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Ferroptosis is associated with the prognosis and therapeutic responses of patients with
various cancers. LncRNAs are reported to exhibit antitumor or oncogenic functions.
Currently, few studies have assessed the combined effects of ferroptosis and lncRNAs on
the prognosis and therapy of stomach cancer. In this study, transcriptomic and clinical
data were downloaded from TCGA database, and ferroptosis-related genes were
obtained from the FerrDb database. Through correlation analysis, Cox analysis, and
the Lasso algorithm, 10 prognostic ferroptosis-related lncRNAs (AC009299.2,
AC012020.1, AC092723.2, AC093642.1, AC243829.4, AL121748.1, FLNB-AS1,
LINC01614, LINC02485, LINC02728) were screened to construct a prognostic model,
which was verified in two test cohorts. Risk scores for patients with stomach cancer were
calculated, and patients were divided into two risk groups. The low-risk group, based on
the median value, had a longer overall survival time in the KM curve, and a lower proportion
of dead patients in the survival distribution curve. Potential mechanisms and possible
functions were revealed using GSEA and the ceRNA network. By integrating clinical
information, the association between lncRNAs and clinical features was analyzed and
several features affecting prognosis were identified. Then, a nomogram was developed to
predict survival rates, and its good predictive performance was indicated by a relatively
high C-index (0.67118161) and a good match in calibration curves. Next, the association
between these lncRNAs and therapy was explored. Patients in the low-risk group had an
immune-activating environment, higher immune scores, higher TMB, lower TIDE scores,
and higher expression of immune checkpoints, suggesting they might receive a greater
benefit from immune checkpoint inhibitor therapy. In addition, a significant difference in the
sensitivity to mitomycin. C, cisplatin, and docetaxel, but not etoposide and paclitaxel, was
observed. In summary, this model had guiding significance for prognosis and personalized
therapy. It helped screen patients with stomach cancer who might benefit from
immunotherapy and guided the selection of personalized chemotherapeutic drugs.
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INTRODUCTION

Stomach cancer is a malignant tumor worldwide. Research has
shown that gastric cancer ranks fifth in global incidence and sixth
in mortality, with over one million new cases and an estimated
769,000 deaths in 2020 (Sung et al., 2021). The AJCC/UICC TNM
staging system has been used to predict prognosis for many years
(Marano et al., 2015). However, due to the complexity and high
heterogeneity of stomach cancer, patients with the same TNM
stratification sometimes present distinct prognoses. Hence the
development of novel and effective biological markers to predict
prognosis is urgently needed. Treatment strategies for stomach
cancer currently include endoscopic resection, surgery,
perioperative or adjuvant chemotherapy, and targeted therapy
(Smyth et al., 2020). The treatment efficacy in patients is affected
by the chosen treatment strategy. Hence, biological markers of
gastric cancer for personalized treatment, including selecting
effective strategies and avoiding excessive treatment, are
important.

Ferroptosis is a form of cell death that differs from apoptosis
and autophagy in morphology, biochemistry, and genetics (Dixon
et al., 2012). Ferroptosis-inducing factors result in the
accumulation of reactive oxygen species by affecting glutathione
peroxidase activities, which regulates cell death (Li et al., 2020).
Recently, the involvement of ferroptosis in tumor suppression has
received increasing attention (Lang et al., 2019; Liang et al., 2019;
Lei et al., 2020; Tang et al., 2020). In addition, ferroptosis is
associated with cancer therapy responses, such as
immunotherapy, radiotherapy, and chemotherapy. CD8+ T cells
activated by immunotherapy enhance the ferroptosis-specific lipid
peroxidation of tumor cells to improve the antitumor efficacy of
immunotherapy (Wang W. et al., 2019). Biomimetic magnetic
nanoparticles, Fe3O4-SAS@PLT, sensitize cells to ferroptosis,
improving the cancer immunotherapy response rate of
noninflammatory tumors (Jiang et al., 2020). Ferroptosis
agonists increase but ferroptosis antagonists limit radiotherapy
efficacy in tumors (Lang et al., 2019). The ferroptosis inducer
erastin increases the sensitivity of acute myeloid leukemia cells to
chemotherapeutic agents in a RAS-independent manner (Yu et al.,
2015). Therefore, biomarkers related to ferroptosis may have the
potential to predict the prognosis and therapeutic response.

Long non-coding RNAs (lncRNAs) are a type of nonprotein-
coding RNA with a length of >200 nucleotides (Alexander et al.,
2010). A large number of lncRNAs are associated with various
cancers, exhibiting antitumor or oncogenic functions. Alterations
in lncRNA expression and their mutations are involved in
tumorigenesis and metastasis (Bhan et al., 2017).
Dysregulation of specific lncRNAs is closely related to the
ferroptosis process in various malignant tumors (Wu Y et al.,
2020). LINC00336 binds the RNA-binding protein ELAVL1,
inhibiting ferroptosis in lung cancer (Wang M. et al., 2019).
The lncRNA P53RRA promotes ferroptosis and apoptosis by
affecting the transcription of several metabolic genes (Mao et al.,
2018). However, relatively few studies have assessed the roles of
lncRNAs in the ferroptosis process in stomach cancer.

