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Abstract

Pathogen adaptation to multiple selective pressures challenges our ability to control their spread. Here we analyze the evolutionary
dynamics of pathogens spreading in a heterogeneous host population where selection varies periodically in space. We study both the
transient dynamics taking place at the front of the epidemic and the long-term evolution far behind the front. We identify five types
of epidemic profiles arising for different levels of spatial heterogeneity and different costs of adaptation. In particular, we identify the
conditions where a generalist pathogen carrying multiple adaptations can outrace a coalition of specialist pathogens. We also show
that finite host populations promote the spread of generalist pathogens because demographic stochasticity enhances the extinction
of locally maladapted pathogens. But higher mutation rates between genotypes can rescue the coalition of specialists and speed up
the spread of epidemics for intermediate levels of spatial heterogeneity. Our work provides a comprehensive analysis of the interplay
between migration, local selection, mutation, and genetic drift on the spread and on the evolution of pathogens in heterogeneous
environments. This work extends our fundamental understanding of the outcome of the competition between two specialists and
a generalist strategy (single- vs. multiadapted pathogens). These results have practical implications for the design of more durable
control strategies against multiadapted pathogens in agriculture and in public health.
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Lay Summary

Pathogen adaptation is constantly eroding the efficacy of prophylactic and therapeutic measures against the spread of infectious dis-
eases. A promising way to limit the spread of multiadapted pathogens is to distribute different control measures across space (e.g.,
different vaccines, different resistant varieties of crop in agriculture). Yet, the influence of the spatial deployment of these interven-
tions on the genetic composition of spreading epidemics remains unclear. Is it possible to identify optimal deployment strategies that
reduce the spread and the speed of adaptation of resistant pathogens? We analyze the evolution of pathogen adaptations throughout
an epidemic spreading in a heterogeneous host population where selection varies periodically in space. We show how an increase in
the period of the spatial fluctuations of host composition can speed up the epidemic spread and disfavor multiadapted pathogens.
But this effect can be altered qualitatively by the demographic stochasticity taking place at the edge of the front and by higher rates
of mutation between different pathogen genotypes. We predict the composition of the pathogen population both far behind and at the
front of the epidemic. This analysis allows us to elucidate the consequences of the effects of spatial heterogeneity on the coexistence
between specialist (single-adaptated) and generalist (multiadapted) pathogen strategies.

Introduction
Pathogen epidemics can have devastating consequences for ani-
mal and plant species, and it is particularly important to under-
stand which factors govern the speed of epidemics to predict and
potentially prevent their spread. Determining the speed of bio-
logical invasions has attracted a lot of attention from theoretical
biologists Fisher (1937); Kolmogorov et al. (1937); Skellam (1951).
Under the simplifying assumption that the invasion takes place
in a homogeneous environment (e.g., an epidemic spreading in a
fully susceptible host population), diffusion models can be used

Received August 25, 2023; revisions received December 13, 2023; accepted January 08, 2024

© The Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEN) 2024.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium,
provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

to predict the asymptotic speed of the epidemic Fisher (1937); Kot
et al. (1996); Shigesada & Kawasaki (1997). In this case, the pop-
ulation is expected to spread as a traveling wave with a constant
speed equal to 2

√
𝜎r, where r is the growth rate of the popula-

tion at low density and 𝜎 is the diffusion coefficient thatmeasures
how quickly the organisms disperse. Spatial heterogeneity in the
environment, however, may dramatically affect the spread of the
invading organism Shigesada & Kawasaki (1997). If the spatial
variation is periodic, the natural extension of the traveling front
is the so-called pulsating front characterized by its average speed
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Berestycki et al. (2005a,b); Shigesada & Kawasaki (1997). Earlier
studies have mostly focused on the spatial dynamics of inva-
sions under the assumption that evolutionary dynamics could be
neglected. Yet, evolution can be very rapid during invasions, and
this evolution can affect the speed of the spread in homogeneous
environments Griette et al. (2015); Osnas et al. (2015); Perkins et al.
(2013); Wei & Krone (2005).

