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Abstract

Background: Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase
(PKA) increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example
reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context.
Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA
signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes
by using H-89, a reversible competitive inhibitor of PKA.

Principal Findings: We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates
the bioluminescence signal produced by Renilla luciferase (RLuc) variants in a population of cells and also in single cells.
Using 10 mM of luciferase substrate and 10 mM H-89, we observed that the signal from RLuc and RLuc8, an eight-point
mutation variant of RLuc, in cells was reduced to 50% (615%) and 54% (614%) of controls exposed to the vehicle alone,
respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with
coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another
competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.

Significance: The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data
previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current
application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be
used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of
the potential effects of experimental conditions on a cell-based assay readout before drawing conclusions from the data.

Citation: Herbst KJ, Allen MD, Zhang J (2009) The cAMP-Dependent Protein Kinase Inhibitor H-89 Attenuates the Bioluminescence Signal Produced by Renilla
Luciferase. PLoS ONE 4(5): e5642. doi:10.1371/journal.pone.0005642

Editor: Julian Rutherford, Newcastle University, United Kingdom

Received January 9, 2009; Accepted April 21, 2009; Published May 21, 2009

Copyright: � 2009 Herbst et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is funded by NIH R01 DK073368, the Young Clinical Scientist Award Program of the Flight Attendant Medical Research Institute, a Scientist
Development Award from the American Heart Association, and 3M (to J. Z.). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jzhang32@jhmi.edu

Introduction

Protein kinases control many intracellular signaling cascades by

enzymatically transferring the c-phosphate of ATP to amino acid

side chains of protein targets. Aberrant signal transduction, such as

dysregulation of protein kinases, can result in pathophysiological

states [1]. As many signal transduction cascades have shared

molecular components, it is fundamentally important to study

protein kinases in cells where the entire signaling network remains

intact [2]. Many cell-based assays have focused on determining the

dependence of a specific cellular effect on a given kinase over a set

period of time [3–5]. More recently, however, there have been

efforts to design biosensors which are capable of monitoring

signaling dynamics in real-time [5–8]. These newer tools have the

potential to elucidate the dynamic series of molecular interactions

and modifications that contribute to a specific cellular effect.

Together, the application of current and the development of new

cell-based assays for kinase activity will continue to provide

insights regarding the connection between the regulation and

dynamics of kinase activity and a given functional response.

Cyclic AMP-dependent protein kinase (PKA), one of the first

discovered protein kinases, is well characterized [9]. PKA plays a

role in, among other things, transcriptional control of genes

downstream of the cAMP response element (CRE) [10],

maintenance and control of several metabolic processes, rear-

rangement of actin for muscle contraction and relaxation [11], and

DNA replication [12]. It is also implicated in a number of diseases

such as Alzheimer’s disease [13], cancer [14], heart disease [15],

and diabetes [16]. Consequently, PKA remains one of the most

frequently studied protein kinases [9]. One commonly used

technique that serves to monitor the functional effects of PKA in

cells is bioluminescence. Bioluminescence is an endogenous

characteristic of many organisms in which an enzyme (luciferase)

oxidizes a substrate (luciferin) and emits photons. Scientists
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frequently take advantage of luciferase enzymes to engineer a

variety of bioassays suited for studies in vitro, in cell-based assays,

and in vivo. Bioluminescence-based assays are desirable because

they provide a low background, are simple to use, and are non-

destructive when used in living systems [4,6].

The most frequently used luciferase enzymes in bioassays are

from the firefly Photinus pyralis (FLuc) and the sea pansy Renilla

reniformis (RLuc). FLuc is 62kDa, ATP-dependent, and emits light

at 560nm, whereas RLuc is 36kDa, ATP-independent, and emits

at 480nm [5]. These different properties often determine for which

type of assay each luciferase would be better suited [3]. A common

application of these proteins is for reporter gene assays that detect

levels of transcription in a cell. In this case, the cDNA for the

luciferase is fused downstream of a given response element. In

response to various stimulations, the response element is activated

to a level which correlates with the amount of luciferase, and thus

the signal, produced. A common control for these reporter gene

assays is to have a spectrally distinct reporter gene under the

control of a highly active promoter to serve as a transfection

control or as a control for cell viability. Therefore FLuc and RLuc

are commonly used concurrently in reporter gene assays to test the

dependence of specific stimuli on transcription levels in cells.

