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Abstract

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder with

complex biology and significant clinical heterogeneity. Many preclinical and early

phase ALS clinical trials have yielded promising results that could not be replicated in

larger phase 3 confirmatory trials. One reason for the lack of reproducibility may be

ALS biological and clinical heterogeneity. Therefore, in this review, we explore

sources of ALS heterogeneity that may reduce statistical power to evaluate efficacy

in ALS trials. We also review efforts to manage clinical heterogeneity, including use

of validated disease outcome measures, predictive biomarkers of disease progression,

and individual clinical risk stratification. We propose that personalized prognostic

models with use of predictive biomarkers may identify patients with ALS for whom a

specific therapeutic strategy may be expected to be more successful. Finally, the

rapid application of emerging clinical and biomarker strategies may reduce heteroge-

neity, increase trial efficiency, and, in turn, accelerate ALS drug development.
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1 | INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease pri-

marily characterized by the progressive deterioration of cortical and

spinal motor neurons. Substantial clinical heterogeneity among

patients with ALS is seen, especially in terms of site of onset (bulbar

vs spinal), relative degree of upper and lower motor neuron involve-

ment, and progression rate.1 There is also known genetic heterogene-

ity, with more than 40 identified ALS genes.2 Many of these confer

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-

Revised; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic; BEST, Beta-Blocker

Evaluation of Survival Trial; CAFS, Combined Analysis of Function and Survival; CRP,

C-reactive protein; CSF, cerebral spinal fluid; fALS, familial ALS; FVC, forced vital capacity;

miRNA, micro-RNA; MSC, mesenchymal stromal cell; MSC-NTF, MSC-neurotrophic factor;

ncRNA, noncoding RNA; PRO-ACT, Pooled Resource Open-Access ALS Clinical Trials; sALS,

sporadic ALS; SOD1, superoxide dismutase 1; SVC, slow vital capacity; TDP-43, transactive

response DNA binding protein 43 kDa.
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susceptibility, not necessarily causation, thus further contributing to

biological heterogeneity. Disease heterogeneity has implications for

the efficient development of innovative therapeutics. Because clinical

and biological heterogeneity are not fully understood, individual risk

assessment, participant stratification in clinical trials, and timing of

treatment interventions may involve considerable challenges and

uncertainties with respect to therapeutic strategies. Riluzole was

approved for the treatment of ALS in the 1990s, but there has been

limited success with the development of additional treatment options.

According to information registered at ClinicalTrials.gov (https://

clinicaltrials.gov/), since 2007, when new US Food and Drug Adminis-

tration registration requirements were established for drug trials, over

80 phase 2 or phase 3 ALS trials have been completed, terminated, or

suspended. These studies have yielded only one additional approved

treatment (Edaravone) to slow the progression of ALS. Part of the rea-

son for the low success rate of ALS trials, in addition to uncertain bio-

logical targets or late intervention, may be the lack of strategies to

address clinical heterogeneity.3

The goals of this review are to better describe the sources of het-

erogeneity in ALS; to propose how this heterogeneity can be managed

by using validated disease measures and outcomes, biomarkers, and

prognostic models; and to examine the use of these strategies in clini-

cal trials.

2 | SOURCES OF HETEROGENEITY

The complex biological heterogeneity of ALS includes an expanding

list of genetic factors that interacts across neuronal and noncell

autonomous pathology.2,4 More recently, spatiotemporal analysis of

the molecular pathology in ALS has provided evidence of a complex

interplay of several distinct neuronal and nonneuronal cell types.5

From a genetics perspective, genome-wide association studies may

be consistent with a multigenic process in both familial ALS (fALS) and

sporadic ALS (sALS).6 Sporadic ALS occasionally arises from spontane-

ous mutations in some of the same genes that are known to cause

fALS. While genetic mutations can be predictive of disease characteris-

tics (eg, C9orf72 expression may be associated with cognitive and

behavioral changes7), clinical features and survival may be highly vari-

able for a given mutation (eg, patients with a mutation in superoxide

dismutase 1 [SOD1] show differences in phenotype and in speed of

disease progression8), even within families. This variability likely results

from the specific allelic mutation from additional risk-associated modi-

fier genes6 as well as from putative environmental factors.