Here we study how the pathogen evolution can affect the
spread of an epidemic taking place in a spatially heterogeneous
host population. Host variation is assumed to affect resistance to
infection and pathogen transmission. Many different situations
could generate this type of spatial heterogeneity. For instance, in
agriculture, the use of different resistant varieties in crops could
be a way to manipulate the spatial distribution of host resistance
to a specific pathogen Clin et al. (2022); Gilligan (2008); Hamelin
et al. (2022); Mikaberidze et al. (2015); Mundt (2002). In animal
species, the use of different vaccines at different locations could
also generate a spatial mosaic of immunity McLeod et al. (2021).
Crucially, we allow the pathogen to adapt to this diversity of host
resistance, and we consider different types of adaptations. First,
the pathogen may evolve a specialist strategy allowing the opti-
mal exploitation of a single resistant host. Second, the pathogen
may evolve a generalist strategy allowing the pathogen to exploit
distinct resistant hosts. But this ability to infect multiple host
may carry intrinsic fitness costs (e.g., a lower transmission rate).
The analysis of the competition between specialist and general-
ist strategies is a classical evolutionary question, which has been
explored by theoretical studies under different biological scenar-
ios Levins (1968); Parvinen & Egas (2004); Wilson & Yoshimura
(1994). These studies have shown that the long-term evolutionary
outcome and the potential coexistence between multiple strate-
gies depend on the balance between the amount of spatial het-
erogeneity and the homogenizing effect of migration. Yet, it is
unclear if the same principle holds away from the equilibrium,
at the front of a population that is spreading in a heterogeneous
environment. In particular, it is unclear if one expects the gener-
alist strategy to be more frequent at the edge or far behind the
front, and how this evolution can affect the speed of the spread.
Besides, a better understanding of the consequences of the het-
erogeneity of host resistance on pathogen dynamics could have
practical implications for disease control. For instance, we could
optimize the composition of the host population to reduce epi-
demic spread and limit the evolution of multiadapted pathogens,
which are expected to erode dramatically the efficacy of control
efforts.

In the following, we take advantage of the theoretical frame-
work of pulsating fronts to examine the spatial dynamics of differ-
ent pathogens spreading in a one-dimensional environment. First,
we study the effect of the spatial heterogeneity on the speed of a
monomorphic pathogen population. In a second step, we allow
mutations between different pathogen genotypes, and we ana-
lyze the evolution of a coalition of different pathogen genotypes.
We contrast the composition of the pathogen population at the
edge and behind the front, and we identify five different types of
epidemic profiles. Finally, we examine the effect of demographic
stochasticity on the speed of spreading epidemics when the host
population is assumed to be of finite size.

Methods
We model the dynamics of a directly transmitted pathogen in a
one-dimensional habitat. At time t and position x, the host popu-
lation is divided into uninfected individuals, S(t, x), and infected

individuals, I(t, x). We assume that dead hosts are immediately
replaced by new susceptible hosts (because host fecundity is
assumed to be large and not limiting) so that the total density
of hosts is assumed to remain constant over space and time:
K = S(t, x) + I(t, x). We focus on a scenario where the environ-
ment is divided into two different habitats where the hosts are
either of type A or type B. For instance, this scenario could result
from the use of two different vaccines at different locations or,
if we consider the spread of a phytopathogen in crop, by the use
of distinct host resistant varieties in different fields. We consider
a simple spatial pattern where host composition varies periodi-
cally, and we use L to denote the period of the spatial fluctuation
of host composition. Because all the hosts are resistant to some
pathogen genotype, we expect that the pathogens fully sensitive
to both types of host resistance will be rapidly outcompeted by
single- or multiadapted genotypes. We thus focus our analysis
on the dynamics of three adapted pathogen genotypes circulat-
ing in the host population: (a) the density of hosts infected with
the genotype only able to infect host of type A is noted Ia(t, x)
(single-adapted genotype a to host type A), (b) the density of hosts
infected with the genotype only able to infect host of type B is
noted Ib(t, x) (single-adapted genotype b to host type B) and (c)
the density of hosts infected with the genotype able to infect both
types of hosts is noted Im(t, x) (m for multiadaptation to both
types of hosts). Coinfection by different genotypes is not allowed
and each genotype i is characterized by 𝛽i(x), the rate at which
transmission occurs between infected and susceptible hosts after
a contact at position x. The rate of transmission of the multi-
adapted genotype 𝛽m is independent of space because multiadap-
tation implies that the rate of transmission is not affected by the
treatment. In contrast, the rates of transmission 𝛽a(x) and 𝛽b(x)
vary in space because we assume that host resistance reduces
transmission (without affecting the other life-history traits). All
the infections are assumed to end (because of clearance and/or
increased mortality due to pathogen virulence) at a rate 𝛼. More
precisely, we assume that 𝛽a (respectively 𝛽b) takes values 𝛼 + r in
populations of host A only (respectively B only), and value 𝛼 – r
in populations of host B only (respectively A only), see Figure 1.
This symmetry between the two specialists simplifies the follow-
ing analysis of the model. Note, however, that we also examine
a scenario when we introduce some asymmetry in the maxi-
mal growth rates of the two specialists in Supplementary Mate-
rial (section 1.2.1 and Supplementary Figure S3). Mutations may
occur between these three genotypes and 𝜇ij stands for the rate of
mutation from genotype i to genotype j.