In addition to reporter gene assays, bioluminescence proteins

are being used in the design of biosensors that can capture

signaling dynamics in living cells. Such live-cell tools have been

developed to detect protein-protein interactions, second messenger

dynamics, enzyme (namely protease and kinase) activity, and

receptor activation by utilizing techniques such as luciferase

complementation assays, bioluminescence resonance energy

transfer (BRET), and circular permutation of luciferases, [6–8].

When developing such assays to specifically monitor kinase

activity, PKA often serves as a prototype for the design of new

biosensors.

Cellular bioluminescence-based assays provide readout for a

specific cellular event such as gene transcription. Testing the

dependence of a specific cellular response on a molecule of interest

is achieved via pharmacological stimulation or inhibition of a

protein of interest. In the case of PKA, commonly used activators

are agonists of the b-adrenergic receptors or activators of adenylyl

cyclases, both of which are upstream activators of PKA. To inhibit

PKA activity in cells, the reversible and competitive inhibitor of

PKA, H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-

sulfonamide) is most commonly used [17]. Generally, stimulation

or inhibition of a protein of interest provides direct evidence

regarding the protein’s role in the cellular process under study.

Sometimes, however, it is possible that an agent that is added to

the experiment to inhibit a specific target is actually directly

modulating the activity of the luciferase.

We encountered this scenario while characterizing a novel cell-

based assay to detect PKA activity using a more stable and

brighter version of RLuc (RLuc8) [18] as the reporting unit. Upon

addition of H-89 to cells, we noticed a rapid, significant decrease

in RLuc8 signal in our PKA-independent negative control

(unpublished), and we thus suspected that the decrease in RLuc8

signal was not due to PKA inhibition alone. We further

investigated the nature of the decrease in RLuc8 signal and

showed that H-89 was responsible for the attenuation of the

bioluminescence signal.

Results

We hypothesized that there were two possibilities for the

decrease in RLuc8 signal after addition of H-89: PKA modulates

RLuc8 activity in such a way that PKA inhibition decreases the

signal from RLuc8, or H-89 directly attenuates the signal

produced by RLuc8. In order to test the possibility that H-89

directly attenuated the RLuc8 bioluminescence signal while

avoiding the complication of PKA-dependent inhibition of RLuc8,

we expressed RLuc8 in HEK293T cells along with the PKA

peptide inhibitor (PKIa) [19], as this would ensure that PKA was

inactive [20,21]. With PKA inhibited, we could directly monitor

the activity of RLuc8 independent of any PKA effect. The

transfected cells were plated into 96-well plates and allowed to

touch down for 24 hours. After a ten minute incubation with

concentrations of H-89 ranging from 0.5–100 mM, total light

output was measured. In this cellular context with PKA inhibited

by PKIa, after immediate addition of coelenterazine-h (a substrate

for luciferases from the Renilla family) we noticed that the signal

from RLuc8 decreased at concentrations of H-89 as low as

0.5 mM. Notably, at 10 mM H-89, the concentration used in most

cell-based studies to inhibit PKA activity, the RLuc8 signal was

reduced to 54% (614%) of control receiving vehicle alone

(Fig. 1A). In cells expressing RLuc8 with active PKA, in other

words without overexpression of PKIa, a similar decrease in signal

was observed (Fig. S1). Together, these data suggested that H-89,

and not PKA, was responsible for abating the bioluminescence

signal produced by RLuc8 oxidation of coelenterazine-h.