In this study, the potential associations of ferroptosis-related
lncRNAs with prognosis and treatment efficacy in patients with

stomach cancer were explored. By integrating The Cancer
Genome Atlas (TCGA) and the FerrDb databases, a
prognostic model based on 10 prognostic ferroptosis-related
lncRNAs (AC009299.2, AC012020.1, AC092723.2, AC093642.1,
AC243829.4, AL121748.1, FLNB-AS1, LINC01614, LINC02485,
LINC02728) was constructed, and patients were divided into
different risk subgroups based on risk scores. The biological
mechanism underlying different prognoses and the functions
of these 10 lncRNAs were revealed. Then, the association
between these lncRNAs and clinicopathological features was
analyzed and several clinical factors related to prognosis were
used to construct a nomogram that predicted the overall survival
(OS) probability. Next, the association between this model and
treatment efficacy was explored. Immune infiltration, immune
checkpoint inhibition therapy, and sensitivity to
chemotherapeutic drugs were analyzed. We aimed to provide
effective biomarkers for predicting the prognosis and therapeutic
response of patients with stomach cancer.

MATERIALS AND METHODS

Data Mining and Processing
The transcriptional expression and corresponding clinical data of
stomach cancer samples were downloaded from UCSC Xena1

(Goldman et al., 2020). The miRNA expression was obtained
from TCGA2 (Hutter and Zenklusen, 2018). The known
259 ferroptosis-related genes were downloaded from the
FerrDb database3 (Zhou and Bao, 2020). Samples without
clinical information and OS times less than 30 days were
deserted. LncRNAs and mRNAs were annotated according to
annotated files downloaded from the GENCODE project4

(Frankish et al., 2019). Gene expression was transformed into
Transcripts Per Kilobase of exonmodel perMillionmapped reads
(TPM) format to eliminate the effects of sequencing depth and
gene length. Finally, 337 STAD samples were divided into a
training cohort and a test cohort by 2:1 in the “caret” R package.

Construction of a Prognostic Model
Spearman correlation analysis was conducted to screen lncRNAs
related to ferroptosis with the condition of “p-value <0.01 and
absolute values of correlation coefficients ≥0.5”. Firstly, univariate
Cox proportional hazards regression (UniCox) analysis was used
to screen lncRNAs associated with overall survival. All these
lncRNAs were further enrolled into Least absolute shrinkage and
selection operator (Lasso) analysis for dimension reduction in the
“glmnet” R package. Then, prognostic lncRNAs, as risk
signatures, were identified and used to construct a prognostic
model in Multivariate Cox proportional hazards regression
(MultiCox) analysis. Risk scores were calculated in a linear
combination of expression values and regression coefficients of

1http://xena.ucsc.edu/.
2https://portal.gdc.cancer.gov/.
3http://www.zhounan.org/ferrdb/.
4https://www.gencodegenes.org/.
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risk signatures. Based on the median value of risk scores in the
training cohort, patients could be divided into the high- and low-
risk groups. A Sankey plot was plotted to depict the relationship
of ferroptosis-related genes, screened lncRNAs associated with
prognosis and ferroptosis, and protect or risk roles to OS in the
“ggalluvial” R package.

Assessment and Validation in a Prognostic
Model
Considering the specialty of survival status, time-independent
ROC curves, along with Area under these ROCs, were done to
assess the sensitivity, and specificity of the prognostic model in
the “timeROC” R package. Survival probability was compared
between the high- and low-risk groups by Kaplan–Meier (KM)
survival analysis. The risk score curve, the survival status
distribution curve, and the expression heatmap were plotted.
In addition, the expression of lncRNA signatures between the
high- and low-risk groups was compared with the Mann-
Whitney U test. Significance levels were annotated on the
right side. All these analyses were conducted in two test
cohorts to validate the results. In addition, survival rates of
signatures with different expression levels were analyzed in the
KM curves, which again indicated their roles to OS.

Risk Signatures and Clinical Factors
Overall risk scores and expression of these lncRNAs in different
clinical subgroups were compared using the Mann-Whitney U
test in the test2 cohort. Clinical factors included age, gender,
neoplasm histological grade, pathological T, pathological M,
pathological N, and tumor stage. p < 0.05 was thought to have
a significant difference.

Construction and Assessment of a
Nomogram
UniCox analysis was used to identify clinicopathological factors
related to prognosis in the test2 cohort, with the screening
condition of p < 0.05. A nomogram was constructed to
predict OS probabilities at 1-, 3-, and 5-years by integrating
these prognostic features. The concordance index (C-index) was
calculated to assess the performance of this nomogram. And
calibration curves at 1-, 3-, 5-years were plotted to assess
agreement between the predicted and actual OS rates in the
“rms” R package.

