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central and enteric nervous systems
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Introduction

Insights into the gut-brain crosstalk have revealed a complex 
communication system that not only ensures the proper 
maintenance of gastrointestinal homeostasis, but is likely to 
have multiple effects on affect, motivation, and higher cognitive 
functions. The complexity of these interactions is enclosed in 
the denomination of “gut-brain axis” (GBA) [1]. Its role is to 
monitor and integrate gut functions as well as to link emotional 
and cognitive centers of the brain with peripheral intestinal 
functions and mechanisms such as immune activation, 
intestinal permeability, enteric reflex, and entero-endocrine 
signaling. The mechanisms underlying GBA communications 
involve neuro-immuno-endocrine mediators.

This bidirectional communication network includes the 
central nervous system (CNS), both brain and spinal cord, 

the autonomic nervous system (ANS), the enteric nervous 
system (ENS) and the hypothalamic pituitary adrenal (HPA) 
axis (Fig. 1). The autonomic system, with the sympathetic and 
parasympathetic limbs, drives both afferent signals, arising from 
the lumen and transmitted though enteric, spinal and vagal 
pathways to CNS, and efferent signals from CNS to the intestinal 
wall. The HPA axis is considered the core stress efferent axis that 
coordinates the adaptive responses of the organism to stressors 
of any kind [2]. It is a part of the limbic system, a crucial zone 
of the brain predominantly involved in memory and emotional 
responses. Environmental stress, as well as elevated systemic 
pro-inflammatory cytokines, activate this system that, through 
secretion of the corticotropin-releasing factor (CRF) from 
the hypothalamus, stimulates adrenocorticotropic hormone 
(ACTH) secretion from pituitary gland that, in turn, leads 
to cortisol release from the adrenal glands. Cortisol is a major 
stress hormone that affects many human organs, including the 
brain. Thus, both neural and hormonal lines of communication 
combine to allow brain to influence the activities of intestinal 
functional effector cells, such as immune cells, epithelial cells, 
enteric neurons, smooth muscle cells, interstitial cells of Cajal and 
enterochromaffin cells. These same cells, on the other hand, are 
under the influence of the gut microbiota [3] whose contributing 
role in brain-gut reciprocal communications has recently been 
assessed. The concept of a microbiome GBA is now emerging.

The enteric microbiota is distributed in the human 
gastrointestinal tract and, although each person’s microbiota 
profile is distinct, relative abundance and distribution along the 
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intestine of these bacterial phylotypes is similar among healthy 
individuals. The two more prominent phyla are Firmicutes and 
Bacteroides accounting for at least ¾ of the microbiome  [4]. 
This microbial community has important metabolic and 
physiological functions for the host and contributes to its 
homeostasis during life.

Role of microbiota in GBA

Both clinical and experimental evidence suggest that enteric 
microbiota has an important impact on GBA, interacting not 

only locally with intestinal cells and ENS, but also directly with 
CNS through neuroendocrine and metabolic pathways.

In humans, the most compelling evidence of a 
gastrointestinal microbe-brain interaction arose more than 
20  years ago from the observation of the often dramatic 
improvement in patients with hepatic encephalopathy, after the 
administration of oral antibiotics [5]. In the meantime, emerging 
data support the role of microbiota in influencing anxiety and 
depressive-like behaviors [6,7] and, more recently, of dysbiosis 
in autism. In fact, autistic patients present specific microbiota 
alterations according to the severity of the disease [8,9].