To confirm that H-89 was responsible for the reduction in

bioluminescence signal, we tested the effect of H-89 on RLuc8 in

vitro. Purified RLuc8 was added to each well of a 96-well plate at

1 nM and incubated in Hank’s balanced salt solution (HBSS)

supplemented with concentrations of H-89 ranging from 0.1–

100 mM for 10 minutes. Coelenterazine-h was then added over a

range of concentrations from 0.1–50 mM and signal was detected

immediately after addition. By plotting the rate of coelenterazine-h

oxidation (normalized emission) versus concentration of coelenter-

azine-h, it was evident that increasing concentrations of H-89

decreased the maximal velocity (Vmax) of the reaction, suggesting

both that H-89 does not compete with coelenterazine-h in the

RLuc8 active site, and that the signal cannot be restored by adding

more coelenterazine-h to the reaction (Fig. 1B). Importantly, at

10 mM coelenterazine-h, a commonly used concentration of

substrate for Renilla luciferases, the IC50 of H-89 on RLuc8 is

21.0 mM (64.0 mM) which is just twice the most commonly used

dose in cell-based assays for inhibition of PKA. Therefore, using

the most common doses of coelenterazine-h and H-89 in an

RLuc8-based assay for PKA will result in a significant reduction in

RLuc8 signal that could be wrongfully attributed to a decrease in

PKA activity.

Since RLuc8 is a relatively new variant of RLuc, and because

most current bioassays utilizing Renilla luciferases are based on

RLuc, we wanted to test the effect of H-89 on RLuc in cells. Thus

we co-expressed RLuc and PKIa in HEK293T cells and detected

bioluminescence in a multi-well format. After a 10 minute

preincubation with H-89, we observed that H-89 decreased the

signal of RLuc in a similar fashion to RLuc8. Specifically, with

10 mM H-89, RLuc signal was abated to 51% (615%) of control

receiving vehicle alone (Fig. 1C), and we observed a similar

pattern of RLuc signal attenuation in cells that expressed RLuc

without PKIa (Fig. S2). The effect of H-89 on both RLuc8 and

RLuc has two significant implications. First, H-89 should be used

with caution in RLuc- or RLuc8-based assays or alternative

inhibitors or assays should be used. Secondly any data previously

generated from such assays may have an element of bias.

In order to study the functional dependence of PKA in a given

cellular system, it is important to have a reversible inhibitor of

PKA that can be used in cells. For this reason, and for the purpose

of our studies, we wanted to find a reversible PKA inhibitor that

H-89 Attenuates RLuc Signal
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could be used in cells and not inhibit RLuc8 activity. Thus, we

tested the activity of RLuc8 in the presence of the small molecule

PKA inhibitor KT5720 [22]. Again, we transfected RLuc8 and

PKIa into HEK293T cells. In a multi-well format, we allowed the

cells to preincubate for 20 minutes with the reversible PKA

inhibitor KT5720 with concentrations ranging from 0.1–10 mM as

this spans those commonly used in cell based-assays [23]. After

addition of coelenterazine-h, we observed that KT5720 did not

modulate RLuc8 activity across the tested range of concentrations

(Fig. 2). Thus, KT5720 can be used as an alternative to H-89 to

inhibit PKA activity in RLuc8-based bioassays.

Similarly, we wanted to test the effect of H-89 on FLuc activity.

Since FLuc and RLuc are not homologous we predicted that H-89

would not necessarily be an inhibitor of FLuc. Also, if H-89 did

not inhibit FLuc activity, FLuc would be suitable for use in

luciferase-based PKA assays. In a 96-well plate, 1 nM purified

FLuc was preincubated with H-89 over the same range of

concentrations, 0.5–100 mM, which we used in previous experi-

ments. Luminescence was recorded immediately after D-luciferin

(the substrate for FLuc) addition and it was found that H-89

showed no decrease in FLuc signal in vitro (Fig. 3); it was also

shown that FLuc activity was not reduced by 10 mM KT5720 (Fig.

S3). Therefore, FLuc can be used in the presence of H-89 or

KT5720 and would be suitable as a readout for PKA bioassays.

