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Abstract: In this work, a laser dye of (E)-1-(4-chlorophenyl)-3-(4-(dimethylamino)phenyl)prop-2-
en-1-one (DAP) was synthesized and examined as a new laser medium. The compound DAP’s
photophysical properties were investigated under the influence of solvents, concentrations, and
pump power excitations. The absorption spectra showed a single band, and the shape of the spectra
remained the same, regardless of the optical density. The fluorescence spectra showed a band around
538 nm; its intensity was inversely proportional to the concentration. DAP exhibits dual amplified
spontaneous emission (ASE) bands at 545 and 565 nm under suitable pump power laser excitation
and concentration. The results revealed that the ASE band at 565 nm is affected by solvents polarity,
concentrations and pump power energies. This band could be attributed to the combination of two
excited molecules and the solvent between them (superexciplex). Moreover, the molecular structure,
the energy bandgap, and the total energy of DAP was calculated using density functional theory.

Keywords: laser dye DAP; ASE; superexciplex; molecular structure; DFT

1. Introduction

Organic laser dye materials are commonly used in technology nowadays [1,2]. One
of their applications is in electronic devices and optoelectronic sensors [3]. Conventional
laser media are expensive, such as titanium-doped sapphire crystal [4]. On the contrary,
laser dyes, such as rhodamine and coumarin series, are considered the cheapest laser
medium materials, with output wavelength in the red and blue regions, respectively.
Nevertheless, these dyes have low lasing efficiency and rapid photodegradation [5–7].
Researchers have been driven to manufacture many laser dyes to avoid these drawbacks.
These synthesized materials are distinguished by their ease of synthesis, as well as their
distinctive properties [8–12].

When a laser source optically excites certain organic molecules dissolved in organic
solvents, these organic molecules will absorb the incoming photons and then emit either
amplified spontaneous emission (ASE) or intensive light (laser) when the proper population
inversion condition is satisfied [13]. The generated ASE is entirely dependent on the active
medium, which is the organic molecule in this instance. Most dissolved organic molecules
in organic solution have one fluorescence and ASE band, yet some dye molecules and
conjugated polymers have dual ASE bands under certain conditions [14]. When an excited
molecule combines with another molecule in the ground state, this process is called exciplex.
Whereas two identical excited molecules combine with a solvent, the solvent acts as a bridge
between two excited molecules, called a superexciplex [5,15,16].

Despite the great efforts that have been dedicated to improving the performance
and efficiency of light-emitting organic lasing materials, the lack of information about
photo-degradation and some organic dyes’ laser threshold remains a challenge for scien-
tists [17–21]. Chalcone derivatives have a functionality of a carbonyl group in conjugation
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with a carbon-carbon double bond, which is known as α, β-unsaturated keto group, or
enone function.

The dimethylamino-substituted chalcones have broad band spectra in the ultraviolet-
visible (UV-Vis) range. This feature makes the chalcone a potential candidate for a tunable
laser medium. In addition, these chalcones have shown high absorption coefficient re-
sults to achieve amplification light [18]. Chalcones show improved thermal, as well as
photochemical stability, which makes them good dye laser media [22]. Nevertheless, such
photo-physical characteristics are highly influenced by the attached functional groups (i.e.,
electron donating or withdrawing groups and the solvent environment). Chalcones with
proper electron pulling functional groups on the two aryl rings had exhibited intrinsic
fluorescence by affecting relevant parameters such as absorption and emission wave-
lengths, extinction coefficient and quantum yield [23]. The N,N dimethylamino group,
attached to the para-position in ring B in chalcones, enhances its photophysical properties
via intramolecular charge transfer. Among these chalcones, (E)-1-(4-chlorophenyl)-3-(4-
(dimethylamino)phenyl)prop-2-en-1-one (DAP), has been chosen due to its unique optical
and ASE properties.