A broad range of cellular and molecular abnormalities has been

noted in both sALS and fALS. Cytoskeletal abnormalities9 and intracel-

lular protein aggregates; alterations in DNA and RNA processing,

transport, and function; mitochondrial dysfunction; and disrupted oxi-

dative homeostasis have all been implicated.10,11 Central nervous sys-

tem inflammation also appears to play a key role in the progression of

motor neuron degeneration, irrespective of the specific upstream dis-

ease pathophysiology.12

Prior to the current state of understanding of ALS biological het-

erogeneity, drug development in ALS primarily focused on ALS as a

single disease with proposed common pathophysiology and a predict-

ably relentless clinical course. Recently, this view has changed with an

increased recognition of the variability in rates of progression, hetero-

geneity of phenotypes (degree of upper and lower motor neuron

involvement), and differences in allelic mutations of known genetic

forms as larger clinical data sets such as the Pooled Resource Open-

Access ALS Clinical Trials (PRO-ACT) database13 have become

available.

3 | ADDRESSING CLINICAL
HETEROGENEITY

In ALS, heterogeneity in the rate of functional decline and overall rate

of disease progression and survival may be related to initial clinical

manifestations.14 For example, upper limb (P = .010) or bulbar

(P = .005) weakness may be associated with more rapid rate of func-

tional decline,14 an observation recently confirmed by using the PRO-

ACT database.15 To address these challenges, standardized disease

outcome measures, prognostic models, and biomarkers have been

used to characterize the ALS clinical trial population, with varying

success (Figure 1).

F IGURE 1 Sources of heterogeneity
in amyotrophic lateral sclerosis clinical
trials. MOA, mode of action
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4 | DISEASE OUTCOME MEASURES

Disease outcome measures in ALS include measures of function, survival,

and quality of life. Several tools are available for measuring different types

of function, and each is associated with benefits and limitations for

addressing the biologic and clinical heterogeneity of the study population

(Tables 1 and 2). When survival is used as an endpoint, there are intrinsic

and extrinsic factors thatmay affect interpretation of the data,16 and com-

bining survival with ventilatory endpoints (eg, tracheostomy or noninva-

sive ventilation) must also be considered.17 Riluzole appears to have a

modest effect by prolonging survival by approximately 3 months in

patientswith ALS and, possibly, in the last clinical stage of ALS, as reported

in a recent retrospective study.18,19 Thus, riluzole may be a confounder

affecting the survival endpoint in trials when there is an imbalance of the

number of patients on riluzole or when the duration of exposure to

riluzole differs between the varying treatment allocation arms.

Survival over a longer time period may help to convince neurolo-

gists and patients that a drug or treatment is effective; however, the

feasibility of the long study length and placebo controls in survival

endpoint studies is a challenge for study participants and their care-

givers. The Combined Analysis of Function and Survival (CAFS) was

developed to overcome the limitations of measuring function or sur-

vival alone as a primary outcome; this method allows a treatment

effect on either outcome to be detected when there is a strong effect

on one but not the other.20

The revised Airlie House consensus guidelines have recently pro-

vided recommendations about how disease outcome measures can

account for biologic and clinical heterogeneity in ALS,21 and efforts to

define appropriate endpoints are ongoing. Several statistical methods

were recently assessed for simultaneous analysis of function and sur-

vival by using the PRO-ACT database. A joint model, in which the ALS

Functional Rating Scale-Revised (ALSFRS-R) was incorporated into

the survival model as a covariate, was found to provide the most con-

sistency among treatment scenarios and had a greater ability to detect

smaller treatment effects compared with other statistical methods,

including CAFS.22 Moreover, additional power might be achieved with

TABLE 1 ALS disease outcome measures of physical function and muscle strength

Outcome Heterogeneity Tools Benefits Limitations

Physical function Domain with greatest

subscore deterioration51

Rate of decline33

ALSFRS-R52 Effective measure of progression

Strong predictor of survival53,54

Reflects clinically meaningful change

over time55

Progression of group ALSFRS-R

trajectories form a linear model56

Subjective

Individual ALSFRS-R

trajectories display

variable curvilinearity56

Muscle strength Variability in overall rates of decline

for different muscle groups60

Large interpatient

variability in rates of decline60,

HHD60 • Rate of decline for total scores is

linear and closely associated with

declines in both ALSFRS-R and FVC60

• Less variability than MMT60

ATLIS61 • Accurate even when strength of

the patient exceeds that of the evaluator61

• Requires no position changes61

Additional research

required

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; ATLIS, Accurate Test of Limb Isometric Strength;

FVC, forced vital capacity; HHD, hand-held dynamometry; MMT, manual muscle testing.