Cell-based assays offer the advantage of detecting single-cell

behaviors and at the same time present the challenge of dealing

with cell-cell variations. To confirm the inhibitory effects of H-89

on RLuc variants obtained with populations of cells in the plate-

reader format and characterize cell-cell variations, we imaged cells

expressing RLuc8 and PKIa on a microscope. Coelenterazine-h

was added to cells and allowed to incubate for 10 minutes. Images

were acquired at 4 minute intervals from a population of seven

cells until a two-point steady baseline was achieved. Then, 5 mM

H-89 was added to the imaging dish resulting in an initial decrease

in RLuc8 signal. After 10 minutes, the RLuc8 signal was reduced

to 51% (617%) of the maximal value, consistent with that

obtained from the larger population of cells in the multi-well

format (Fig. S4). Over another 25 minute period two additional

doses of H-89 decreased the RLuc8 emission to 20% (610%) of

peak intensity (Fig. 4). This data shows that though the inhibition

of RLuc8 by H-89 takes a period of 20 minutes to achieve

maximal inhibition, the effects of inhibition can be seen

immediately after addition. Thus, a decrease in luciferase signal

Figure 1. H-89 decreases the bioluminescence signal produced
by RLuc variants. (A) In a 96-well plate, HEK293T cells expressing
RLuc8 and PKIa were preincubated for 10 minutes with various doses of
H-89 (n = 4 for each dose of H-89). 10 mM coelenterazine-h was added
to each sample and luminescence was detected immediately after
addition. **: p,0.005 (compared to DMSO). (B) 1 nM RLuc8 was
preincubated for 10 minutes over a range of concentrations of H-89
(n = 3 for each dose of H-89) and luminescence was detected
immediately after coelenterazine-h addition. (C) In a 96-well plate,
HEK293T cells expressing RLuc and PKIa were preincubated for
10 minutes with various doses of H-89 (n = 3 for each dose of H-89).
After addition of 10 mM coelenterazine-h, luminescence was detected
immediately. * p,0.05, ** p,0.005.
doi:10.1371/journal.pone.0005642.g001

Figure 2. KT5720 does not reduce the bioluminescence signal
from RLuc8 in cells. In a 96-well plate, HEK293T cells expressing
RLuc8 and PKIa were preincubated with KT5720 (n = 3 for each dose of
KT5720). No reduction of signal was observed immediately after
addition of 10 mM coelenterazine-h.
doi:10.1371/journal.pone.0005642.g002

H-89 Attenuates RLuc Signal
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will be observed after H-89 addition regardless of incubation time.

A more substantial reduction of signal, however, will be observed

in assays that use longer H-89 incubation periods.

The single cell luciferase experiments provide two other key

observations. First, it is clear by looking at the initial images (t = 15)

that the cells have a normal appearance, demonstrating that

overexpression of neither Rluc8 nor PKIa is toxic to the cells

(Fig. 4B). Further, since there are no morphological changes to the

cells during the imaging timeframe, the attenuation of biolumi-

nescence signal upon H-89 addition cannot be attributed to a cell

shape change.

Discussion

Protein kinases serve as the primary regulators of signal

transduction cascades by phosphorylating protein targets in

response to various extracellular and intracellular stimuli. In turn,

this phosphorylation contributes to the propagation of the signal

until a desired physiological response is generated. PKA is an

example of a ubiquitously expressed protein kinase that is involved

in a plethora of vital cellular functions. Elucidation of many of the

functional roles of PKA in regulating various cellular processes

relies on bioluminescence-based cellular assays. However, we

present evidence that H-89, a commonly used PKA inhibitor, can

directly decrease the bioluminescence signal resulting from RLuc

activity.

Though there are a few examples of small molecules that act as

inhibitors of FLuc reported in literature [24–26], one group at the

NIH Chemical Genomics Center hypothesized that often times

such molecules are overlooked. After performing a quantitative

high throughput screen of over 70,000 compounds, they identified

2311 inhibitors for FLuc. Many of these inhibitors were shown to

be competitive inhibitors of FLuc and the activity could be fully

restored by increasing the concentration of luciferin or ATP [27].