Dysbiosis occurs also in functional gastrointestinal disorders 
(FGID) that are highly associated with mood disorders and 
are linked to a disruption of GBA [10-12]. Data have been 
provided that both brain-gut and gut-brain dysfunctions 
occur, the former being dominant particularly in irritable 
bowel syndrome (IBS) [13]. The disruption occurring in the 
GBA determines changes in intestinal motility and secretion, 
causes visceral hypersensitivity and leads to cellular alterations 
of the entero-endocrine and immune system. Microbiota may 
interplay with multiple of these different pathophysiological 
IBS targets [14] and its role is supported by varying lines 
of evidence: the presence in IBS patients of alterations in 
microbiota composition with defects both in its stability and 
diversity, the development of post-infectious IBS, the possible 
coexistence with small intestinal bacterial overgrowth and the 
efficacious treatment of certain probiotics and non-systemic 
antibiotics [15-17]. Furthermore, the visceral hypersensitivity 
phenotype, characteristic of IBS, can be transferred via the 
microbiota of IBS patients to previously germ-free rats [18]. The 
concomitant dysregulation of both GBA and gut microbiota in 
the pathogenesis of IBS has lead to the proposal of considering 
this FGID as a disorder of the microbioma-GBA [19].

From gut microbiota to brain

In the last years there has been a proliferation of 
experimental works, conducted mainly on animals, aimed to 
explore the contribution of the microbiota in modulating GBA. 
Different technical strategies have been used, consisting in the 
use of germ-free (GF) animals, probiotics, antibiotics and 
infection studies [20].

Studies on GF animals have shown that bacterial 
colonization of the gut is central to development and 
maturation of both ENS and CNS [21,22]. The absence of 
microbial colonization is associated to an altered expression 
and turnover of neurotransmitters in both nervous 
systems [21,23,24] and also to alterations of gut sensory-motor 
functions, consisting in delayed gastric emptying and intestinal 
transit [25,26] reduced migrating motor complex cyclic 
recurrence and distal propagation [27,28] and enlarged cecal 
size [29]. Neuromuscular abnormalities resulted associated 
to a reduction in gene expression of enzymes involved in the 
synthesis and transport of neurotransmitters, as well as in 
that of muscular contractile proteins [30]. All these anomalies 
are restored, after animal colonization in a bacterial species-
specific manner.

Figure 1 Microbiome gut-brain axis structure
The central nervous system and in particular hypothalamic pituitary 
adrenal (HPA) axis (in dashed line) can be activated in response to 
environmental factors, such as emotion or stress. HPA is finalized to 
cortisol release and is driven by a complex interaction between amygdala 
(AMG), hippocampus (HIPP), and hypothalamus (HYP), constituting 
the limbic system. HYP secretion of the corticotropin-releasing factor 
(CRF) stimulates adrenocorticotropic hormone (ACTH) secretion from 
pituitary gland that, in turn, leads to cortisol release from the adrenal 
glands. In parallel, central nervous system communicate along both 
afferent and efferent autonomic pathways (SNA) with different intestinal 
targets such as enteric nervous system (ENS), muscle layers and gut 
mucosa, modulating motility, immunity, permeability and secretion of 
mucus. The enteric microbiota has a bidirectional communication with 
these intestinal targets, modulating gastrointestinal functions and being 
itself modulated by brain-gut interactions
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Studies conduced on GF animals have also demonstrated 
that microbiota influences stress reactivity and anxiety-like 
behavior, and regulates the set point for HPA activity. These 
animals generally show a decreased anxiety [23,24,31-33] and 
an increased stress response with augmented levels of ACTH 
and cortisol [31,34]. Microbial colonization of the gut leads to 
a normalization of the axis in an age-dependent manner, with 
reversibility of the exaggerated stress response being observed 
after GF colonization only in very young mice, supporting the 
existence of a critical period during which the plasticity of 
neural regulation is sensitive to input from microbiota [34].

In parallel, in GF animals, also memory dysfunction 
has been reported [35] probably to be ascribed to an altered 
expression of brain-derived neurotrophic factor (BDNF), 
one of the most important factors involved in memory. This 
molecule is a neurotrophic factor, mainly located in the 
hippocampus and cerebral cortex, which regulates different 
aspects of brain activities and cognitive functions as well as 
muscle repair, regeneration, and differentiation [36]. Finally, 
the presence of the microbiota results also to modulation of the 
serotoninergic system, since an increase in serotonin turnover 
and altered levels of related metabolites have been reported in 
the limbic system of GF animals [24].