TABLE 2 ALS disease outcome measures of respiratory function, muscle integrity, cortical function, and speech function

Outcome Heterogeneity Tools Benefits Limitations

Respiratory function Baseline measurement
and rate of decline57

FVC/SVC57 Commonly used to assess disease
status and outcomes in clinical trials

Predict survival57,58

Only moderate correlation
with ALSFRS-R respiratory subscale59

Nondiaphragm muscles or obstructive
causes may affect results59

Muscle integrity Rate of decline of muscle integrity62 EIM62 Less variable than HHD and ALSFRS-R
Correlates with survival

To date, little has been published on
using EIM in clinical trials

Cortical function SICI amplitude reduced and
MEP amplitude increased in
early ALS, precede
neurodegeneration63

TMS64 Noninvasive
Measures several cortical outputs
Discriminates early and late disease stages

Difficult to determine precisely which cortical
neurons and the extent of the cortical area
affected with each TMS pulse/stimulation

Surface regions of the cortex more likely than
the subcortical regions are targeted

Speech function Decline in speech intelligibility
during disease progression

Wave65 Automatic estimation less time intensive
and causes less patient fatigue
than standard clinical examination
of oral motor function

Data are preliminary and sample size is small

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; EIM, electrical impedance myography; FVC, forced vital

capacity; HHD, hand-held dynamometry; SICI, short-interval intracortical inhibition; SVC, slow vital capacity; TMS, transcranial magnetic stimulation.
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analyses of the ALSFRS-R subdomain scores rather than total score or

by incorporating other outcomes into the model, such as respiratory

or muscle strength measures.

5 | BIOMARKERS

Biomarkers can be diagnostic, prognostic, or predictive, and each

may potentially provide insights into the reasons for heterogeneity

in the clinical trial population in different ways. There are currently

no individual or group of biomarkers that accurately serve in a diag-

nostic, prognostic, or predictive capacity in ALS. Diagnostic bio-

markers may define different biotypes of the ALS syndrome that

may theoretically respond to different therapeutic strategies, could

allow the exclusion of cases that are not “true” ALS, or could select

for patients at a specific disease stage; prognostic biomarkers could

allow for the selection of patients with a specific disease stage

and/or rate of progression; and predictive biomarkers could identify

patients most likely to respond to a treatment. Validated biomarker

development is, therefore, one of the most important needs among

ALS researchers.23

Several biomarker candidates are being explored, including “wet”

(tissue based), digital (eg, imaging or neurophysiology), and inflamma-

tory and genetic varieties and micro-RNAs (miRNA; Tables 3 and 4).

One candidate is cerebral spinal fluid (CSF) and blood neurofilament

(Table 3), which shows promise as an objective measure of disease

progression that could provide an early indication of whether a treat-

ment is effective in a particular subgroup of patients.24 Another exam-

ple is transactive response DNA binding protein 43 kDa (TDP-43),

which is higher in the CSF of patients with frontotemporal dementia-

ALS spectrum disorder than in the CSF of controls; accumulation of

TDP-43 is the most significant pathological finding in approximately

95% of ALS cases25 (Table 4). Furthermore, miRNAs26-28 associated

with neuroprotective or neuroinflammatory pathways were assessed

as potential biomarkers because they may be relevant to the mode of

action of mesenchymal stromal cells (MSC) transplantation. These

cells produce elevated levels of neurotrophic factors after collection

and in vitro propagation in preparation for autologous transplant.29

Ongoing research with RNA-seq technology is being used to investi-

gate miRNA and other short noncoding RNA (ncRNA) species as

potential biomarkers (Table 4). Specific ncRNAs were shown to vary

between patients with ALS and non-ALS controls.30

Novel methods to identify potential biomarkers are also being

developed, including an exploratory platform in which proteomic

workflows were applied to study the cross-phenotype variance of

peripheral blood mononuclear cells and plasma/brain proteins. This

method provided more sensitivity compared with conventional case–

control studies in a single matrix and provided a rationale for identifi-

cation of biomarkers to aid phenotypic stratification prior to trial

enrollment.31

TABLE 3 Potential neurophysiological, imaging, and tissue-based biomarkers for use in ALS clinical trials