The transmission of the pathogen is assumed to be local
(infected hosts can only infect susceptible hosts at the same spa-
tial location), but both susceptible and infected hosts are allowed
to diffuse in one dimension with a fixed rate 𝜎. In other words,
we neglect the influence the pathogen may have on the mobil-
ity of its host. We show in Supplementary Information (equations
[E1] and [E2]) how our model can be written as the following set
of reaction–diffusion equations (for readability, we drop the time
and space dependence notation on host densities):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕Ia
𝜕t
= Ia [ra(x) – 𝛽a(x)

I

K
] + 𝜎

𝜕2Ia
𝜕x2

+ 𝜇baIb + 𝜇maIm – (𝜇ab + 𝜇am)Ia

𝜕Ib
𝜕t
= Ib [rb(x) – 𝛽b(x)

I

K
] + 𝜎

𝜕2Ib
𝜕x2

+ 𝜇abIa + 𝜇mbIm – (𝜇ba + 𝜇bm)Ib

𝜕Im
𝜕t
= Im [rm – 𝛽m

I

K
] + 𝜎

𝜕2Im
𝜕x2

+ 𝜇amIa + 𝜇bmIb – (𝜇ma + 𝜇mb)Im

(1)
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Figure 1. Schematic presentation of the evolutionary epidemiologymodel
and the spatial heterogeneity of the environment. (Top) Diagram of the
compartimental model. S represents susceptible hosts, Ia (respectively Ib,
Im) represents hosts infected by single-adapted genotype a, which is only
able to infect host type A (respectively single-adapted genotype b only
able to infect host type B, and the multiadapted pathogen able to infect
both types of hosts). In dashed, we have represented mutations that typ-
ically happen at a much lower rate than transmissions. (Bottom) Values
of the intrinsic growth rates x ↦ ra(x) = 𝛽a(x) – 𝛼, x ↦ rb(x) = 𝛽b(x) – 𝛼,
x ↦ rm = 𝛽m – 𝛼 as a function of the spatial variable x ∈ R, where for
x ∈ (0, L), 𝛽a(x) = 2r1

(0, L2 )
(x), while 𝛽b(x) = 2r1

( L2 ,L)
(x), and 𝛼 = r. The

maximal growth rate of the single-adapted genotypes is assumed to be
higher than the growth rate of the multiadapted genotype: r ≥ rm. The
red (respectively green) area represents the locations x ∈ R where hosts
of type A (respectively B) are present.

where I = Ia + Ib + Im. Note that ri(x) = 𝛽i(x) – 𝛼 is the malthu-
sian growth rate of the single-adapted genotype i (with i ∈ {a, b})
and rm = 𝛽m –𝛼 is the malthusian growth rate of the multiadapted
genotype m, when most of the hosts are uninfected (i.e., at the
edge of the epidemic). Yet, when the pathogen population starts
to increase locally the density of uninfected hosts drops and this
epidemiological feedback decreases the transmission opportuni-
ties (see also Débarre et al. (2009); Griette et al. (2015)). This drop
in host density would be even stronger if host fecundity was not
able to compensate host mortality (the total density of the host
population would drop due to the spread of the pathogen). For
simplicity, however, we restrict our analysis to the case where
S(t, x) + I(t, x) remains constant and equals to K.

In the following, we study the speed of spreading epidemics
in a spatially heterogeneous environment as a function of (a) the
period of the spatial fluctuation in the composition of the host
population and (b) the transmission rates of the different geno-
types in the different habitats. We first consider the spread of
single genotypes before analysing the effect of mutations among
genotypes on the speed of a polymorphic pathogen population.
Finally, we explore the effect of demographic stochasticity on the
speed of monomorphic and polymorphic epidemics spreading in
heterogeneous environments.