The impact of microbiota on GBA has been further 
supported by studies finalized to the manipulation of gut 
microbiota through the use of probiotics and/or antibiotics. 
These studies also confirm that microbiota affects anxiety 
and HPA system by influencing brain neurochemistry [37]. 
Chronic treatment with Lactobacillus rhamnosus JB-1 induced 
region-dependent alterations in GABA mRNA in the brain. 
In comparison to mice with controlled diet, GABAB1b 
increased in cortical cingulate and prelimbic regions while 
concomitantly decreased in the hippocampus, amygdala, and 
locus coeruleus. In turn GABAAα2 mRNA expression was 
reduced in the prefrontal cortex and amygdala, but increased 
in the hippocampus. The probiotics, in parallel, reduced stress-
induced release of cortisol, anxiety-  and depression-related 
behavior [38]. Similarly, transient alteration of microbiota 
composition, obtained by administration of oral antimicrobials 
(neomycin, bacitracin, and pimaricin) in specific-pathogen-
free mice, increased exploratory behavior and hippocampal 
expression of BDNF [39]. Furthermore, change in microbiota 
composition with the probiotics association VSL#3 leads to 
an increase in BDNF expression, attenuation of age-related 
alterations in the hippocampus [40], and reversion of neonatal 
maternal separation-induced visceral hypersensitivity in a rat 
model of IBS [41]. In this latter model of stress, a change in the 
expression of subsets of genes involved in pain transmission 
and inflammation has also been described, that was reset by the 
early life administration of probiotics.

Evidence indicates that microbiota communication with the 
brain involves the vagus nerve, which transmits information 
from the luminal environment to CNS. In fact, neurochemical 
and behavioral effects were not present in vagotomized mice, 
identifying the vagus as the major modulatory constitutive 
communication pathway between microbiota and the 
brain [38]. In a model of chronic colitis associated to anxiety-
like behavior, the anxiolytic effect obtained with a treatment 

with Bifidobacterium longum, was absent in mice that were 
vagotomized before the induction of colitis [42].

Microbiota may interact with GBA through different 
mechanisms (Table  1), the principal one likely being 
modulation of the intestinal barrier, whose perturbation can 
influence all the underlying compartments. Probiotic species-
specific central effects are indeed associated with restoration 
of tight-junction integrity and the protection of intestinal 
barrier, as recently reported in an animal model of water 
avoidance stress [43]. Pre-treatment of animals with probiotic 
combined formulation of Lactobacillus helveticus R0052 
and Bifidobacterium longum R0175 restored tight junction 
barrier integrity and attenuated HPA axis and autonomic 
nervous system activities, assessed through plasma cortisol 
and catecholamine measurements. Probiotics also prevented 
changes in hippocampal neurogenesis and expression in 
hypothalamic genes involved in synaptic plasticity.

Microbiota can interact with GBA also through the 
modulation of afferent sensory nerves as reported for 
Lactobacillus reuteri that, enhancing their excitability by 
inhibiting calcium-dependent potassium channels opening, 
modulates gut motility and pain perception [44]. Furthermore, 
microbiota can influence ENS activity by producing molecules 
that can act as local neurotransmitters, such as GABA, 
serotonin, melatonin, histamine and acetylcholine [45] and by 
generating a biologically active form of catecholamines in the 
lumen of the gut [46]. Lactobacilli also utilize nitrate and nitrite 
to generate nitric oxide [47] and to produce hydrogen sulfide 
that modulates gut motility by interacting with the vanilloid 
receptor on capsaicin-sensitive nerve fibers [48].

The ENS represents also the target of bacterial metabolites. 
One of the main product of bacterial metabolism are short-chain 
fatty acid (SCFAs), such as butyric acid, propionic acid and acetic 
acid, that are able to stimulate sympathetic nervous system [49], 
mucosal serotonin release [50] and to influence memory and 
learning process [51,52]. In this context, it is interesting to report 
that diet manipulation of microbiota may influence behavior. 
Mice fed with a diet containing 50% lean ground beef, have a 
greater diversity of gut bacteria than those receiving standard 
rodent chow, and presented an increase physical activity, 
reference memory and less anxiety-like behavior [53].

