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Lapuente-Santana et al. (2021) developed Estimate Systems Immune Response (EaSIeR), a method for as-
sessing the immune response to cancer using systems biology traits.
Immune checkpoint blockade (ICB) has

become an important pillar in the treat-

ment of cancer. While some patients

achieve robust and durable tumor

regression, the unfortunate reality is that

most patients do not receive long-term

clinical benefit.1 Research on antitumor

immunity has revealed multiple tumor

cell intrinsic and extrinsic factors contrib-

uting to ICB response,2 although robust

mechanistic models are still lacking.3

Tumor intrinsic factors such as tumor

mutation burden (TMB), neo-antigen pre-

sentation, and deficient mismatch repair

(dMMR)—hallmarks of tumor immunoge-

nicity—are approved today for use

as clinical biomarkers in most indica-

tions. Extrinsic factors—found princi-

pally within the tumor microenvironment

(TME)—are increasingly recognized as

critical to the immune response. A com-

plex milieu of immune cells and non-im-

mune stromal cells such as endothelial

cells and fibroblasts, the TME can exert

both activating and inhibitory influences

on the adaptive and innate immune

response to cancer.4 Deepening our un-

derstanding of the cellular components

of the TME and their complex interplay

will be critical in developing better bio-

markers of response and expanding the

pool of patients who might benefit from

ICB therapy.

While single-cell RNA sequencing has

become an important tool in decoding

the TME, technical and cost consider-

ations continue to limit its use. Conse-

quently, bulk transcriptomic data remain

an important, unbiased resource for

modeling the immune response to can-

cer. Recent studies have successfully

used bulk RNA sequencing data from

The Cancer Genome Atlas (TCGA) and
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other sources to identify recurrent gene

expression patterns within the human im-

munome, leading to the development of

several cancer immune subtypes.5–7

These subtypes represent global struc-

tures of the immunome and are an amal-

gamation of many pathways and immune

responses that may be private to a sub-

type or shared across them. In contrast

to this global subtyping approach, other

studies have focused on the development

of gene signatures that reflect more tar-

geted behaviors of the immune response,

such as cytolic activity,8 T cell dysfunction

and exclusion,9 and cytokine inflamma-

tion and immune suppression.10 While

these global and targeted approaches

capture important properties of the im-

mune response, they fall short of

providing a mechanistic and fine-grained

understanding of the immune response

to cancer.

To address this shortcoming, La-

puente-Santana et al., developed Esti-

mate Systems Immune Response

(EaSIeR), an algorithm designed to iden-

tify systems biology traits underlying the

immune response to cancer. Structured

as a supervised machine learning prob-

lem, EaSIeR uses as its inputs (predictors)

five systems-biology-based views

derived from prior knowledge: (1) im-

mune-cell fractions within the TME, (2)

signatures of intracellular pathway

signaling, (3) transcription-factor (TF)

target gene activity, (4) inter-cellular

ligand receptor pair activity, and (5) in-

ter-cellular cell-cell pair activity. The

learning outputs are 14 gene signatures

that encompass a variety of immune

response phenotypes (e.g., see targeted

gene signatures as described above).

However, instead of training 14 individual
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ture—EaSIeR employsmulti-task learning

(MTL), a machine learning approach that

conjointly learns multiple predictive

models (tasks). MTL has been shown to

work well when the training outputs are

themselves noisy and when the tasks

share a common objective function.11

By framing the problem as a predictive

modeling problem, Lapuente-Santana

et al. learn a set of systems biology traits

that optimally predict the immune

response. The coefficients of the trained

models quantitatively describe the contri-

bution of each view’s traits to the model,

while the different models’ predictive per-

formances reveal which views—and com-

bination of views—are most informative.

Lapuente-Santana et al. applied EaSIeR

to 18 solid tumor types from TCGA, pro-

ducing a large, tumor-specific compen-

dium of systems biology traits. Interest-

ingly, Lapuente-Santana et al. showed

that while the immune cell type composi-

tion is the most informative view,

combining each of the views into a single

ensemble model results in the highest

predictive performance, suggesting that

systems biology views provide comple-

mentary information and capture different

properties of the immune response.

Lapuente-Santana et al. next tested

whether their model can predict patient

response to ICB therapy. First applying

EaSIeR to two melanoma cohorts, they

showed that combining systems-based

views is better than the immune response

tasks themselves at predicting therapeu-

tic response. Considering that the models

themselves were trained with the immune

response phenotypes, this result is

counter-intuitive, and Lapuente-Santana

et al. provide no rationale for this
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unexpected finding, although this likely

suggests that systems-based traits may

be more stable—and consequently more

generalizable—across independent co-

horts. Finally, Lapuente-Santana et al. hy-

pothesized that TMB—as a proxy for tu-

mor immunogenicity—is distinct from

the immune response. Despite the strong

dependency between immunogenicity

and immune response, Lapuente-San-

tana et al. showed that TMB combined

with EaSIeR results in better ICB

response classification performance

than either TMB or EaSIeR alone. This

finding supports their hypothesis that

EaSIeR captures components of the im-

mune response that are independent of

tumor immunogenicity.

Lapuente-Santana et al. are not the first

to explore how systems-based traits

correlate with immune phenotypes. For

example, Thorrson et al., identified six

de novo immune subtypes using TCGA

expression data and characterized their

association with cell type fractions,

genomic alterations, transcriptional regu-

latory networks, and extracellular

communication networks.6 However,

their gold standard for differences of im-

mune response are their derived sub-

types. In contrast, Lapuente-Santana

et al. leveraged multiple axes of the im-

mune response by integrating 14 func-

tional immune signatures. Moreover, by

using a multi-variable predictive modeling

framework, EaSIeR aggregated multiple
2 Patterns 2, August 13, 2021
systems views within a single model,

providing a quantitative measure of the

views’ contribution to the immune

response.

The history of drug therapeutics is one

where the clinical adoption of a drug often

precedes a comprehensive understand-

ing of its in vivo mechanisms; immuno-

therapy is no exception. In the quest to

identify better biomarkers of response,

develop rationale strategies for drug com-

binations, and overcome innate or ac-

quired resistance to immunotherapy, so-

phisticated tools for modeling intra- and

intercellular and mechanistic behaviors

are urgently needed. Systems biology

based approaches are well-suited to this

task, and the EaSIeR algorithm described

by Lapuente-Santana et al. is a promising

step in this direction.
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