Biomarker Prognostic value

Neurophysiological

MUNE/MUNIX, EIM, TMS Markers of disease progression and predictors of survival

Some can detect changes prior to symptom onset63

Imaging/MRI

Diffusion tensor imaging, functional MRI,

iron-sensitive sequences, voxel-based morphometry

Detect changes that correlate with other measures of disease66,67

Tissue-based/“wet”

Serum creatinine Correlates with ALSFRS-R, muscle strength, and survival13

Loss correlates with progression and is reduced in

dexpramipexole-treated patients68

Uric acid level Correlates with ALSFRS-R, muscle strength, and survival13

Independent beneficial affect associated with higher urate levels

in dexpramipexole-treated patients69

Urinary extracellular cleavage domain of

neurotrophin receptor p75

Inversely related to ALSFRS-R scores at first visit, increase

with disease progression, and baseline values

predict survival70,71

Plasma light and heavy chain neurofilament proteins Light chain levels

Correlate well with rate of disease progression72

Higher in fast vs slow progressors, and remain relatively constant

during progression heavy chain levels73

Levels declined with progression in rapid progressors

Overall levels in ALS not significantly different from controls

CSF light and heavy chain neurofilament proteins Both neurofilament types in the CSF correlate with rate of progression74

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; CSF, cerebrospinal fluid; C9orf72 = EIM, electrical

impedance myography; MUNE, motor unit number estimation; MUNIX, motor unit number index; TMS, transcranial magnetic stimulation.
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6 | PROGNOSTIC MODELS

Prognostic models for disease progression or survival continue to evo-

lve and incorporate additional features, including biomarkers, that

may ultimately improve clinical trial design1,32 and may potentially

reduce sample size requirements through the use of several prognos-

tic variables. Such models can be practically applied to enrich a clinical

trial with patients who are expected to progress to advanced disease

more slowly/quickly or who are likely to have a longer/shorter sur-

vival time (Figure 1), and they can also be used as covariates in analy-

sis. One example is the evaluation of ALS progression and individual

risk stratification in a 3-month run-in period to both reduce clinical

heterogeneity and improve estimation of pretreatment-posttreatment

effects.33 Inclusion/exclusion criteria can be based on key variables

(such as age and rate of disease progression) to enrich for patients

with a greater likelihood of responding to a treatment while reducing

interpatient variability.

To demonstrate how biomarker prognostic modeling can be used

to address biological heterogeneity, researchers examined demo-

graphic, clinical, and laboratory data— including 15 blood chemistry

values—to determine whether these metrics were predictive of the

ALSFRS-R rate of decline.13 Higher baseline levels of creatinine or uric

acid were associated with slower declines in ALSFRS-R and vital

capacity and with longer survival. Higher body mass index was

predictive of longer survival, whereas bulbar onset, older age at onset,

and decreased time from onset to diagnosis independently predicted

shorter survival.13 In response to the Prize4Life Challenge,34 algo-

rithms were developed to accurately predict the ALSFRS-R slope of

decline by using a subset of the PRO-ACT database. Two algorithms

were identified that outperformed both a baseline model developed

by challenge organizers and predictions by ALS clinicians.34 In addition

to confirming the variables previously identified as predictors of

decline in PRO-ACT, the new algorithms identified creatine kinase,

phosphorous, pulse, and blood pressure. It was estimated that use of

the aggregated predictions from the two models could reduce trial

sample size by 20%.34

Additional insights came from Pfohl et al,35 who performed a

single-site retrospective analysis of 38 clinical variables for over

800 deceased patients. Prognostic variables for survival were ana-

lyzed for changes in predictive ability during disease progression. Time

variables, such as patient age, time from onset, time from diagnosis,

and disease duration, were the dominant predictors for survival

beyond 1 year and changed over time or with disease progression.

The authors concluded that the ALSFRS-R rate of decline is more clin-

ically significant for individual patients than it is for groups and that it

should not be the only measure in population-based models.35 It is

not clear whether this model, based on clinic patient records, is appli-

cable to clinical trial populations.