In this present study, investigations were carried out to explore the optical behavior of
DAP in various organic solvents, concentrations, and pump power energies, in order to
find the suitable conditions for the dual ASE peak to appear. When such an active medium
is kept in a proper resonator, the laser band usually coincides with the fluorescence band. In
contrast, DAP showed a new band that does not coincide with the steady-state fluorescence;
this band might be due to combining two molecules in the excited state and the solvent
play as a bridge. In addition, density functional theory (DFT) calculations are used to
obtain the molecular structure, the energy bandgap, and the total energy of the material
under study.

2. Materials and Methods

The DAP compound was synthesized using a reaction between 4-(dimethylamino)
benzaldehyde and 4-chloroacetophenone in the presence of NaOH and alcohol as a laser
dye material. Then, the compound was recrystallized from ethanol and washed with
distilled water [24] (refer to the supplementary material for the product characterization).
The molecular structure is displayed in Figure 1.
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Figure 1. The molecular structure of DAP.

The DAP was dissolved in ten organic solvents (spectroscopic grade of 99.8% purity);
Table 1 lists the used solvents. Under a wide range of concentrations, the optical properties,
such as absorption and fluorescence, were recorded using a crystal quartz cuvette. The
absorption spectra of DAP were measured for a wide range from 100–1000 nm using a
Perkin-Elmer Lambda 950 UV-vis-NIR Spectrophotometer (Waltham, MA, USA), which has
a double monochromator with holographic grating and double beam with ratio recording
organized by a computer. For emission spectra, the Perkin-Elmer LS55 spectrofluorometer
(Waltham, MA, USA) range was used in the range of 200 to 900 nm, at room temperature.
The excitation wavelength was fixed at 355 nm for all samples. A quartz plano-cylindrical
lens with a focal length of 5 cm is used to focus the UV laser, as a transverse pumping
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technique, on the sample [21]. The ASE beam is confined using optical fiber and analyzed
by a charge-coupled device (CCD) camera, Solar M226 (Minsk, Belarus), as shown in
Figure 2.

Table 1. The optical characteristics of DAP in different organic solvents.

Solvent Dipole
Factor

Absorption
Peak (nm)

Fluorescence
Peak (nm)

Short Long
Φf (%)

ASE Peak (nm)

Benzene 0.0016 420 487 - - 16
Toluene 0.0132 413 480 - - 12
Chloroform 0.1483 424 521 - - 91
Acetic acid 0.2022 429 520 - - 25
Tetrahydrofuran 0.2096 413 516 538 - 88
Acetone 0.2843 418 532 547 - 70
Ethanol 0.2887 425 535 - - 40
Methanol 0.3086 427 533 - - 20
Dimethylformamide 0.2744 427 541 546 566 95
Acetonitrile 0.3054 417 538 545 565 44
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Figure 2. The experimental setup for the transverse excitation of DAP.

The theoretical calculation of DAP was carried out using DFT permed with Becke’s
three parameter hybrid functional using the Lee–Yang–Parr correlation functional theory
(B3LYP) [25–27] 6-311G** was utilized in the calculations as a basis set. All optimized
calculations were carried out using Gaussian 09 quantum chemistry package (Wallingford,
CT, USA) [28]. Both optimized structure draw and results visualization were carried out
using GaussView 6.0 program (Wallingford, CT, USA) [28].

