereas if dense-phase diffusion of
species 1 is rate-limiting, we derive the timescale Ti den
shown in Eq. (6¢). Finally, for sufficiently high dense-
phase concentration of species 2, the unbleached molecule
is more likely to enter the droplet by passing through
the pores of the network and diffusing around the dense
phase as species 2, which then attaches to and detaches
from the network throughout the bulk of the droplet.
In this case, if dense-phase diffusion of species 2 is rate-
limiting, we derive the timescale 73 gen shown in Eq. (6d),
whereas if attachment/detachment throughout the bulk
of the droplet is rate-limiting, we derive the conversion-
limited timescale Tcon shown in Eq. (6e). Detailed deriva-
tions of each timescale are provided in the Supplemental
Material [49].
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187 D1 den and Dg qen are the dense-phase diffusion coeffi-
cients of species 1 and 2, respectively, ¢i den and €z den
are the dense-phase equilibrium concentrations of species
1 and 2, respectively, D5 gj; is the dilute-phase diffusion
coefficient of species 2, ¢ g1 is the dilute-phase equilib-
rium concentration of species 2, and d.g is the effective
width of the droplet interface. We note that ¢, 4i1 = 0 as
there is no percolated network in the dilute phase. The
above derivations also assume ¢z gen <K C1,den a5 Species
1 is energetically favored and therefore more abundant.

Each physical process has a distinct timescale that
scales with droplet size differently. Specifically, the
diffusion-limited processes in both dense and dilute
phases are associated with timescales that naturally
scale as R?/D [Egs. (6a), (6c), and (6d)]. The fac-
tors ¢1.den/C2,dil a0d €1 den/C2.den i Eqgs. (6a) and (6d)
account for replacing bleached molecules of concentra-
tion ¢1,den With unbleached molecules of concentrations
C2,4i1 and ¢z gen, respectively. The interfacial timescale
26 [Eq. (6b)] accounts for exchange of a volume of molecules
a7 (~ R3) over a surface (~ R?) and is therefore linear in
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R. Lastly, the conversion-limited timescale [Eq. (6e)] is
independent of R, which arises due to rate-limiting de-
tachment of bleached molecules throughout the bulk of
the dense phase, i.e., the lifetime of a molecule in the net-
work [given by 1/k1_2 = 1/(kc2.den)]- Once detached,
these molecules can quickly escape the droplet, allowing
unbleached molecules to attach to the network.

Putting together the rate-limiting steps, we propose
the following expression for the overall timescale of fluo-
rescence recovery:

-1
T = Tqil + [(Tint + Tl,den)i1 + (7_2,den + Tcon)71i| ) (7)

where following diffusion in the dilute phase, two compet-
ing modes of recovery occur in parallel, each a sequence
of two steps (Fig. 2b). It is worth noting that by set-
ting ¢z den = 0 in Eq. (7), i.e., assuming a single mobil-
ity species inside the droplet, we recover results of our
previous study [41]. In particular, Eq. (6b) arises due to
the “interface resistance” of the droplet, which was previ-
ously modeled with a phenomenological parameter x, but
now acquires a clear physical meaning: 7y, is governed
by the molecular attachment/detachment at the droplet
interface. For ¢z gen > 0, the emergence of a new path-
way in Fig. 2 leads to two previously unrecognized terms
in the recovery time [Eq. (7)], resulting in a complex de-
pendence of 7 on the droplet radius R. We demonstrate
this complex dependence via numerical simulations and
FRAP experiments on DNA nanostar droplets below.

Numerical simulations

In the previous section, we derived the timescale of
fluorescence recovery by analytically solving the reaction-
diffusion system described by Egs. (1-5) in various limits.
Here, we numerically verify these timescales and visual-
ize the different FRAP signatures in each rate-limiting
case. Specifically, we first specify the functional forms
of equilibrium concentrations and diffusion coefficients
with sharp but smooth transitions at the droplet inter-
face (r = R) over a finite width ~ I:

eq Ci,dil — Ci,den r—R Ci,dil + Ci,den

; =~ " tanh

¢ (r) 5 an ( ;i ) + 5 ,
-Di il — D’L en - R Dz i Dz en

Dy(r) = dil . den o (7’ l > i ,dl'; den

which are consistent with equilibrium solutions of the
Cahn-Hilliard equation [50]. The initial and bound-
ary conditions are given by Egs. (3) and (4), respec-
tively, except that the boundary at r = 400 is replaced
by 7 = rmax for the finite size of the system. We
then solve Egs. (1) and (2) numerically under spher-
ical symmetry using the pdepe function in MATLAB,
which employs finite-difference spatial discretization with
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FIG. 3. Representative simulation in a dilute-phase diffusion-
limited scenario (parameters from top row in Table I). (a)
Equilibrium concentration profiles and (b) diffusivity profiles
for species 1 and 2. (c) Simulated radial concentration profiles
of the bleached molecules for a few illustrative times. (d) Sim-
ulated brightness curve with exponential fit using nonlinear
least squares. Simulations were performed with radial step
size dr = 20nm over a system size of rmax = 30 pm for 1000
timepoints (the solver dynamically selects both the timestep
and formula).