Most of these same compounds, however, were not potent

inhibitors of RLuc activity, likely because RLuc is an ATP-

independent enzyme. Though there has been an effort to identify

classes of drugs with common structures that act as luciferase

inhibitors, it remains important to fully characterize the effect of

experimental conditions on the luciferase while utilizing or

developing bioluminescence assays. In a recent example, incom-

plete understanding of the direct effect of a small molecule on a

reporter protein led to miss-interpretation of data from a cell-

based FLuc assay [28].

Since the mechanism of coelenterazine oxidation by RLuc is not

entirely understood, it is difficult to speculate on a mechanism of

H-89-induced attenuation of RLuc signal. However, it is known

that RLuc shares a conserved catalytic triad and 42% identity with

bacterial haloalkane dehalogenases of the LinB family [29]. These

proteins utilize the characteristic a/b hydrolase motif to

catalytically hydrolyze carbon-halogen bonds [30]. Therefore,

we considered the possibility that H-89, a brominated small

molecule, could bind to RLuc and induce a conformational

change in the enzyme that slows down the oxidation of

coelenterazine-h. However, in this case, a brominated small

molecule would bind to the RLuc active site and display

Figure 3. H-89 does not abate the bioluminescence signal
produced by FLuc in vitro. 1 nM FLuc was preincubated with
various doses H-89 (n = 4 for each dose of H-89). After D-luciferin
addition, reduction in signal was not observed with any of the
treatments.
doi:10.1371/journal.pone.0005642.g003

Figure 4. H-89 reduces the signal from RLuc8 in single cells. HEK293T cells (n = 7) expressing RLuc8 and PKIa were imaged in the presence of
10 mM coelenterazine-h. (A) After addition of 5 mM H-89, RLuc8 signal decreases. Additional doses of H-89 decrease the signal further. (B) Channel
intensity images (top) and pseudocolor images (bottom) of cells corresponding to (A) at t = 15 min (before H-89 addition) and t = 50 min (when signal
has reached maximum inhibition).
doi:10.1371/journal.pone.0005642.g004
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competitive, not non-competitive, inhibitory properties. Alterna-

tively, H-89 may interact with coelenterazine-h and affect its

properties. Indeed, we observed that the presence of H-89 caused

a change in the fluorescence spectrum of coelenterazine-h in buffer

(Fig. S5), suggesting some interactions between these two

molecules, although no covalent adduct was observed via mass

spectrometry (Fig. S6).

Here we present evidence that the PKA inhibitor H-89

attenuates the bioluminescence signal produced by RLuc variants

both in cells and in vitro. This is an important piece of information

which serves two purposes. First, it can help deconvolute data

previously generated from RLuc-based assays that looked at PKA-

dependent cellular processes as it is likely that the interpretation of

such data was inadvertently distorted if H-89 was used. Second,

this data will guide the application of current RLuc-based assays

for PKA activity and also the development of new biolumines-

cence-based kinase biosensors. Specifically, we suggest that when

utilizing or developing RLuc-based assays for PKA activity, H-89

not be used to test the dependence of the assay on PKA as the data

would be unintentionally skewed. As an alternative to H-89, one

could use the reversible PKA inhibitor KT5720 or the irreversible

peptide inhibitor PKIa, to test the involvement of PKA.

Additionally, H-89 can be used in FLuc-based cellular assays

without the concern of a non-specific decrease in signal. Overall,

this data provides an important lesson to characterize all of the

potential effects of the experimental conditions on cell-based assays

with proper controls before drawing conclusions from data.

Otherwise, a compound or condition that specifically modulates

the activity of the reporting unit and not the event under study

could influence the interpretation of data.