Results
The speed of a monomorphic pathogen
population
The multiadapted genotype m does not “feel” the spatial hetero-
geneity of host population.When such a genotype is introduced in
the host population and if we assume nomutation (𝜇ma = 𝜇mb = 0),
the above system reduces to the spread of a single pathogen in a
uniform environment. The pathogen population spreads as a trav-
eling wave with a speed equal to Griette et al. (2015); Osnas et al.
(2015); Shigesada & Kawasaki (1997):

cm = 2
√
𝜎rm. (2)

The analysis of the speed of a single-adapted genotype i ∈ {a, b} is
more challenging because the growth rate of the pathogen varies
periodically in space between ri(x) = r (when the genotype is
adapted to the host in x) and ri(x) = –r (when the genotype is not
adapted to the host in x). It is possible to derive good approxima-
tions for the speed of the epidemic in two limit cases Hamel et al.
(2010, 2011), namely when L is small and when L is large. When
the period of the fluctuation of the environment is very small (i.e.,
L → 0) the grain of the environment is so small that the growth
rate of the pathogen is equal to the average growth rate in the
two habitats: r = r+(–r)

2 = 0. In contrast, when the period of the
fluctuation is large the pathogen will move very fast when it is
adapted to the host and it will slow down when the host resis-
tance reduces its transmission rate. In the limit when L → ∞, the
speed reaches an asymptote that can be described explicitly. We
then get, for i ∈ {a, b},

ci ∼ 0 when 0 < L ≪ 1, ci ∼ (
2
√
3
)
3/2√

𝜎r when 1 ≪ L. (3)

Moreover, the speed of the single-adapted genotype epidemic
increases with L, the period of the spatial fluctuation of the
environment (Figure 2).

The speed of a polymorphic pathogen population
Before considering the full system (with the three pathogen geno-
types: a, b, andm), we examine the dynamics of a coalition of two
single-adapted genotypes (a and b) each adapted to distinct types
of hosts. When the mutation rates are very low (i.e., 𝜇aj = 𝜇bj ≈ 0),
we recover the result of a monomorphic population (red line in
Figure 2). However, numerical simulations with a fixed mutation
rate 𝜇 between single-adapted genotypes indicate that increasing
the mutation rate has a complex effect on the speed of the poly-
morphic population (Figure 2). When L is small, increasing the
mutation rate has only a weak effect on epidemic speed because
the environment changes so fast that both specialist genotypes
are almost equifrequent. For intermediate values of L, the size of
the area populated by a single host type allows the adapted geno-
type to outcompete the other genotype and to take up some speed.



430 Griette et al.

Figure 2. Impact of the mutation rate 𝜇 on the propagation speed of a
coalition of the two specialist pathogen types, for the determinist model.
We plot the speed ca of a single specialist genotype (red line) and the
speed ca+b of a coalition of both specialist genotypes propagating together
(orange lines) when 𝜇ab = 𝜇ba = 𝜇 (with 𝜇am = 𝜇bm = 0). The final values
for ca are extrapolated (from L = 2000 inclusive). The black arrows indi-
cate the values of Lc for the different rates of mutation (see equation (4)).
Parameters: 𝜎 = 1, r = 1, and the functions 𝛽a(x), 𝛽b(x), ra(x), and rb(x)
are as in Figure 1.

Hence, the composition of the epidemic fluctuates between the
two specialist genotypes and a higher mutation rate speeds up
the emergence of this locally adapted genotype and increases the
propagation speed. For larger values of L, however, this effect is
dominated by the detrimental emergence of ill-adapted mutants
(mutation load) that slows down the propagation within an area
populated by a single host type. Hence, the composition of the
pathogen population at the front of the epidemic depends on the
balance between local selection,mutation, and L, whichmeasures
the amount of spatial heterogeneity. We show in Supplementary
Material (section 1.2.1) that there is a threshold value Lc below
which the whole epidemic is driven by a single specialist:

Lc ∼
2
√
2

33/4 –
√
2

√
𝜎
r
ln(
√
𝜎r
𝜇
) . (4)

When L < Lc, the propagation of each specialist is independent
because they can move through the “bad habitat” by diffusion.
In contrast, when L > Lc, the bad habitat slows down the spread
of the maladapted specialist and the coalition of two specialists is
faster than a single specialist because they “pass the baton” when
theymove to a different habitat. The composition of the pathogen
population at the front of the epidemic fluctuates between the
two specialist genotypes. Higher mutation rates speed up the epi-
demic because mutation speeds up the switch between the two
specialists at the tip of the front. Note, however, that high muta-
tion rates generate a mutation load when L ≫ Lc via the recur-
rent introduction of a single-adapted genotype unable to infect
the local host type. This is why the maximal speed of the coali-
tion of single-adapted genotypes can never reach the speed of a
universally adapted pathogen (ca+b < 2

√
𝜎r in Figure 2).