a variable-step, variable-order solver for time integration
[51]. The numerical solutions for ¢1(r,t) and ca(r,t) are
used to compute a brightness curve in accordance with
Eq. (5), which is subsequently fitted to extract the recov-
ery timescale.

We show an example where the FRAP recovery is
limited by dilute-phase diffusion in Fig. 3. Guided by
Eq. (7), we choose physiological parameters of condensate
systems [23, 52, 53] that lead to 7 ~ 7q; (Table I). The
numerically extracted relaxation time 7 15.1s of an
R =1 pum droplet is indeed close to the theory prediction
of 7qn = 13.3s. We repeat a similar procedure for various
parameter sets in which the timescale of fluorescence re-
covery is limited by interfacial attachment/detachment,
dense-phase diffusion of the low-mobility species, dense-
phase diffusion of the high-mobility species, and attach-
ment/detachment throughout the bulk of the condensate,
totaling five cases. Simulated spatial fluorescence recov-
ery profiles for each of these cases are shown in Fig. 4
with parameters listed in Table I. The two cases of dense-
phase diffusion-limited recovery (rows c and d) can read-
ily be distinguished by the pronounced gradient present
due to unbleached molecules gradually diffusing into the
condensate and bleached ones diffusing out, whereas the
remaining three cases all display a uniform recovery. De-
tails of the numerical implementation and fitting are pro-
vided in the Supplemental Material [49)].

Based on Eq. (6), condensate recovery timescales are
expected to follow different scaling laws in different
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5
TABLE I. Parameter choice for numerical simulations of five rate-limiting cases.
Case C1,den C1,dil €2,den C2,dil D1 gen D1 an D3 gen D ai1 l k
(M) (M) (M) (uM)  (pm®/s)  (um?/s)  (pm?/s)  (pm?/s)  (pm)  (uM”'sTY)
T & Tdil 2000 0 0 5 0.1 0.1 1 10 0.1 1
T & Tint 1000 0 0 10 0.02 0.02 1 50 0.1 0.005
T A T1,den 1000 0 0 10 0.02 0.02 1 50 0.1 1
T & To.den 1995 0 5 10 5x107°  5x107° 0.1 50 0.01 0.005
T & Teon 980 0 20 10 0.02 0.02 1 50 0.05 1x107*

1 pm

1pm

1 pm

1pm

t=20 t=0.57 t=r t =27 equilibrium

FIG. 4. Simulated FRAP recovery profiles when fluores-
cence recovery is limited by (a) dilute-phase diffusion, (b)
interfacial attachment/detachment, (c) dense-phase diffusion
of species 1, (d) dense-phase diffusion of species 2, and (e)
attachment/detachment throughout the bulk of the conden-
sate. Green indicates fluorescent molecules and black indi-
cates bleached molecules. Simulations were performed with
radial step sizes 1/5 of the interface width [, and the system
size was rmax = 30 um. 1000 timepoints were recorded over
471-long runtimes.

rate-limiting cases. As shown in Fig. 5, the different
timescales indeed scale differently with droplet size in
silico as well. When diffusive processes are rate-limiting,
the scaling law is quadratic; when the interfacial flux is
rate-limiting, the scaling law is linear; and when the net-
work attachment/detachment throughout the droplet is
rate-limiting, the scaling law is independent of droplet
size.

Application to a DNA nanostar system

Finally, we sought to employ our theory in an ex-
perimental system composed of DNA nanostars — a
model system for investigating biomolecular condensa-
tion. Thanks to advances in artificial DNA synthesis
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techniques, DNA nanostars offer highly programmable
interactions: binding specificity and affinity can be tuned
via the sequence and length of single-stranded overhangs,
and valence via the number of arms. These features
collectively enable a diverse range of phase behaviors
[54-57]. Our DNA nanostars are composed of three
arms of double-stranded DNA, each with a short tail of
single-stranded DNA known as a “sticky end” due to its
propensity to Watson-Crick base-pair with complemen-
tary strands (Fig. 6a). The sticky ends make these nanos-
tars readily phase-separable, and micron-sized droplets
can be seen with confocal microscopy. Details about se-
quences and sample preparation are given in the Supple-
mental Material [49].