3. Results and Discussion
3.1. The Steady-State of DAP

The DAP was dissolved in acetonitrile (AN) under a wide range of concentrations
(0.5 to 5 mM). The absorption spectra exhibited a single band at 417 nm, as shown in
Figure 3. By increasing the concentration, no new peak appeared, which implies the
absence of dimer formation in all used concentrations. The fluorescence spectra of DAP
in AN showed a single peak at 538 nm, for all mentioned concentrations, as observed in
Figure 3. One can observe that the intensity decreased with increasing the concentration.
This behavior might be due to the association of two excited molecules in the excited state
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with the solvent (superexciplex stabilization in the high dielectric environment). This rare
phenomenon was observed in few dyes and conjugated polymers [15,29].
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The dissolved DAP in different solvents was prepared while the concentration for
all solutions was fixed at 0.5 mM. The results show that the absorption and fluorescence
peaks positions are affected by changing the solvent nature; for example, the absorption
and the fluorescence of DAP in toluene were centered at 413 nm and 480 nm, respectively.
In comparison, dimethylformamide, the absorption, and the fluorescence were located at
417 nm and 541 nm, respectively. The peak positions of the absorption and fluorescence of
DAP in different organic solvents are recorded in Table 1. One can see that the solvent’s
nature plays an essential function in the relative spectral peak position.

3.2. Stokes Shift

Stokes shift is the energy difference between the maximum peak of the absorption and
the fluorescence corresponding to the same electronic transition. Herein, DAP in various
organic solvents that have distinct dielectric constants was dissolved. While the concentra-
tion is fixed at 0.5 mM, there is a significant shift in the absorption and fluorescence spectra
peak position. The Lippert–Mataga equation displays a linear dependence of the Stokes
shift with the solvent polarizability (see Equations (1) and (2)) [30]:

∆ν ≈
(
µe − µg

)2∆ f

a3h c
+ const., (1)

Dipole factor ∆ f=

[
(ε− 1)
(2ε + 1)

−
(
[n2 − 1

)
(2n2 + 1)

]
, (2)

where ∆ν is the difference between absorption and fluorescence peaks in wavenumber
(cm−1). µe (µg) referred to the dipole moment of the solute in the excited (ground) state. ε is
the dielectric constant. n is the solvents refractive index, and ‘a’ is the Onsager cavity radius.

This dipole factor in Equation (2) measures the dipole–dipole interaction between the
solvents and the solute [13,31].The results show that DAP exhibited significant Stokes shifts
(up to 5000 cm−1), as displayed in Figure 4. Upon comparing DAP with the rhodamine
and coumarin series, it is found that the polarity of the DAP is greater by 150 orders of
magnitude than the conventional organic dyes.
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3.3. Quantum Yield of Fluorescence

One of the essential optical features is the fluorescence quantum yield (Φ f ) of the
luminescent molecule, which gives the number of emitted photons to the absorbed one.
As the concentration was fixed at 0.5 mM, the quantum yields of used solutions were
calculated using Equation (3) and recorded in Table 1.

Φ f (s) = Φ f (r)
(

1− 10−Ar

1− 10−AS

n2
s

n2
r

)∫
I s(υ)dυ∫
Ir(υ)dυ

, (3)

where the subscripts s (r) refer to sample (reference); the integrals over I represent the
corrected fluorescence spectrum area; and A is the excitation wavelength absorbance.

3.4. Amplified Spontaneous Emission (ASE)

A solution of 1.5 mM in AN, as a high polar solvent, was prepared and transversely
excited using the third-harmonic generation of an Nd: YAG laser pulses (355 nm) with
sufficient energy of 3 mJ; this is the lowest concentration and pumping power energy
required to obtain the ASE spectrum. A dual ASE peak appeared, with two narrow spectral
regions, one at 545 and another at 565 nm, with full width at half maximum (FWHM) of
8 nm for each peak (see Figure 5). The ASE peak at 545 nm corresponds to the fluorescence
peak at 541 nm, and there is no fluorescence band at 565 nm corresponding to ASE at
565 nm. Based on the obtained results, one can attribute the peak at 565 nm to the presence
of the superexciplex state [32–35].

Only one ASE peak appearing at 565 nm was observed when the concentration
increased to 2 mM (see Figure 6). This peak might be attributed to the superexciplex state.
The disappearance of the 545 nm might be because all solute species were surrounded by
the solvent’s species, due to the dipole–dipole induction process between the solvent and
solute in the excited state.
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Figure 6. The ASE spectrum of the DAP in AN at 2 mM.