Function Analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways analysis was used to elucidate underlying biological
mechanisms resulting in differences in the prognoses of two risk
subgroups, which was performed in GSEA V4.1.0 software. NOM
p-value < 0.05, FDR q-value < 0.25, and |NES| > 1 were the cutoff
criterion. A ceRNA network was constructed to reveal the
functions of lncRNA signatures, which was displayed by
Cytoscape V3.7.1 software. Firstly, 171 DEmiRNAs and 4,288
DEmRNAs between the high- and low-risk group in the test2
cohort were identified in the “edger” R package. Next, lncRNA

signatures were enrolled into the miRCode database5 (Jeggari
et al., 2012) to predict corresponding miRNAs, and then the
lncRNA-miRNA axes were built by taking intersection with
DEmiRNAs. Subsequently, target mRNAs were obtained by
integrating DEmRNAs, and the predicted results from
TargetScan6 (Agarwal et al., 2015), miRDB7 (Chen and Wang,
2020), and miRTarBase8 (Huang et al., 2020) database. Predicted
mRNAs, found in at least 2 databases, were selected. Finally, the
GO terms in biological process (BP) and the KEGG pathways
were revealed via the “clusterProfiler” R package. p-value and
q-value were both 0.05 as cutoff values.

Evaluation of Immune Infiltration
Single-sample Gene Set Enrichment Analysis (ssGSEA) was
performed to quantify immune infiltration between two risk
groups in the “gsva” R package. The immune activity of 16
immune cells and 13 immune functions was quantified in the
“gsva” R package. The higher the ssGSEA score, the stronger the
immune activity. The immune difference between the two risk
groups was depicted in the heatmap and violin plots. In addition,
stromal scores and immune scores for patients with STAD were
calculated in the“estimate”R package by applying the ESTIMATE
algorithm (Yoshihara et al., 2013). The stromal and immune
scores in risk subgroups were compared in violin plots.

Immune Checkpoint Therapy
Tumor mutation burden (TMB), defined as the number of
somatic mutations per 1000,000 bases, was a biomarker that
predicted the efficacy of immunotherapy. Tumor mutation data
were downloaded from the TCGA database9 (Hutter and
Zenklusen, 2018), and the TMB between the two risk groups
was calculated and compared. Besides, gene mutations of patients
with STAD were presented via the “maftools” R package. The top
20 genes with the most mutations were selected. Tumor Immune
Dysfunction and Exclusion (TIDE) scores for patients, which also
did help to predict immune checkpoint inhibitor (ICI) therapy
response, were calculated in the TIDE database10 (Fu et al., 2020).
The TIDE scores in risk subgroups were compared in violin plots.
Finally, the expression of known immune checkpoints between
the high- and low-risk groups was compared.

Sensitivity to Chemotherapy Drugs
The half-maximal inhibitory concentration (IC50) values of
chemotherapeutic drugs were predicted in the “pRRophetic” R
package. By building statistical models from gene expression and
drug sensitivity data in a very large panel of cancer cell lines, this
package can predict the chemotherapeutic response from Tumor
Gene Expression Levels (Geeleher et al., 2014). We explored 5

5http://mircode.org/.
6http://www.targetscan.org/vert_72/.
7http://mirdb.org/.
8https://mirtarbase.cuhk.edu.cn/∼miRTarBase/miRTarBase_2019/php/index.php.
9https://portal.gdc.cancer.gov/.
10http://tide.dfci.harvard.edu/.
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common chemotherapeutic drugs for stomach cancer, including
mitomycin. C, cisplatin, docetaxel, etoposide, and paclitaxel.

Statistical Analysis
All data were processed in the R 4.1.0 software. The difference in
two distinct subgroups was compared with the Mann-Whitney U
test. p-value <0.05 was a criterion of statistically significant
differences.

RESULTS

Data and Corresponding
Clinicopathological Features
A flow chart of data process and analysis in this study was depicted
(Figure 1). After data preprocessing and partitioning, there were
225 STAD samples in the training cohort, 112 STAD samples in

the test1 cohort, and 337 STAD samples in the test2 cohort. Their
clinicopathological features were summarized (Table 1).

Prognostic Model Construction
To identify lncRNAs associated with prognosis and ferroptosis,
spearman coefficient, and UniCox analysis were conducted and
109 lncRNAs were identified. Then Lasso analysis was applied to
reduce redundancy and simplify models. When partial likelihood
deviance was minimal, 32 candidate lncRNAs were obtained as
candidates (Figures 2A,B). After MultiCox analysis,
10 ferroptosis-related lncRNAs were identified and used to
construct a prognostic model (Figure 2C; Supplementary
Table S2). A Sankey diagram was applied to display the
relationship of ferroptosis-related genes, lncRNAs in the
model, and their roles in OS. AC012020.1 and AC243829.4
were protective factors and the others were risk factors for OS
(Figure 2D). The formula was shown below:

FIGURE 1 | The flow chart in this study.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7986124

Lai et al. Prognostic Signatures in Stomach Cancer

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Risk Score � 2.214344584 * ExpAC009299.2 − 0.859698908 *
ExpAC012020.1 + 0.68393393 * ExpAC092723.2 + 1.037748564 *
ExpAC093642.1 − 1.181411845 * ExpAC243829.4 + 0.815962314 *
ExpAL121748.1 + 0.188412024 * ExpFLNB-AS1 + 0.058077818 *
ExpLINC01614 + 0.384845713 * ExpLINC02485 + 0.44150546 *
ExpLINC02728.