When we assume a fixed mutation rate 𝜇 among the three
pathogen genotypes, the epidemic spreads faster than epidemics
where only the coalition of two specialists is present, provided
the period of the fluctuation is small (Figure 3). Indeed, when L is
small, the multiadapted genotype m outpaces the single-adapted
genotypes at the front of the epidemic (Figure 3). In contrast,
when L is large, the multiadapted genotype is outcompeted by the
coalition of the two specialists because we assume the maximal
growth rate r of the specialits is higher than the growth rate rm
of the generalist (in particular when the mutation rate between

Figure 3. Propagation speed when only one specialist genotype is present
(ca), when both specialist genotypes are present (ca+b with 𝜇ab = 𝜇ba = 𝜇)
and when all the three pathogen genotypes are present (ca+b+m with 𝜇ij =
𝜇,∀ i, j ∈ {a, b,m}). (Top) Speed of the epidemic in the deterministic model
(1) against the period L for the coalition of specialist genotypes (orange
line: ca+b with 𝜇ab = 𝜇ba = 𝜇), the multiadapted genotype alone (blue
line: cm), and the full model with both the specialist genotypes and the
multiadapted genotype (purple line: ca+b+m with 𝜇ij = 𝜇,∀ i, j ∈ {a, b,m}).
(Bottom) Speed of the epidemic in the stochastic model with N = 100 and
𝛿x = 0.1. Parameters: r = 1, rm = 1

16 , 𝜎 = 1, 𝜇 = 0.01, 𝛽m = 1 + 1
16 , and the

functions 𝛽a(x), 𝛽b(x), ra(x), and rb(x) are as in Figure 1.

single-adapted genotypes is large enough). Increasing the muta-
tion rate tends to lower the speed of the epidemic when L is small
or very large because mutations reintroduce maladapted geno-
types and build up the mutation load (Figure 4). For intermediate
values of L, however, increasing the mutation rate can increase
the speed of the pathogen spread, by speeding up the propaga-
tion of a coalition of specialists a and b (Figure 4). This is due to
the beneficial effects of mutations on the speed of the coalition of
two single-adapted genotypes that we discussed above (Figure 2).

The speed of stochastic epidemics
The above results rely on the assumption that the deterministic
model we are using provides a good description of the spread of a
pathogen epidemics. Yet, the front of the epidemic is driven by a
small number of infections. The finite nature of the pathogen pop-
ulation at the edge of the epidemics yields demographic stochas-
ticity and is expected to slow down its spread Brunet & Derrida
(1997); Griette et al. (2015); Mueller et al. (2011); Snyder (2003).
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Figure 4. Effect of the mutation rate 𝜇 on the propagation speed of
the epidemics when all three pathogen types are present (ca+b+m with
𝜇ij = 𝜇,∀ i, j ∈ {a, b,m}). (Top) Deterministic model. (Bottom) Stochastic model

with N = 100 and 𝛿x = 0.1. Parameters: 𝜎 = 1, rm = 1
16 , r = 1, 𝛽m = 1 + 1

16 ,
and the functions 𝛽a(x), 𝛽b(x), ra(x), and rb(x) are as in Figure 1.

In the following, we explore the effect of stochasticity using an
individual-based model that takes into account the finite num-
ber N of hosts at each spatial location. The individual transitions
between the different states of the hosts are described by a list
of random events (transmission, mutation, death; see Supple-
mentary Material, section 2.1 for a detailed description of the
individual-based model). As expected, this stochastic model con-
verges to the above deterministic model when N is assumed to
be very large. To study the effect of demographic stochasticity on
epidemic spread, we performed simulations with our individual-
based model and measured the average speed on a long time
interval after the influence of the initial condition is lost.

First, we discuss the speed of monomorphic epidemics in the
absence of mutations. The speed of the multiadapted genotype is
decreased by the effect of stochasticity but remains very close to
the deterministic approximation (see Brunet & Derrida, 1997; Gri-
ette et al., 2015). Themagnitude of this drop is expected to be pro-
portional to (ln ( N