TABLE 4 Potential inflammatory, genetic, and miRNA biomarkers for use in ALS clinical trials

Biomarker Prognostic value

Inflammatory

CHIT1 Elevated in the CSF of patients with ALS vs controls/other neurological diseases

Levels correlate with rate of progression75

FoxP3 Tregs that downmodulate inflammatory responses are inversely correlated with

rate of ALS progression

Transcription factor FoxP3 is required for Treg suppressive function

Early reduced FoxP3 levels predict rapid future progression and shortened survival76

Genetic

LILRA2, ITGB2, and

CEBPD expressed in peripheral

lymphocytes

Expression levels were predictive of rate of ALS progression in microglia

and lymphoblastoid cell lines77

SOD1 mutations Correlate with disease severity; mutant SOD1 proteins in intracellular inclusions

and CSF are cytotoxic78

A4V (SOD1A4V) has an exceptionally aggressive disease course, with shorter disease

duration and lower median survival than other SOD1 mutations79

TDP-43 mutations Higher in the CSF of patients with FTD-ALS spectrum disorder compared with controls25

miRNA

CSF miRNA Used as biomarkers for many cancers and neurodegenerative disorders26-28

miR-132 Binds TDP-43 and modulates development and maturation of axons and dendrites

Neuroprotective in tauopathies via a caspase 3-mediated mechanism

Downregulated in sALS or a subset of fALS cases80,81

miR-146a Negatively regulates innate immunity in astrocytes, glia, and Tregs82-84

Abundantly expressed in human CSF27

Abbreviations: ALS, amyotrophic lateral sclerosis; CEBPD, CCAAT/enhancer-binding protein δ; CHIT1, chitotriosidase; CSF, cerebrospinal fluid; fALS,

familial ALS; FTD-ALS, frontotemporal dementia-ALS; FUS, fused in sarcoma; ITGB2, integrin subunit β 2; LILRA2, Leukocyte immunoglobulin-like receptor

subfamily A member 2; miRNA, micro-RNA; sALS, sporadic ALS; SOD1, superoxide dismutase 1; TDP-43, transactive response DNA binding protein

43 kDa; Treg, T regulatory cell.
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However, a random forest model for predicting ALSFRS-R score

was developed by using baseline clinical trial data and was found to

be applicable to a real-world data set from a single clinic.32 Compared

with preslope or generalized linear models, the random forest model

performed significantly better at predicting ALSFRS-R scores and had

less error over longer time intervals (eg, 18–36 months). In trials in

which ALSFRS-R is the main outcome measure, this model could be

used to assess treatment effects by comparing predicted vs observed

ALSFRS-R rates of decline.

In addition, Westeneng et al1 recently described and validated a

model for prediction of survival at the individual level based on eight

predefined sources of heterogeneity: age at onset, forced vital capacity

(FVC), diagnostic delay, ALSFRS-R slope, bulbar onset, definite ALS,

presence of frontotemporal dementia, and the C9orf72 repeat expan-

sion. This survival model initially was based on data from a population-

based study in the Netherlands and was validated with an external data

set from 13 centers in Europe.36 The authors applied the model to dis-

tinguish five groups on the basis of time from symptom onset to the

composite survival outcome (use of noninvasive ventilation for more

than 23 hours per day, tracheostomy, or death). The median predicted/

observed times ranged from very short (17.7/16.5 months) to very long

(91/85.6 months). The authors suggested that the model could be

applied to patient care and clinical trial design but cautioned that the

predictions of the model should be used only to guide decisions in the

medical community and should not be shared with patients.