Assessment and Validation
Risk scores for all patients with STAD were calculated, and
patients were divided into high- and low-risk groups, based on
the median score of 0.815527251 in the training cohort. The
predictive sensitivity and specificity of this prognostic model were
assessed by constructing time-independent ROC curves. The
AUCs of ROC curves at 1-, 3-, and 5-years were 0.683, 0.763,
and 0.849, respectively, which indicated good performance
(Figure 3A). The KM curve showed that the high-risk
subgroup had a shorter overall survival time (Figure 3B). Risk
scores for patients with STAD were presented in ascending order
(Figure 3C). The survival distribution curve showed a higher
proportion of dead patients in the high-risk group and a lower
proportion of dead patients in the low-risk group (Figure 3D).

Compared with the low-risk group, the expression levels of eight
lncRNA signatures were significantly upregulated in the high-risk
group, while AC243829.4 expression was reversed and
AC012020.1 tended to be downregulated (Figure 3E). The
same analyses were conducted to validate in the test1 cohort
containing new external samples and the test2 cohort containing
all STAD samples. Similar results were obtained, except that the
differences in the expression of several lncRNAs were not
significant in the test1 cohort, potentially due to its small
sample size (Supplementary Figures S1, S2). The KM survival
analysis of 10 lncRNAs showed that higher expression of
AL121748.1, LINC01614, and AC009299.2 was associated with
a shorter OS probability, which again indicated their risk roles
(Supplementary Figure S3).

Signatures and Clinical Factors
Risk scores for different clinical subgroups were compared in the
test2 cohort to elucidate the association between the prognostic
model and clinical factors. Patients with distant metastases had
higher risk scores, and patients with pathological T3 or T4 tended
to higher risk scores. However, no significant differences were
observed in other clinical subgroups (Supplementary Figures S4,
S5A). KM survival analyses of pathological M subgroups were
conducted to determine whether clinical factors affected the
prognostic performance of this model. Patients with higher
risk scores in the pathological M0 subgroup still had shorter
overall survival time (Supplementary Figure S5B). A statistically
significant difference was not observed, but a trend toward a
difference was identified in the pathological M1 group, potentially
because of the limited number of 22 samples (Supplementary
Figure S5C). These analyses indicated that risk scores predict OS
independently. Gene expression levels in different clinical
subgroups were analyzed to further explore the potential link
between the signatures and clinicopathological features. The
expression of four lncRNAs was associated with age
(Supplementary Figure S6A), but not with gender
(Supplementary Figure S6B). AC093642.1, AC243829.4,
AL121748.1, LINC01614, and LINC02728 were expressed at
higher levels in the higher neoplasm histological grade group
(Supplementary Figure S6C). Only the expression of
AC009299.2 and FLNB-AS1 in the tumor stage subgroups was
significantly different (Supplementary Figure S6D). The
expression of AC009299.2 and AL121748.1 in the pathological
T subgroups was significantly different (Supplementary Figure
S6E), but no differences in the pathological M subgroups
(Supplementary Figure S6F). Compared with the pathological
N0 or N1 group, the expression of AC009299.2, AC093642.1,
AL121748.1, and FLNB-AS1 was significantly different in the
pathological N2 or N3 group (Supplementary Figure S6G). The
results from analyses between 10 signatures and clinical features
again indicated roles for some lncRNAs as risk factors, especially
AC009299.2.

Nomogram Construction and Assessment
Using the prognostic factors, a nomogram was built to predict the
survival rates of patients with STAD. The UniCox analysis
identified several factors affecting prognosis, including age,

TABLE 1 | Clinicopathologic characteristics of patients with STAD in the training
cohort and two test cohorts.

Training cohort Test cohort

TCGA (n = 225) TCGA (n = 112) TCGA (n = 337)

Age
≥65 133 56 189
<65 90 55 145

Gender
Male 145 73 218
Female 80 39 119

Grade
G1 6 3 9
G2 82 38 120
G3 131 68 199
GX 6 3 9

T
T1 10 5 15
T2 47 27 74
T3 109 47 156
T4 56 32 88
TX 3 1 4

M
M0 202 101 303
M1 14 8 22
MX 9 3 12

N
N0 64 35 99
N1 63 28 91
N2 40 28 68
N3 50 18 68
NX 7 2 9

Stage
Stage i 31 14 45
Stage ii 69 38 107
Stage iii 97 40 137
Stage iv 18 16 34

Survival status
Alive 130 65 195
Dead 95 47 142
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FIGURE 2 |Construction of a prognostic model based on ferroptosis-related lncRNAs. (A, B) Variable coefficients and the partial likelihood deviance under different
lambda in the Lasso analysis. (C) 10 independent prognostic lncRNAs were found via the MultiCox regression analysis. (D) A Sankey diagram showed the relationship of
ferroptosis-related genes, screened 10 lncRNAs, and protect or risk roles in OS.
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FIGURE 3 | Assessment of the prognostic model in the training cohort. (A) Time-independent ROC curves along with their AUC were conducted to assess the
sensitivity and specificity. (B) The KM survival curves showed a higher survival rate in the low-risk group. (C) Risk scores for patients with STAD were presented in
ascending order. (D) The survival status distribution curve showed a higher proportion of dead patients in the high-risk group. (E) The expression heatmap of these 10
lncRNAs was plotted and significance levels were annotated on the right side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.
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pathological N, tumor stage, and risk score (Figure 4A). This
nomogram was used to predict the 1-, 3-, and 5-years overall
survival rates of patients with STAD (Figure 4B). The C-index
was 0.67118161, and the calibration curves at 1-, 3-, and 5-years
showed a good match between the predicted and actual OS rates
(Figures 4C–E).