DNA nanostars form porous networks inside their con-
densates, with the mesh size determined by the engi-
neered arm length and valence [59, 60]. This property
makes them a prime system in which to observe the new
mode of recovery discussed above: nearby molecules may
penetrate the droplet surface and diffuse freely within
the droplet before attaching to the network. If this
were the dominant recovery mechanism, we would ex-
pect to observe conversion-limited recovery for small
droplets, transitioning to diffusion-limited recovery for
large droplets. Upon performing FRAP on nanostar
droplets of varying sizes (Fig. 6b), we noticed that the
recovery curves and hence the recovery timescales were
nearly identical for droplets of small sizes (R < 1.5 um),
despite spanning nearly a twofold size range (Fig. 6¢ and
6d). This observation aligns with the scaling behavior
of conversion-limited recovery. If the recovery of these
droplets were diffusion-limited, whether by dilute-phase
diffusion, species 1 dense-phase diffusion, or species 2
dense-phase diffusion, we would expect nearly a fourfold
difference in exchange timescale. For larger droplets, we
see a quadratic scaling that plateaus at the conversion-
limited timescale (Fig. 6d). Upon fitting the data with
the shifted quadratic function 7 = a + bR?, we find the
constants a and b are well-constrained: a = 145.0£5.6 s
and b = 14.1 4 0.7 um~2s.

As suggested by our theory, the plateau regime arises
because the recovery is conversion-limited, i.e., Teon =
1/(kca,den) = a. Nanostar droplets are porous, with a
measured pore size comparable to the arm length. It
has been reported that the partition coefficient for 70
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FIG. 5. Theoretical and simulated scaling laws show good agreement in each rate-limiting case: (a) dilute-phase diffusion-limited
timescale scales with R?, (b) interface-limited timescale scales with R, (c) dense-phase diffusion-limited timescale (species 1)
scales with R?, (d) dense-phase diffusion-limited timescale (species 2) scales with R?, and (e) conversion-limited timescale is
independent of R. Red curves: theoretical predictions from Eq. (6) using parameters from Table I; black crosses: simulation

results for droplets of radii R = 0.5 ym, 1 um, and 2 pym.

s kDa dextran (hydrodynamic radius 6 nm) is about 0.3
us — 0.6 in such systems [59, 60]. Given that our nanos-
us tars have a hydrodynamic radius (5 — 7 nm) similar
to that of dextran, we expect the unbound species of
nanostars to partition in these nanostar droplets to a
similar extent as the dextran. Assuming a partition co-
efficient of 0.5 and dilute-phase concentration of 1 uM,
€2.den =~ 0.5caqi ~ 0.5uM, and the rate of nanostar
attachment inside the condensate can be estimated as
k= 1/(ac2,den) =~ 0.014 uM~*s~1. This rate appears to
352 be much lower than the reported on-rate for nanostars
in dilute solution, which ranges from 0.1 to 1/,LM71871
[61]. The discrepancy likely arises because we have mod-
57 eled the attachment flux as kcj%cy in Eq. (1), implicitly
s assuming that every species 1 nanostar in the percolated
network can bind to freely diffusing species 2 nanostars.
However, many nanostars in the network may already be
in a fully bound state or spatially occluded and thus un-
available for binding, leading to a smaller apparent k. If
we take these numbers seriously, this would suggest that
about 90% of nanostars are not available for binding in
the droplet.
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Beyond the plateau regime, comparing the interface-
37 limited timescale with the conversion-limited timescale
ses gives the relation Ting = TeonRC2,den/(30emC2.ai1). Also,
30 nanostar condensates have a surface tension around
so 1uN/m [56], which corresponds to an effective inter-
sn face width deg =~ 30nm. Therefore, a droplet of ra-
s2 dius R (in pm) would have an interface-limited timescale
a3 Ting ~ 800R s. Since this is much longer than the recovery
s times measured experimentally, we argue that the con-
a5 ventional pathway of attaching at the droplet interface
36 followed by diffusion through the network is not the fa-
37 vored mode of recovery for the nanostar droplets studied
as here. This leads to a reduced expression for the overall
s relaxation time from Eq. (7): T = Tau + T2,den + Tcon-
0 While 7.on, = a sets the plateau value, both 74; and
31 T2 den SCale with R? and can contribute to the prefactor
12 b = ¢1.den/(3D2,ai1C2,di1) + €1.den/ (T2 D2,denC2 den). Tak-
383 ing Cl,den = QOOMM, C2.dil = 1/1,M, C2.den = 0.5/1,1\/[,
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and Do gy = 20um?/s (from the Stokes-Einstein rela-
tion) [58, 62], we estimate Dg gen =~ 411m?/s.