Furthermore, prognostic models can also be used to assess

observed vs predicted outcomes (Figure 2) and therefore provide

important information about the effects of heterogeneity within the

trial population. This approach represents an improvement over use

of natural history controls, in which contemporaneous data sets must

be selected to avoid confounding due to improvements in supportive

care. Trials assessing observed vs predicted outcomes could also obvi-

ate a placebo arm and might be appropriate for phase 2 studies. In

fact, prognostic methods may improve trials that do not enrich enroll-

ment on the basis of progression or survival rates. When investigators

applied a predictive survival algorithm to trial stratification during sim-

ulated randomizations, it was found to reduce the randomization fail-

ure rate and sample size required for sufficient statistical power

compared with a standard randomization scheme.37

Applying prognostic models in this way has shown that efforts to

reduce heterogeneity through baseline inclusion criteria rather than

individual risk estimates may not always achieve the desired out-

come.37 In addition, stricter inclusion criteria that select for patients

with more homogeneous disease could slow the rate of trial enroll-

ment by reducing the pool of eligible patients.36 In an evaluation of

the effects of restrictive patient selection in ALS trials, van Eijk et al36

found that more stringent eligibility criteria did not necessarily trans-

late to changes in survival time or functional decline, although these

criteria do tend to enrich for younger men with milder disease and

may also slow down recruitment. Instead, the authors determined

individual risk profiles on the basis of the European Network for the

Cure of ALS survival model.37 This approach optimized sample size

and eligibility rate better than any of 38 trials based on eligibility

criteria alone.37 The investigators noted that enrolling patients on the

F IGURE 2 Use of prognostic models to assess the effects of heterogeneity and guide appropriate trial designs. ALS, amyotrophic lateral
sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; BMI, body mass index; fALS, familial ALS; FVC, forced vital capacity; MUNE, motor
unit number estimation; MUNIX, motor unit number index; sALS, sporadic ALS; SOD1, superoxide dismutase 1; SVC, slow vital capacity;
TMS, transcranial magnetic stimulation
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basis of an individual risk estimate offers the promise of achievable

statistical power with a manageable sample size, although researchers

still must strike a balance between trial efficacy and generalizability of

findings. The authors demonstrated that, on average, approximately

60% of patients with ALS are deemed ineligible for clinical trials at

diagnosis,36,37 so generalizability of findings is a concern that must be

addressed.

Predictive enrichment is an alternative approach for reducing het-

erogeneity that selects patients most likely to respond to a treatment

on the basis of either empirical evidence (eg, response to previous

treatment) or mode of action-based data (Figure 1). Li et al38 found

that they could identify an “enrichable subgroup” of responders by

retrospectively applying their scoring systems to data from the Beta-

Blocker Evaluation of Survival Trial (BEST)39 by incorporating baseline

characteristics of the patients enrolled in BEST into their model. This

retrospective use of data could be employed in future trials to enrich

for likely responders.

7 | CURRENT USE OF CLINICAL TRIAL
ENRICHMENT STRATEGIES

Both prognostic and predictive enrichment strategies have been

applied to ALS trial designs. In the clinical trial process that ultimately

led to the approval of the free radical scavenger edaravone, initial

phase 3 clinical trial results failed to show treatment benefits.40

Results of post hoc analyses indicated that wide variations in the

range of changes in ALSFRS-R scores may have obscured treatment

effects, and a subpopulation of patients in early disease did experi-

ence a treatment benefit.41 In a subsequent phase 3 study,

researchers prospectively enrolled patients on the basis of criteria

identified in the post hoc analysis of the initial phase 3 study: scores

of 2 or more on all ALSFRS-R items, FVC ≥80% predicted, duration of

disease up to 2 years, and disease progression characterized by a

decrease of 1–4 ALSFRS-R points during the 12-week observation

period before randomization. The results demonstrated a significantly

mitigated decline in ALSFRS-R scores (approximately 33% over the

24-week treatment period) compared with placebo.42

A similar approach was not successful in demonstrating a benefit

in response to NP001, a negative modulator of macrophage/mono-

cyte activation. A phase 2 study appeared to identify a group of

responders with higher baseline levels of the inflammatory marker

C-reactive protein (CRP).43 Investigators subsequently enrolled

patients with elevated CRP levels in a second phase 2 study, but the

findings did not demonstrate any treatment effect in this enriched

population. Modifications to the study design were also made in the

phase 3 trial for the fast-skeletal troponin muscle activator tirasemtiv

to offset for tolerability to increasing doses observed in a phase 2B

study. The phase 3 trial involved a greater number of patients to

account for dropouts resulting from drug-related adverse events44

and included a longer open-label run-in period to establish a titrated

(rather than fixed) dose that would be tolerated for the trial duration.

The primary endpoint for the phase 3 trial was chosen on the basis of

phase 2B results, in which significant benefits were observed for

changes in slow vital capacity (SVC) but not in ALSFRS-R.44 Unfortu-

nately, none of these changes led to a positive trial outcome.