Functional Analysis
The underlying biological mechanisms resulting in differences in
the prognoses of the two risk subgroups were elucidated by
conducting KEGG pathway analysis with GSEA software in the
test2 cohort. Genes in the low-risk group were enriched inmultiple
pathways, including oxidative phosphorylation, glutathione

FIGURE 4 | Construction and assessment of a nomogram in the test2 cohort. (A) Four factors including age, pathological N, tumor Stage, and risk score, were
found to be related to prognosis. (B) A nomogramwas constructed to predict overall survival rates at 1-, 3-, and 5-years. (C–E)Calibration curves were plotted to assess
agreement between the predicted and actual OS rates.
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FIGURE 5 | The enriched KEGG pathways were revealed in the two risk groups via GSEA software. NOM p-value < 0.05, FDR q-value < 0.25, and |NES| > 1 were
the cutoff criterion. (A,B) Distinct pathways enriched in the high- and low-risk groups, (C) Enrichment plot: KEGG_TGF_BETA_SIGNALING_PATHWAY, (D) Enrichment
plot: KEGG_ADHERENS_JUNCTION, (E) Enrichment plot: KEGG_MAPK_SIGNALING_PATHWAY, (F) Enrichment plot: KEGG_OXIDATIVE_PHOSPHORYLATION,
(G) Enrichment plot: KEGG_GLUTATHIONE_METABOLISM, and (H) Enrichment plot: KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM.
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metabolism, and glyoxylate and dicarboxylate metabolism. Genes
in the high-risk group were significantly enriched in the TGF-beta
signaling pathway, adherens junction, and MAPK signaling
pathway, among others (Figure 5). A ceRNA network was
constructed, and functional enrichment analysis based on target
mRNAs was conducted to reveal the functions of these 10
lncRNAs. LncRNA-miRNA-mRNA axes were displayed
(Figure 6; Supplementary Table S3). Five lncRNAs
(AC093642.1, LINC02485, FLNB-AS1, LINC02728, and
AC009299.2) regulated the expression of 73 mRNAs through
the corresponding 10 miRNAs, thus participating in a variety of
biological processes. Functional enrichment analysis identified GO
terms in BP and KEGG pathways (Supplementary Table S4). The
top 20 results were shown (Supplementary Figure S7).

Evaluation of Immune Infiltration
Immunotherapy is a new treatment for stomach cancer that may
improve the antitumor ability in patients by activating their
immune systems. However, not all patients with gastric cancer
are suitable for immunotherapy, suggesting that identifying these
patients is vital. Here, the association between the immune

landscape and the prognostic model was explored to determine
whether the risk score helps to identify patients whowould possibly
benefit from immunotherapy. Immune infiltration was compared
between the two risk groups using ssGSEA and the ESTIMATE
algorithm.A heatmap of ssGSEA scores for 16 immune cells and 13
immune functions was plotted (Figure 7A). The higher the
ssGSEA score, the stronger the immune activity. Compared
with the high-risk group, the immune activities of most innate
immune cells (aDCs, DCs, macrophages, NK cells, and pDCs) and
adaptive immune cells (CD8+ T, Thf, Th1, Th2, and Treg cells)
were higher in the low-risk group (Figure 7B). Similar results were
obtained for immune functions, such as checkpoint, cytolytic
activity, and type II IFN response (Figure 7C). Immune scores
and stromal scores of STAD samples were calculated using the
ESTIMATE algorithm. Higher immune scores and lower stromal
scores were observed in the low-risk group (Figure 8). Considering
the immune-activating environment, particularly the higher
immune activity of the “checkpoint”, and higher immune scores
of the low-risk group, the response to immunotherapy would likely
differ between the two risk groups. Hence, immune checkpoint
inhibitor therapy was analyzed next.