𝛿x))
–2, where N

𝛿x represents the number of hosts
per unit of space. In contrast, the speed of the single-adapted
specialist is dramatically altered by stochasticity (Figure 3). This
speed is always lower than the speed of the deterministic approx-
imation, but when L is large, the speed can drop abruptly to
zero, which indicates that the pathogen cannot spread any more.
Indeed, when the period of the fluctuation of the environment

reaches a threshold value Le ∼
√

2𝜎
r ln ( r

𝜎N𝛿x), the pathogen
cannot cross the unfavorable habitat (see Supplementary Mate-
rial, section 2.2.2). In particular, the pathogen is very likely to

go extinct in the unfavorable habitat when the population size
is small, the diffusion rate is limited and its growth rate is very
negative (remember that we assume the growth rate to be –r in
the unfavorable habitat). Note that this critical period Le only
increases logarithmically with the population size N, so that this
“blocking effect” can be observed even with relatively large popu-
lation sizes. This explains why the propagation speed of a single-
adapted genotype is maximized for intermediate values of L. In
the deterministic approximation, in contrast, the pathogen can
always cross unfavorable habitats because extinctions do not
occur and the speed of epidemic spread increases monotonically
with L.

Second, if we allow some mutation between the two single-
adapted genotypes, the epidemic can cross those unfavorable
environments because mutations will rescue pathogen popula-
tions when L > Le. Consequently, increasing mutation rates can
have a dramatic impact on the speed of epidemics when L is large
(Figure 4). Finally, when we allow the mutation between the three
different genotypes, the speed of the epidemics is close to (but
lower than) the deterministic approximation, and this speed can
decrease when L > Le and the mutation rates are small enough
(Figure 4). As pointed out above, the magnitude of this effect on
the reduction of the epidemic speed is of the order (ln(N))–2 when
N is large enough.

Pathogen diversity far behind the epidemic front
In the previous sections, we focused on the speed and the com-
position of the pathogen population at the edge of the epidemic.
Next, we characterize the composition of the pathogen popu-
lation far behind the front, when it reaches an endemic equi-
librium. Note that the composition of the pathogen population
behind the front is much less sensitive to the effect of demo-
graphic stochasticity because at the endemic equilibrium, the
number of pathogens present is much larger than at the front
of the epidemics, diminishing greatly the risk of genotype extinc-
tions. Hence, we do not need to distinguish the deterministic and
stochastic models in this section. Three cases can be observed
(Figure 5):
(a) The multiadapted genotype dominates if both the cost of
being multiadapted (i.e., r – rm) and L are low, the generalist strat-
egy outcompetes the specialists and goes to fixation.
(b) The coalition of specialist genotypes dominates when both
the cost of beingmultiadapted (i.e., r–rm) and L are large, the coali-
tion of specialists outcompetes the generalist strategy.
(c) The three genotypes coexist the coexistence between the
three different genotypes is also possible for a range of param-
eter values when both rm and L are relatively large. Indeed, as
pointed by Débarre and Lenormand (2011), a generalist strategy
can outcompete specialists at the interface between habitats.

Five epidemic profiles
The above analysis shows how the composition of the pathogen
population is dominated by different genotypes at the edge and
behind the front of the epidemic. Indeed, even if all genotypes
are reintroduced locally by mutation, the spatial variability of
the environment and the spread of the population affect the rel-
ative competitive abilities of the different genotypes at differ-
ent locations. In particular, when we vary both the period of
host heterogeneity L and the growth rate rm of the multiadapted
genotype, we can distinguish five different profiles of epidemics
(combining Supplementary Figures S2 and S6 in Supplementary
Material yields Supplementary Figure 5). Interestingly, we iden-
tify an epidemic type (marked by III in Figure 5, see also Figure 6)
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Figure 5. The five epidemic profiles. Composition of the population at the edge of the front (colors), and behind the front (hatches), as a function of
rm and L with 𝜇ij = 𝜇,∀ i, j ∈ {a, b,m}. For the top figure, we obtain the limit of the blue area by comparing the propagation speed of the coalition of

specialists ca+b (see Figure 3) to the propagation speed of the multiresistant type alone, cm = 2
√𝜎rm. The purple line refers ro the value of rm above

which cm > ca+b, which is given by L ↦ (ca+b)
2/(4𝜎). A similar argument based on stochastic propagation speeds is used to obtain the bottom figure. See

also Figure 6 for the description of these different epidemic profiles obtained with the parameters noted i to v in the top figure. (Top) Deterministic model.
(Bottom) Stochastic model with N = 100 and 𝛿x = 0.1. The value for the purple line corresponding to L = 100 in the bottom figure has been extrapolated.
Parameters: 𝜎 = 1, 𝜇 = 0.01, r = 1, 𝛽m = 1 + rm, and the functions 𝛽a(x), 𝛽b(x), ra(x) and rb(x) are as in Figure 1.

where the multiadapted genotype m drives the spread of the epi-
demic but is outcompeted later on by the coalition of the two
specialists (single-adapted genotypes a and b). In other words,
the analysis of the transitory dynamics reveals conditions where
the multiadapted genotype is able to emerge, taking advantage
of the presence of numerous uninfected host populations, even
though specialized strategies are better competitors once the
epidemics has developed and many hosts have been infected.