Generally, heterogeneity in the ALS patient population is cur-

rently being addressed by focusing on either biological or clinical het-

erogeneity.45-47 In the latter approach, some trials are selecting for

patients who are more likely to progress to advanced disease quickly.

Another example of an enrichment strategy is the trial examining

pharmacodynamic effects of retigabine and riluzole in patients with

ALS, in which selection of patients was based on transcranial magnetic

stimulation data.48 Other representative ongoing or recently com-

pleted trials in which one or more of these enrichment approaches are

reported are presented in Table 5. Most enrichment criteria are for

earlier stages of disease, which suggests a predictive approach in

which patients with earlier disease are believed more likely to respond

compared with those with more advanced disease. This predictive

approach relies heavily on “actionable” biomarkers for clinical decision

making. Four of these trials also included or excluded patients on the

basis of biomarkers, such as SOD1 mutations (or other monogenic

causes of ALS), inflammatory gene expression, and serum urate levels.

Although low urate is associated with poorer prognosis, other prog-

nostic criteria were not applied when serum urate levels were used to

exclude patients (NCT03168711). Thus, urate level appears to be a

predictive criterion rather than a prognostic approach for identifying

likely responders.

Despite the considerable effort that has gone into identifying var-

iables that predict progression or survival, only three trials (two phase

2 trials and one phase 3 trial) used prognostic criteria including the

rate of ALSFRS-R decline as well as earlier stage disease (Table 5). In

the ongoing phase 3 trial evaluating repeat intrathecal administration

of autologous MSC-neurotrophic factor (MSC-NTF) cells

(NCT03280056), investigators are recruiting patients with more rapid

disease progression (decline of 1 ALSFRS-R point/month) in the

3-month run-in period. Additional prognostic factors in this trial

include younger age (60 years) and earlier disease (ALSFRS-R ≥ 25,

SVC ≥65%, and disease onset within 2 years). The trial design is based

on results of previous MSC-NTF phase 2 trial data showing that a

prespecified group of patients with more rapidly progressive disease

experienced greater improvement in the rate of ALSFRS-R score

decline.49 The primary efficacy endpoint is the change in slope of the

ALSFRS-R compared with placebo by using the run-in period ALSFRS-

R slope to estimate pretreatment-posttreatment effects for each

study participant. Secondary endpoints include levels of CSF neuro-

trophic factors, miRNAs (miR-132 and miR-146a), and inflammatory

markers previously shown to change in response to MSC-NTF treat-

ment.28,47 These biomarker measures are potentially valuable for

assessing correlations with outcomes and may generate data that are

useful for predicting responders.

Binding of extracellular TDP-43 to CD14 has been implicated in

microglial activation with resultant motor neuron toxicity in ALS.50 In

an ongoing phase 2 trial, investigators are evaluating the therapeutic
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potential of IC14, an anti-CD14 monoclonal antibody (Table 5).

Patients included in this trial have rapidly progressive disease, defined

as declines of 3 points in the 3 months prior to enrollment as well as

seated FVC 65% of the predicted value. The study investigators will

measure treatment-related changes in several disease biomarkers:

neurofilament, urinary p75, neurotrophin receptor, cytokines, and sol-

uble CD14. Clinical outcomes, including changes in ALSFRS-R, seated

FVC, and quality of life, will also be determined.

In another phase 2 trial, investigators are evaluating perampanel,

an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) recep-

tor antagonist and approved antiepileptic drug (Table 5). Eligible

patients are those with relatively early disease; onset must have

been within 2 years, FVC must be >80%, and respiratory ALSFRS-R

subscores must total at least 12. In addition, disease progression

must be intermediate to rapid (ALSFRS-R total declines of −2 to −5

over a 12-week run-in period). However, it appears that only

TABLE 5 Ongoing or recently completed clinical trials using enrichment criteria

Abbreviated Title (NCT No.) Phase Inclusion Criteria Enrichment Type

A Biomarker Study to Evaluate Ibudilast in ALS

(NCT02714036)

1/2 UMNB 25; FVC > 50% Disease stage

A Trial of Tocilizumab in ALS (NCT02469896) 2 High expression of inflammatory genes and