FIGURE 6 | Function analysis of these 10 lncRNAs. The lncRNA-miRNA-mRNA network was constructed by integrating differential genes and predicted results
from miRCode, TargetScan, miRDB, and miRTarBase database.
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FIGURE 7 | Evaluation of Immune infiltration between two risk groups in the test2 cohort. (A) The heatmap of ssGSEA scores in patients with STAD was plotted to
quantify the immune activity of immune cells and immune functions. The ssGSEA scores of 16 immune cells (B) and 13 immune functions (C).
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Immune Checkpoint Inhibitor Therapy
The TMB is a potential biomarker for selecting patients who may
respond to immune checkpoint inhibitor therapy (Chan et al.,
2019). A greater benefit of anti-PD-L1 monoclonal antibody was
observed for patients with a high TMB (Peters et al., 2017). The
TMB was calculated and compared between the two risk groups
(Figure 9B). Patients in the low-risk group had a higher TMB,
indicating that they may benefit from ICI therapy. The
association between the expression of 10 lncRNAs and the
TMB was analyzed. Higher TMBs were observed in patients
with lower expression of AC093642.1 and AL121748.1
(Figure 9A). In addition, gene mutations in STAD samples
based on risk levels were presented in detail (Supplementary
Figure S8). The top three genes were TTN, TP53, and MUC16.
Genes exhibited different mutation ratios including KMT2D [16
of 176 (9.1%) vs. 34 of 153 (22.2%)], PIK3CA [15 of 176 (8.5%) vs.
32 of 153 (20.9%)], ARID1A [35 of 176 (19.9%) vs. 47 of 153
(30.7%)], HMCN1 [19 of 176 (10.8%) vs. 32 of 153 (20.9%)], and
TTN [75 of 176 (42.6%) vs. 79 of 153 (51.6%)]. TIDE scores were
calculated to predict the ICI response, which were used to
simulate two mechanisms of tumor immune evasion: inducing
T cell dysfunction and preventing T cell infiltration (Jiang et al.,
2018; Fu et al., 2020). Patients with lower TIDE scores had a lower
chance of immune evasion and received more benefits from ICI
therapy. The violin plot showed that patients in the low-risk
group had lower TIDE scores (Figure 9C). Patients with STAD
who responded to immune checkpoint inhibitors had lower risk
scores (Figure 9D). Next, we explored the relationship between
risk scores and common immune checkpoints. Compared with
the high-risk group, the expression of some immune checkpoints
was significantly higher in the low-risk group (Figure 10).

Chemotherapy Efficacy Related to the Risk
Score
The association between this prognostic model and the efficacy of
chemotherapeutic drugs was analyzed. The IC50 values of

common chemotherapeutic drugs were predicted and
compared between the high- and low-risk groups. Patients in
the low-risk group had significantly lower IC50 values and were
more sensitive to cisplatin, docetaxel, and mitomycin.C.
However, no differences in sensitivity to etoposide and
paclitaxel were observed (Figure 11).

DISCUSSION

Ferroptosis is involved in physical conditions or various diseases
including cancers (Mou et al., 2019). In recent years, the use of
ferroptosis in cancer treatment has attracted great attention.
Ultrasmall silica nanoparticles induce ferroptosis and suppress
tumor growth, suggesting their therapeutic potential (Kim et al.,
2016). The imbalance between the transcription factors HIC1 and
HNF4A, regulating ferroptosis up-regulated factors (FUF), and
ferroptosis down-regulated factors (FDF), respectively, may help
treat liver cancer (Zhang et al., 2019). In lung adenocarcinoma,
STK11/KEAP1 commutation leads to resistance to
pharmacologically induced ferroptosis and high expression of
ferroptosis-protective genes, which is associated with early
death and aggressive tumor development (Wohlhieter et al.,
2020). These results indicate that the induction of ferroptosis
in cancer cells can effectively improve the prognosis and
enhance treatment efficacy. Hence, ferroptosis-related
biomarkers, which are reliable predictors of the prognosis and
treatment response, have been developed for a wide range of
malignant tumors (Liu Y. et al., 2020; Wu G. et al., 2020; Zhuo
et al., 2020; Jiang et al., 2021). A ferroptosis-related 15-gene
signature of LUAD is built and can accurately predict
the prognosis (Zhang et al., 2021). A novel ferroptosis-related
gene signature for prognostic prediction in patients with
glioma is built and the association between these genes and
immune checkpoint molecules is revealed (Chen Z. et al.,
2021). Considering the important role of lncRNAs in
epigenetic regulation, transcriptional regulation, post-

FIGURE 8 | Immune and stromal scores were calculated by the ESTIMATE algorithm in the test2 cohort. Patients in the low-risk group had higher immune scores
(A) while lower stromal scores (B).
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transcriptional regulation, and protein-coding gene regulation,
we developed a reliable biomarker by integrating ferroptosis
and lncRNAs. In our study, a prognostic model with good
predictive performance based on 10 ferroptosis-related

lncRNAs was constructed and patients with stomach cancer
were divided into two risk groups based on risk scores.
Patients in the low-risk group had a longer overall survival
time than those in the high-risk group.

FIGURE 9 | Immune checkpoint inhibitor (ICI) therapy response was assessed through the TMB and TIDE scores in the test2 cohort. (A) The expression values of
these 10 lncRNAs were compared in different TMB levels. (B) The TMB was significantly distinct in the high- and low-risk groups. (C) Patients in the high-risk group had
higher TIDE scores indicating a higher chance of immune evasion. (D) Risk scores for patients who responded to ICI therapy and those who did not were compared.
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Underlying biological mechanisms, which resulted in
prognostic differences, were revealed by GSEA. Metabolic
pathways, including oxidative phosphorylation, glutathione
metabolism, and glyoxylate and dicarboxylate metabolism,
were enriched in the low-risk group. The Warburg effect
shows that the energy needed for cellular processes is
primarily generated through mitochondrial oxidative
phosphorylation (OXPHOS) and aerobic glycolysis, in normal
differentiated cells and most cancer cells, respectively (Vander
Heiden et al., 2009). Compared with oxidative phosphorylation,
aerobic glycolysis is less efficient at generating adenosine 5′-
triphosphate (ATP). Intestinal gastric carcinomas, but not

precancerous stages, are often characterized by loss of
OXPHOS complex I, acting as tumor suppressors, and this
pathological phenomenon occurs independently of
Helicobacter pylori infection (Feichtinger et al., 2017).
Glutathione metabolism and ferroptosis are closely related.
The glutathione/GPX4-independent axis suppresses ferroptosis,
and GPX4 protects cells from ferroptosis by decreasing
phospholipid peroxides via glutathione (Stockwell et al., 2020).
In addition, glutathione (GSH) metabolism plays a beneficial
or pathogenic role in a variety of malignant tumors and
excess GSH promotes tumor progression and metastasis
(Bansal and Simon, 2018). Altered glyoxylate and