We recover the same five epidemic profiles with finite host
population sizes (Figure 5), but demographic stochasticity affects
the genetic diversity at the front of the epidemic where the size
of the pathogen population is reduced. Single-adapted genotypes
are most sensitive to the influence of stochasticity because these
specialized genotypes can reach very low density in unfavor-
able habitats. The multiadapted genotype m benefits from the
influence of this demographic stochasticity (compare the size of
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Figure 6. Composition of the pathogen population. The position 0 is determined as the last point where the density of at least one species is half its max-
imum. For the parameters, (L, rm) noted i to v in Figure 5: (1, 0.5), (10, 0.7), (10, 0.5), (10, 0.25), (50, 0.5). Other parameters r = 1, 𝜇 = 0.001, 𝛽m = 0.5, and
the functions 𝛽a(x), 𝛽b(x), ra(x), and rb(x) are as in Figure 1. Note that in panels (iii), (iv), and (v), the density of the multiadapted pathogen converges
to zero in the absence of mutations.

epidemic type marked by III in the deterministic and stochastic
cases illustrated by Figure 5).

Discussion
Our study provides a comprehensive analysis of the evolution
of pathogen specialization in a spreading epidemics. Our model
allows us to examine both the long-term evolutionary outcome
far behind the front of the epidemic, and the transient evolution
taking place at the front of the epidemic. We recover the clas-
sical result of previous evolutionary analyses showing that the
long-term evolutionary outcome depends on the balance between
spatial heterogeneity and the amount of migration among habi-
tats. Larger patches of homogeneous habitats favor the coali-
tion of locally adapted specialists in each habitat, but migration
tends to favor generalist strategies able to cope with a diversity
of habitats Christiansen (1975); Day (2000); Débarre and Gandon
(2010); Débarre et al. (2013); Mirrahimi & Gandon (2020). We also
recover the possibility to maintain the coexistence of special-
ists and generalist strategies when the generalist can be stably

maintained at the interface between habitats Débarre and Lenor-
mand (2011). Interestingly, our analysis of the transient evolution-
ary dynamics of the pathogen in a spreading epidemic reveals that
the composition of the pathogen population can be very different
at the front of the epidemic. Indeed, even if the local composi-
tion of the host population does not change in time, the pathogen
present at the front of the epidemic experiences temporal fluctu-
ations of the environment. Frequent temporal fluctuations favor
the generalist strategy because, in spite of its constitutive fitness
cost (i.e., rm < r in our model), the generalist strategy does not
feel the heterogeneity of the environment. Consequently, we show
that multiadapted pathogens are expected to drive the spread
of epidemics in finely grained environments. In contrast, when
the spatial fluctuations are larger, the coalition of specialists is
expected to drive the epidemics. Indeed, even if the transition
between the two habitats can slow down the average speed of a
coalition of specialists, the speed of each specialist is maximized
when they are locally adapted. Contrasting the composition of the
pathogen population at the edge and at the back of the epidemic
allowed us to identify five different types of epidemic profiles in
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Figure 5. This figure shows that the coexistence of specialists and
generalists strategies is promoted by a lower fitness of the mul-
tiadapted genotype and a larger period of host heterogeneity. In
general, we find that the speed of the epidemic is increased with
larger period of host heterogeneity, but, as discussed below, these
results are modulated by the pathogen mutation rates and by the
amount of demographic stochasticity.

We found that mutation among pathogen genotypes is a
double-edged sword: (a) It allows the pathogen to acquire adap-
tive mutations, but (b) it can also produce a mutation load with
the recurrent introduction of locally maladapted genotypes. The
balance between these two effects depends on the heterogeneity
of the environment, which, in turn, depends on the ratio between
the period L of the fluctuation of the environment and the dif-
fusion coefficient 𝜎. The beneficial effect of a higher mutation
rate is maximal for intermediate levels of this ratio. Indeed, it is
not profitable for the pathogen population to mutate often when
the environment keeps changing (i.e., L ∼ 0) or when the envi-
ronment changes very slowly (i.e., L → ∞). Several earlier studies
obtained similar conclusions in nonspatialmodels where it is pos-
sible to show that there is an optimal stochastic switching rate
between specialized phenotypes that maximizes the growth rate
of a population in a fluctuating environment Kussell & Leibler
(2005); Lachmann & Jablonka (1996). In all these different scenar-
ios, the introduction of genetic variation provides a way to “pass
the baton” between different specialist genotypes and allows the
population to exploit more efficiently a fluctuating environment.