DISCUSSION

A hallmark of biomolecular condensates is their dy-
namic exchange of materials with their surroundings, a
feature often crucial to their function. In this work, we
developed a novel reaction-diffusion model to describe
condensate exchange dynamics and explored how such
dynamics can deviate from those of conventional liquid
droplets due to the formation of a percolated network in
the condensate. We found that in the presence of two
mobility states, material exchange can be accelerated via
a new pathway in which molecules pass through the pores
of the meshwork and attach/detach directly in the con-
densate interior. Notably, this pathway leads to a new
regime where the exchange timescale becomes indepen-
dent of condensate size, a prediction we confirmed using
FRAP experiments on DNA nanostar condensates.

In this study, we focused on the exchange dynamics
of in wvitro single-component condensates and approxi-
mated a condensate as a two-state system at equilibrium.
Molecules inside biological condensates, even in single-
component systems, are likely to exhibit a broad range
of mobilities due to the complexity of underlying interac-
tions [47, 48]. A natural next step would be to incorpo-
rate more mobility states into the model. Nevertheless, a
concise two-state model can capture the essential physi-
cal principles underlying condensate exchange dynamics
while remaining analytically tractable.

The developed reaction-diffusion model can also be
readily extended to describe multi-component systems.
Condensates in living cells are complex assemblies of dis-
tinct proteins and nucleic acids, which generally employ
a scaffold-client framework [45, 46]. While our model fo-
cused on the exchange dynamics of scaffold molecules,
the same mathematical framework applies to client dy-
namics, where client molecules can bind (low mobil-
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FIG. 6. Experimental characterization of exchange dynamics
in DNA nanostar condensates. (a) Nanostar schematic. The
Y-shaped nanostar has 16-bp double-stranded arms shown in
blue, sticky ends with the palindromic sequence 5’-GCTAGC-
3’ in red, and non-complementary linkers with the sequence
5°-TT-3’ in gray that confer angular flexibility between arms.
The nanostars were first annealed in a low-salt solution, then
added to a higher salt solution at 37 °C to incubate conden-
sates, following the same protocol as in [58]. (b) Represen-
tative snapshots from a FRAP experiment of an R = 1 um
nanostar droplet. (c) FRAP recovery curves for droplets of
small sizes (R < 1.5um). (d) Exchange timescale versus
droplet radius for all droplets, fitted with a shifted quadratic
function of the form 7 = a+bR?, where a = 145.0£5.6 s and
b=14.1+0.7 um~2s. Error bars are defined at 3o.

a1 ity)/unbind (high mobility) to/from an equilibrated scaf-
a2 fold network. The model can also be used to predict
»3 the dynamics of condensates in the cell nucleus, where
molecules diffusing within the condensate are also capa-
ble of binding to/unbinding from DNA [63, 64].

The newly discovered pathway involves molecules pass-
ing through the pores of the meshwork and attach-
ing/detaching directly within the condensate. In which
systems, and for which molecules, would this pathway be
favored and experimentally measurable? Because diffu-
sion within the connected network for bound molecules
is generally much slower than for unbound molecules, the
essential requirement for this pathway to dominate is that
a1 the mesh size of the percolated network be comparable or
a5 larger than the size of the molecule of interest, ensuring
a6 a sufficiently high concentration of high-mobility species.
«r It has been reported that the mesh size (or correlation
w3 length) for in vitro reconstituted condensates of purified
120 LAF-1 protein is about 5nm [65], while for reconstituted
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coacervates composed of two oppositely charged intrinsi-
cally disordered proteins, histone H1 and prothymosin-«,
it is about 3nm [66]. More generally, we established a
quantitative relationship between mesh size and concen-
tration in a recent work, which suggests that conden-
sates at physiologically relevant concentrations of 100 —
400 mg/ml exhibit mesh sizes ranging from 8 to 3nm [67].
Since protein sizes span the reported mesh size range, we
expect the new pathway to be relevant to the exchange
dynamics of many condensate systems, especially for con-
densates of low scaffold molecule concentrations and for
clients of small sizes.

Fascinating soft matter systems in their own right,
biomolecular condensates are also increasingly implicated
in cellular physiology and disease [68, 69]. We hope that
our work will motivate further theoretical and experimen-
tal investigations into the complex dynamics in multi-
component, multi-state condensates, shedding light on
their functional roles and paving the way for applications
in condensate bioengineering.
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