FIGURE 10 | Known immune checkpoints (A) and their ligands (B) in the test2 cohort.
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dicarboxylate metabolism are associated with the chromosomal
instability status in gastric cancer (Tsai et al., 2018). Genes in
the high-risk group were significantly enriched in the TGF-
beta signaling pathway, adherens junction, and MAPK
signaling pathway, among others. The transforming growth
factor (TGF)-β signaling pathway has a dual function and
pleiotropic nature. This pathway has tumor suppressor
functions in normal and early-stage cancer cells, including
cell-cycle arrest and apoptosis, but has cancer-promoting
functions in late-stage cancer cells, including metastasis and
chemoresistance (Colak and Ten Dijke, 2017; Seoane and
Gomis, 2017). Activation of transforming growth factor-beta 1
Signaling in fibroblasts increases the motility and invasiveness

of gastric cancer cells (Ishimoto et al., 2017). The TGF-β receptor
inhibitor, LY2109761, increases radiosensitivity in GC by
regulating the TGF-β/SMAD4 signaling pathway (Yang et al.,
2019). Mitogen-activated protein kinases (MAPKs) include
three major subfamilies: extracellular-signal-regulated kinases
(ERK MAPKs), c-Jun N-terminal kinases, stress-activated
protein kinases (JNKs or SAPKs), and MAPK14 (Fang and
Richardson, 2005).

Relatively little research has been conducted on these 10
lncRNAs at present. LINC01614 is identified as an oncogenic
lncRNA that promotes proliferation and migration in gastric
cancer (Chen Y. et al., 2021). LINC01614 promotes FOXP1
expression by inhibiting miR-217, which ultimately stimulates

FIGURE 11 | The sensitivity to common chemotherapeutic drugs of patients with STAD in the test2 cohort. (A) Cisplatin, Docetaxel, and Mitomycin.C. (B)
Etoposide. (C) Paclitaxel.
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the development of LUAD (Liu et al., 2018). Upregulation of
LINC01614, induced by SP1, promotes malignant glioma
progression by modulating the miR-383/ADAM12 axis
(Wang et al., 2020). These studies imply that LINC01614 is a
factor contributing to an unfavorable prognosis of various
cancers, consistent with our results. The expression levels of
FLNB-AS1 are positively correlated with the survival
probability of patients with breast cancer and FLNB-AS1 may
be a potential diagnostic or prognostic marker of tamoxifen
resistance (Zhang X. et al., 2020). AL121748.1 may be involved
in multiple metabolic processes, such as amino acid, lipid, and
glucose metabolism in cirrhotic HCC (Ma and Deng, 2019). By
constructing a ceRNA network, the functions of some lncRNAs
were explored. The GO analysis showed that these lncRNAs were
involved in cell cycle regulation, especially the G1/S phase
transition, which was related to the transition from RNA
and ribosome synthesis to the reproduction of genetic
material. The KEGG analysis showed that these lncRNAs
were involved in several pathways, including microRNAs in
cancer, the cell cycle, the PI3K−Akt signaling pathway, and
various cancers. However, the functions mentioned above
required further biological verification.

Using current standard therapies, the prognosis of patients
with advanced-stage gastric cancer remains poor (Zhao et al.,
2019). Immunotherapy, an innovative approach, is developed
to improve the survival rate of patients with various cancers,
such as lung cancer, gastric cancer, and breast cancer. In this
study, immune infiltration was assessed using ssGSEA and
the ESTIMATE algorithm. The abundance of several innate
immune cells and adaptive immune cells, such as CD8+

T cells, DCs, pDCs, and Tregs, was lower in the high-risk
subgroup. Patients with advanced non-small-cell lung cancer
presenting with greater CD8+ T cell infiltration exhibit a
superior treatment response to pembrolizumab, an anti-PD-1
drug (Garon et al., 2019). Dendritic cells (DCs), which are
antigen-presenting cells, often eliminate tumors by stimulating
naive T cell differentiation (Fu et al., 2021). HIF-1α inhibits
plasmacytoid DC (pDC) differentiation, leading to tumor
progression (Labiano et al., 2015). Treg cells are key subsets of
effector T cells with strong immunosuppressive effects. The
immune activity of most of the immune functions was higher
in the low-risk subgroup, such as checkpoint, cytolytic activity,
and type II IFN response. The immune cytolytic activity score
reflects antitumor immunity and predicts clinical outcomes of
patients with GC (Hu et al., 2021). Type II IFN (IFN-γ) is a
critical driver of programmed death ligand-1 (PD-L1) expression
in cancer and host cells (Ayers et al., 2017). These results showed
that patients in the high-risk group were immunosuppressed
compared to the other group.