No ASE peak was detected for non-polar solvents such as toluene, benzene, and acetic
acid. In the case of the toluene and benzene, this may be due to their poor solubility, whereas
acetic acid could be accounted for by the lone pair protonation in the N-dimethylamino
group of DAP. For the solvents with hydrogen bonding, such as methanol or ethanol, the
ASE was not observed. In this case, the hydrogen bonding in methanol deactivates the lone
pair of the N-dimethylamino group. The other solvents, such as chloroform, maybe refer
to the chlorine group in DAP, which prevents the presence of ASE.

In the case of other solvents, with intermediate polarity, such as acetone (tetrahydro-
furan), the DAP shows one ASE peak at 547 (538) nm, which matches the fluorescence
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peak at 1.5 mM (see Table 1). The longer wavelength peak’s nonappearance means that the
species at that wavelength do not form due to the solvent’s polarity.

Figure 7 shows the ASE intensities vs. concentrations of the DAP in AN, with pumping
power excitation at 6 mJ. The results revealed that the ASE peak (565 nm) decreases rapidly
as the concentration increases, which may be due to the association of two excited molecules
in the excited state with the solvent (superexciplex). Miasojedovas et al. attributed the
reduction in the ASE intensity vs. the increasing substituted perylene diimide derivatives
PDI content to the reduced intermolecular separation that led to diminishing the optical
losses and lowering of the ASE intensity [36].
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The ASE stability of the 5 mM solution of DAP in AN was measured under 6 mJ and
1 Hz pump power energy and repetition rate, respectively, using a 355 nm pulsed laser
source. The solution was never circulated or stirred. After almost 4 h (15,000 pulses), the
output intensity dropped 50% of its original performance (see Figure 8).
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Figure 9 illustrates the increase of the ASE intensity as a function of the pumping
power energy for a fixed 1.5 mM of DAP solution in AN. For a pump power energy from
3 to 15 mJ, the recorded intensities for the dual ASE peak were one for the short-wavelength
(SW) at 545 nm, and another at 565 nm long-wavelength (LW). One can see the saturation
of the LW intensity for pump power more than 9 mJ [5].
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3.5. Theoretical Calculations

The theoretical data, including the highest occupied molecule orbital (HOMO) and
the lowest un-occupied molecular orbital (LUMO) transitions, molecule dipole moment
(µD), total energy (ET), and energy band gaps (Eg), were calculated using DFT, as shown in
Table 2. Figures 10 and 11 show the density of states diagram and the HOMO–LUMO of
DAP, respectively.

Table 2. The calculated chemical descriptors of the studied molecule.

ET (eV) EHOMO (eV) ELUMO (eV) Eg (eV) µD

−33,954.992 −5.432 −2.103 3.332 8.046

Mulliken charge is used to illustrate the electron distribution between the atoms in
specific molecules. The negative sign indicates that the atom has gained electrons, and the
positive sign refers to electron loss. In addition, this method used to specify the type of
bonds and dipole moment [37]. Herein, the electron distribution for DAP was performed
using the Mulliken method, as shown in Figure 12.
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4. Conclusions

After investigating the optical characteristics of the influence of solvent concentrations
and solvent environments on DAP, the absorption spectra showed a single peak (located
between 413 and 429 nm). The fluorescence showed one peak (between 480 and 542 nm)
under the same operational conditions. The Stokes shift was calculated for these solvents
(>3300 cm−1). The quantum yield varied with the nature of the solvent. Under the chosen
pump power energy, the DAP, in a particular solvent and concentration, exhibit dual peaks
around 545 (565) nm due to monomer (superexciplex). Superexciplex is favored in some
solvents that have high polarity. For DAP, the DFT was used to compute the molecular
orbitals, total energy, dipole moment, electron charges distribution, and the HOMO–LUMO
transitions (3.332 eV energy band-gap).

Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/article/10.3390/ma14112766/s1, Figure S1: The XRD diffraction profile of DAP.
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