As expected from earlier theoretical studies Brunet & Der-
rida (1997); Griette et al. (2015); Mueller et al. (2011); Snyder
(2003), demographic stochasticity lowers the speed of the epi-
demic spread. Most of the results of the deterministic model
hold in finite host populations. The only notable exception occurs
when large values of L can prevent the spread of single-resistance
genotypes. The input of new mutations may then provide a way
to adapt to the new host type. Hence the speed of pathogen epi-
demics may be constrained by both the stochastic nature of the
demographic process and the stochastic nature of the mutation
events occurring at the edge of the epidemic. Several earlier stud-
ies have shown how the increased intensity of genetic drift in
expanding populations could result in an “expansion load” due
to the accumulation of deleterious mutations Hallatschek and
Nelson (2010); Peischl et al. (2015). In our model, however, dele-
terious mutations at some location (e.g., genotype a in host type
B) are adaptive at other locations (e.g., in host type A). It would be
interesting to study the effects of finite population size in a more
realistic model allowing for the accumulation of unconditionally
deleterious mutations.

Our models can be used to make practical recommendations
regarding the manipulation of the spatial structure of the host
population to limit the speed of pathogen epidemics. The spatial
structure of the host population can be manipulated by mixing
hosts with different levels of resistance to the pathogen. This
variation in host resistance can either be due to genetic hetero-
geneity (e.g., resistant crop varieties), immunological heterogene-
ity (e.g., vaccination), or other therapeutic interventions (e.g., the
use of drugs against the pathogen). Earlier studies have analyzed
the impact of the local manipulation of the heterogeneity of the
environment on the adaptation of pests and pathogens Comins
(1977); Débarre et al. (2007); Lenormand & Raymond (1998); Park
et al. (2015); Raymond (2019). In particular, these models have
determined the critical area size of host resistance above which
adaptation to the host does not occur because local selection
is swamped by the influence of migration. The present study

expands these earlier studies that focused on the migration–
selection equilibrium and examines transient dynamics of adap-
tation in the presence of two types of host resistance. Hence, our
analysis may be particularly relevant in agriculture where mul-
tiple resistance varieties may be used to limit pathogen spread
Djidjou-Demasse et al. (2017); Rimbaud et al. (2018a,b, 2021). If the
objective is to limit the speed of the epidemic spread, a lower value
of L should be recommended. Lower L values imply that a spread-
ing epidemics is exposed to a more variable environment. This
prevents the pathogen to specialize to a specific environment and,
consequently, to speed up in a favorable environment. Interest-
ingly, fine-scale environmental heterogeneity (low L values) is also
expected to reduce the probability of pathogen emergence Chabas
et al. (2018). This fine-scale heterogeneity, however, may promote
the spread of generalist and multiadapted pathogens. Those gen-
eralist pathogens are likely to spread more slowly because of the
potential fitness cost associated with the acquisition of additional
mutations. But additional compensatory mutations (not consid-
ered in our model) may restore the competitivity of generalist
pathogens against specialist pathogens. In other words, the opti-
mal deployment of control measures in space varies with the
forecast horizon. Our model helps clarify the consequences of
these interventions on the short-term epidemiological dynamics
(the speed of the spreading epidemic) as well as the evolutionary
dynamics of the pathogen population. Note, however, that our
results depend on several simplifying assumptions used for the
build up of the model. In particular, the robustness of our con-
clusions remains to be investigated when pathogen dispersal is
not modeled by a diffusion process and when the epidemic may
spread in a two-dimensional environment.

Several experimental studies have monitored and quantified
the spread and the evolution of a bacteria in laboratory conditions
Baym et al. (2016); Deforet et al. (2019). In particular, the MEGA-
plate experiment of Baym et al. followed the spread of Escherichia
coli in a spatially heterogeneous environment characterized by
increasing concentrations of antibiotics. This fascinating exper-
iment allowed to visualize pathogen spread and evolution in real
time. This experimental procedure could be used to test some
of our predictions. For instance, we could monitor the influence
of the scale of spatial heterogeneity with a manipulation of the
parameter L in the MEGA-plate. We hope that the present theoret-
ical framework may stimulate an experimental validation of our
theoretical predictions using experimental evolution of microbes
in spatially heterogeneous environments.
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