Considering the immune-activating environment and higher
immune scores in the low-risk group, we speculated a potentially
significant difference in immunotherapy efficacy in the two
subgroups. Thus, ICI therapy was studied in detail. The
immune checkpoint inhibitor response was assessed by
calculating the TMB and TIDE scores. The results showed
higher TMB and lower TIDE scores for the low-risk group,

indicating that these patients might receive a greater benefit
from ICI therapy. Common immune checkpoints, such as
PD1, PD-L1, and CTLA4, were expressed at high levels in the
low-risk group, which validated this speculation. Pembrolizumab,
an anti-PD-1 drug, has shown manageable safety and promising
activity in patients with advanced gastric or gastroesophageal
junction cancer who have received at least 2 lines of treatment
(Fuchs et al., 2018; Smyth et al., 2020). Nivolumab, an antibody
inhibitor of programmed death-1 (PD-1), is approved as an
option for third- or later-line treatment of advanced gastric/
gastroesophageal junction (G/GEJ) cancer (Kang et al., 2017;
Janjigian et al., 2018; Boku et al., 2019). In addition, the genetic
mutation waterfall diagram showed that KMT2D, PIK3CA,
ARID1A, HMCN1, and TTN mutations were enriched in the
low-risk group. KMT2D mutant cells show higher protein
turnover and IFNγ-stimulated antigen presentation and both
mice and human KMT2D mutant tumors show increased
immune infiltration (Wang G.et al., 2020). The PIK3CA
mutation may alter the levels of PD-1, PD-L1, and PD-L2
(Cho et al., 2019; Liu J. et al., 2020). The frequency of TTN
mutations is significantly positively correlated with the
objective response rate of patients receiving anti-PD1/PD-L1/
CTLA-4 monotherapy (Jia et al., 2019). In summary, risk
scores based on 10 ferroptosis-related lncRNAs could help
screen patients with stomach cancer who might benefit from
immunotherapy.

Accumulating studies have shown that ferroptosis and
chemotherapy are inseparable. Erastin, an inducer of
ferroptosis, enhances the sensitivity to chemotherapy, and
radiotherapy, suggesting a promising future application in
cancer therapy (Zhao et al., 2020). Cisplatin and paclitaxel
promote miR-522 secretion which decreases the accumulation
of lipid-ROS by suppressing ALOX15 expression and ultimately
results in chemoresistance in gastric cancer (Zhang H. et al.,
2020). In our study, risk stratification based on 10 ferroptosis-
related lncRNAs was correlated with the response to several
common chemotherapeutic drugs. Patients with stomach
cancer in the low-risk group experienced greater survival
benefit from chemotherapy with mitomycin. C, cisplatin, and
docetaxel. These findings might be helpful to guide the selection
of personalized chemotherapy drugs.

Undoubtedly, there were some limitations in this study.
Firstly, the sample size was relatively limited. To verify the
modeling results, the TCGA cohort was split, which destroyed
the model efficiency to a certain extent. Secondly, clinical
information was deficient, which resulted in limited analysis
related to important clinical factors. Finally, all results were
obtained by statistical analysis, biological tests were needed
further to verify.
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Supplementary Figure 1 | Validation of the prognostic model in the test1 cohort.
(A) Time-independent ROC curves along with their AUC were conducted to assess

the sensitivity and specificity. (B) The KM survival curves showed a higher survival
rate in the low-risk group. (C) Risk scores for stomach patients with STAD were
presented in ascending order. (D) The survival status distribution curve showed a
higher proportion of dead patients in the high-risk group. (E) The expression
heatmap of these 10 lncRNAs was plotted and significance levels were
annotated on the right side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

Supplementary Figure 2 | Validation of the prognostic model in the test2 cohort.
(A) Time-independent ROC curves along with their AUC were conducted to assess
the sensitivity and specificity. (B) The KM survival curves showed a higher survival
rate in the low-risk group. (C) Risk scores for patients with STAD were presented in
ascending order. (D) The survival status distribution curve showed a higher
proportion of dead patients in the high-risk group. (E) The expression heatmap
of these 10 lncRNAs was plotted and significance levels were annotated on the right
side. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.

Supplementary Figure 3 | The KM survival curves of these 10 lncRNAs with
different expression levels were plotted. Based on their median values, lncRNAs
were divided into high and low expression groups.

Supplementary Figure 4 | The association between risk scores and
clinicopathological factors in the test2 cohort.

Supplementary Figure 5 | (A) Risk scores for patients with or without distant
metastases were compared. The KM survival analyses in two pathological M
subgroups were conducted, including (B) patients without distant metastases
(M0) and (C) patients with distant metastases (M1).

Supplementary Figure 6 | The association between the expression of lncRNAs
and clinicopathological factors in the test2 cohort. ****p < 0.0001, ***p < 0.001, **p <
0.01, *p < 0.05.

Supplementary Figure 7 | Functional analysis of these 10 lncRNAs. The top 20
results of GO terms in BP (A, B) and KEGG pathways (C, D) were shown. P-value
and q-value were both 0.05 as cutoff values.

Supplementary Figure 8 |Gene mutations based on risk levels in the test2 cohort.
The top 20 genes were presented.
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