Given the ability of gut microbiota to alter nutrient 
availability and the close relationship between nutrient sensing 

Table 1 Main principal mechanisms of the bidirectional brain-gut-
microbiota axis

From gut microbiota to brain:
Production, expression and turnover of neurotrasmitters 
(i.e. serotonin, GABA) and neurotrophic factor (BDNF)
Protection of intestinal barrier and tight junction integrity
Modulation of enteric sensory afferents
Bacterial metabolites
Mucosal immune regulation

From brain to gut microbiota:
Alteration in mucus and biofilm production
Alteration in motility
Alteration of intestinal permeability
Alteration in immune function 



206  M. Carabotti et al

Annals of Gastroenterology  28�

and peptide secretion by enteroendocrine cells, the interaction 
of microbiota and GBA might also occur through the release 
of biologically active peptides from enteroendocrine cells that 
can affect the GBA [54]. For example, galanin stimulates the 
activity of the central branch of the HPA axis (i.e. the release of 
CRF and ACTH), thereby enhancing glucocorticoid secretion 
from the adrenal cortex. Galanin also is able to stimulate 
directly cortisol secretion from adrenocortical cells, and 
norepinephrine release from adrenal medulla [55]. Ghrelin too 
possesses a marked ACTH/cortisol-releasing effect in humans 
and it is probably involved in the modulation of the HPA 
response to stress and nutritional/metabolic variations [56].

Last but not least, microbiota affects mucosal immune 
activation. The enhanced mucosal inflammation induced 
in mice after treatment with oral antimicrobials, increases 
substance P expression in ENS, an effect normalized by the 
administration of Lactobacillus paracasei which also attenuates 
antibiotic-induced visceral hypersensitivity [57]. The effects of 
microbiota on immune activation might be in part mediated 
by proteases. These enzymes are upregulated in intestinal-
immune mediated disorders and become the end-stage 
effectors of mucosal and enteric nervous damage [58-59]. 
Increased concentration of proteases have been detected in 
fecal samples of IBS patients associated to specific intestinal 
bacterial species [60,61]. The current working hypothesis in 
IBS is that an abnormal microbiota activates mucosal innate 
immune responses, which increase epithelial permeability, 
activate nociceptive sensory pathways inducing visceral pain, 
and dysregulates the enteric nervous system [62,63].

Similar mechanisms may be involved in the effects 
induced by the gastric mucosa-colonizing microorganism, 
Helicobacter pylori (H. pylori) on the GBA. The effects induced 
by this microorganism may arise through both activation 
of neurogenic inflammatory processes and microelements 
deficiency secondary to functional and morphological 
changes in the digestive tract [64]. Nevertheless, unequivocal 
data concerning the direct and immediate effects of H. pylori 
infection on the GBA are still lacking, and in clinical 
practice the relationship between functional dyspepsia and 
H. pylori infection is not well defined. In fact, the number 
needed to treat to cure one case of dyspepsia is 14  (95%CI 
10-25 [65] suggesting a multifactorial etiology for the increase 
in H. pylori-related upper FGID.

From brain to gut microbiota

Different types of psychological stressors modulate the 
composition and total biomass of the enteric microbiota, 
independently from duration. In fact, also the use of short 
stressors impact the microbiota, being the exposure to 
social stressor for only 2  h significantly able to change the 
community profile and to reduce the relative proportions of 
the main microbiota phyla [66]. These effects may be mediated, 
through the parallel neuroendocrine output efferent systems 
(i.e.  autonomic nervous system and HPA), both directly via 
host-enteric microbiota signaling and indirectly via changes in 
the intestinal milieu (Table 1). These efferent neural pathways, 

associated to the pain-modulator endogenous pathways, 
constitute the so-called “emotional motor system” [1].