UMNB 25

Biomarker

Disease stage

AMX0035 in ALS (NCT03127514) 2 Disease onset ≤18 months; SVC >60% Disease stage

Arimoclomol in ALS (NCT03491462) 3 Disease onset ≤18 months

ALSFRS-R 35; SVC >80%

Disease stage

Conservative Iron Chelation as a Disease- modifying

Strategy in ALS (NCT03293069)

2/3 Disease onset ≤18 months, <6 months since

the diagnosis; ALSFRS-R 36; SVC >70%

inspiratory pressure >60

Disease stage

Dual Treatment With Lithium and Valproate in ALS

(NCT03204500)

2 Disease onset between 6 and18 mo; SVC >60% Disease stage

Efficacy and Safety of Plasma Exchange with

Albutein 5% in Patients With ALS (NCT02872142)

2 Disease onset ≤18 mo; FVC >70% Disease stage

IC14 for Treatment of ALS (NCT03508453) 2 ALSFRS-R decline 3 points in previous 3 mo;

seated FVC >65%

Prognostic Disease stage

Intrathecal Autologous Adipose-derived MSC for

ALS (NCT03268603)

2 Disease onset <2 y; SVC >65% Disease stage

Perampanel for Sporadic ALS (NCT03019419) 2 Disease onset <2 y; ALSFRS-R decrease

between −2 and − 5 at 12 w; ALSFRS-R

respiratory subscale 12

Prognostic Disease stage

Pimozide in Patients With Neuromuscular Junction

Transmission Dysfunction Due to ALS

(NCT02463825)

2 Decremental response 5.0% in at least 1

nerve-muscle pair

Disease stage

Rapamycin Treatment for ALS (NCT03359538) 2 Non-SOD1; symptom onset ≤18 mo;

FVC > 70%

Biomarker

Disease stage

Rasagiline in ALS (NCT01786603) 2 Disease onset <2 y; SVC >75% Disease stage

Safety and Tolerability of Antiretroviral

(Triumeq) in Patients With ALS (NCT02868580)

2 Nonmonogenic ALS Biomarker

Safety of Urate Elevation in ALS (NCT03168711) 2 Serum urate <5.5 mg/dL Biomarker

Safety and Efficacy of Repeated Administrations of

NurOwn in ALS (NCT03280056)

3 Rapid progressors; disease onset <2 y;

ALSFRS-R > 25; SVC >65%; age <60 y

Prognostic Disease stage

The Effect of RNS60 on ALS Biomarkers (RNS60)

(NCT03456882)

2 ALSFRS-R bulbar and spinal score 3 for

swallowing, cutting food, handling utensils,

and walking; FVC >80%

Disease stage

Transplantation of Astrocytes, Derived From Human

Embryonic Stem Cells, in ALS (NCT03482050)

1/2 ALSFRS >30 and diagnosis <2 y Disease stage

Transplantation of Human Glial Restricted

Progenitor Cells in ALS (NCT02478450)

1/2 FVC >65% Disease stage

Two Intrathecal Doses of Autologous MSC for ALS

(NCT02917681)

1/2 ALSFRS >30; FVC >65% Disease stage

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; FVC, forced vital capacity; MSC, mesenchymal stem

cells; NCT, ClinicalTrials.gov identifier; SOD1, superoxide dismutase 1; SVC, slow vital capacity; UMNB, upper motor neuron burden.
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functional/clinical measures (ALSFRS-R, manual muscle test, and FVC)

will be assessed in this trial. Biomarker analysis is not included in the

trial record and, without a positive outcome on one or more functional

measures, it is unclear whether mechanistic information will be

obtained relative to the effects of Perampanel on AMPA-mediated

pathology.

In conclusion, recent advances have improved our understanding

of the complex biological mechanisms of ALS, and it is hoped that fur-

ther progress may ultimately explain how these mechanisms contrib-

ute to the clinical heterogeneity that remains a challenge in the design

and interpretation of ALS trials. The application of individual risk strat-

ification or prognostic modeling may reduce the clinical heterogeneity

of the populations studied in trials and increase clinical trial efficiency.

The use of predictive biomarkers may identify patients with ALS for

whom a specific therapeutic strategy may be expected to be more

successful. Finally, the application of these emerging clinical and bio-

marker strategies within platform trials in which several targeted ther-

apies can be evaluated simultaneously may accelerate ALS drug

development.
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