The direct influence is mediated by the secretion, under 
the regulation of brain, of signaling molecules by neurons, 
immune cells and enterocromaffin cells, which might affect 
microbiota. Communication between CNS effectors and 
bacteria relies on the presence of neurotransmitter receptors 
on bacteria. Several studies have reported that binding sites 
for enteric neurotransmitters produced by the host are present 
on bacteria and can influence the function of components 
of the microbiota, contributing to increase predisposition 
to inflammatory and infection stimuli [67]. High affinity for 
GABA system has been reported in Pseudomonas fluorescens 
with binding properties similar to those of a brain receptor [68]. 
Escherichia coli O157:H7 possesses a receptor for host-derived 
epinephrine/norepinephrine that can be blocked specifically 
by adrenergic antagonists [69].

Besides, brain has a prominent role in the modulation of 
gut functions, such as motility, secretion of acid, bicarbonates 
and mucus, intestinal fluid handling and mucosal immune 
response, all important for the maintenance of the mucus 
layer and biofilm where individual groups of bacteria grow in 
a multiplicity of different microhabitats and metabolic niches 
associated with the mucosa [70]. A dysregulation of GBA can 
then affect gut microbiota through the perturbation of the 
normal mucosal habitat.

Stress induces variation in size and quality of mucus 
secretion [71]. Acoustic stress affects gastric and intestinal 
postprandial motility in dogs, delaying the recovery of the 
migrating motor complex pattern and inducing a transient 
slowing of gastric emptying [72]. Mental stress too increases 
the frequency of cecocolonic spike-burst activity through 
the central release of CRF [73]. Regional and global changes 
in gastrointestinal transit can have profound effects on the 
delivery of important nutrients, mainly prebiotics and dietary 
fibers, to the enteric microbiota.

Brain might also affect microbiota composition and 
function by alteration of intestinal permeability, allowing 
bacterial antigens to penetrate the epithelium and stimulate 
an immune response in the mucosa. Acute stress increased 
colonic paracellular permeability involving overproduction of 
interferon-γ and decrease in mRNA expression of ZO-2 and 
occluding [74]. Brain, through the ANS, may also modulate 
immune function. The sympathetic branch modulates number, 
degranulation and activity of mast cells with consequent 
imbalance in tryptase and histamine release in stress-related 
muscle dysfunction [75]. Other mast cell products, such as 
CRF, in turn, can increase epithelial permeability to bacteria, 
which facilitates their access to immune cells in the lamina 
propria [1]. Also corticotropin releasing hormone receptors 
are involved in colonic barrier dysfunction in response to mild 
stress in neonatal maternal separation in adult rats that [76] 
leads to depression and enhanced vulnerability to colitis [77]. 
Bilateral olfactory bulbectomy induced depression-like 
behavior associated to elevated central CRF expression and 
serotonin levels, associated to alterations in colonic motility 
and intestinal microbial profile in mice [78]. Another possible 
perturbation in the microbiota habitat induced by stress 
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occurs through the enhancement in secretion of α-defensin, 
an antimicrobial peptide, from Paneth cells [79].

Finally, it is important to remark that gut alterations 
associated to stress facilitate the expression of virulent 
bacteria. Norepinephrine released during surgery induces the 
expression of Pseudomonas aeruginosa, which might result 
in gut sepsis [80]. Besides, norepinephrine can also stimulate 
proliferation of several strains of enteric pathogens and increase 
the virulent properties of Campylobacter jejuni [81] and might 
favor overgrowth of non-pathogenic isolates of Escherichia coli, 
as well as of pathogenic Escherichia coli 0157:H7:3 [82,83].

Concluding remarks

Strong evidence suggests that gut microbiota has an important 
role in bidirectional interactions between the gut and the nervous 
system. It interacts with CNS by regulating brain chemistry and 
influencing neuro-endocrine systems associated with stress 
response, anxiety and memory function. Many of these effects 
appear to be strain-specific, suggesting a potential role of certain 
probiotic strains as novel adjuvant strategy for neurologic 
disorders. In addition, the effects of CNS on microbiota 
composition are likely mediated by a perturbation of the normal 
luminal/mucosal habitat that can also be restored by the use of 
probiotics and possibly by diet. In clinical practice, an example 
of this interaction is constituted by FGID, in particular IBS, now 
considered a microbiome-GBA disorder.
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