Materials and Methods

Gene construction and protein purification
RLuc8, RLuc, and PKIa were PCR amplified and ligated into

pCDNA3 (Invitrogen) for mammalian expression and RLuc8 was

ligated into pRSETB (Invitrogen) for bacterial expression. RLuc8

in PRSETB was transformed into BL21(DE3) E. coli cells. A single

colony was grown to an O.D.600 of 0.6 and induced with 0.1 mM

IPTG. Cells were grown 12 hours at 37uC, spun at 10,000g for

10 min, and then lysed by sonication in lysis buffer (50 mM Tris–

HCl, pH 7.4, 300 mM NaCl, 0.2% Triton X-100, and protease

inhibitor cocktail (Roche)). Lysed cells were spun at 15,000 rpm

for 20 minutes and 100 mL of Ni-NTA beads (Qiagen) was added

to the supernatant. The protein/bead mixture was added to a

column with a polyethylene disc (Kontes) used as the filter. The

column was washed twice in buffer containing 50 mM Tris–HCl,

pH 7.4, 300 mM NaCl, and 10 mM imidazole, and then protein

was eluted off of the beads via an elution buffer containing

100 mM imidazole. Protein concentration was determined by

BCA assay (Thermo Scientific).

HEK293T-based assays
HEK293T were grown in DMEM cell culture media (Gibco)

supplemented with 10% FBS at 37uC with 5% CO2. Cells were

transfected via calcium phosphate at 60% confluency with RLuc8

or RLuc and PKIa. For plate reader studies, after a 24 hour

transfection period, cells were plated at 150,000 cells/well into

white-walled, clear- bottom 96 well plates (Corning) coated with

0.1mg/ml poly-D-lysine. After 24 hours, media was replaced with

HBSS supplemented with H-89 (Sigma) or KT5720 (Sigma).

Benzyl-coelenterazine (Nanolight Technology) was added to a

final concentration of 10 mM and luminescence readings were

recorded immediately. For imaging, cells were transfected directly

into 35 mm imaging dishes and imaged 24 hours later.

In vitro assays
1 nM RLuc8 or 1 nM FLuc (Promega) was added to white-

walled, clear- bottom 96 well plates in HBSS. H-89 was added

directly to wells and incubated at 4uC for 10 minutes. Luciferase

substrate (Benzyl-coelenterazine for RLuc8 or D-luciferin for

FLuc) was added to a final concentration of 10 mM and

luminescence was recorded immediately.

Plate reader luminescence detection
All luminescence readings were obtained on a FLUOstar

OPTIMA microplate reader without an emission filter.

Bioluminescence imaging and analysis
Cells were imaged on a Zeiss Axiovert 200M microscope with a

Hamamatsu ImagEM cooled charge-coupled device camera

controlled by METAFLUOR software (Universal Imaging,

Downingtown, PA). Using a 475DF40 emission filter and

450DRLP dichroic mirror, images were acquired immediately

after coelenterazine-h addition. Acquisition time was 30 seconds

and images were acquired every 2–4 minutes. H-89 was added

directly to the imaging dish. Images were background corrected

and processed on Image J software.

Supporting Information

Figure S1 H-89 attenuates the activity of RLuc8 in cells. RLuc8

was transfected into HEK293T cells and cells were plated in a

multiwell format. 24 hours later, cells were pre-incubated with H-

89 for 10 minutes. Luminescence was detected immediately after

addition of 10 mM coelenterazine-h. H-89 attenuated the activity

of RLuc8 in a dose-dependent manner (n = 3). (** p,0.01

compared to DMSO).

Found at: doi:10.1371/journal.pone.0005642.s001 (0.04 MB TIF)

Figure S2 H-89 attenuates the activity of RLuc in cells. RLuc

was transfected into HEK293T cells. In a multiwell format, cells

were pre-incubated with H-89 for 10 minutes. Luminescence was

detected immediately after addition of 10 mM coelenterazine-h.

H-89 attenuated the activity of RLuc in a dose-dependent manner

(n = 3). (** p,0.01 compared to DMSO)

Found at: doi:10.1371/journal.pone.0005642.s002 (0.04 MB TIF)

Figure S3 KT5720 does not attenuate FLuc activity in vitro.

10 nM FLuc was pre-incubated with 10 mM KT5720 for 10min.

Immediately after D-luciferin addition, there was no attenuation of

FLuc activity (n = 5).

Found at: doi:10.1371/journal.pone.0005642.s003 (0.03 MB TIF)

Figure S4 Time course of vehicle and H-89 treatments from a

population of cells. HEK293T cells expressing RLuc8 and PKIa
were incubated in HBSS supplemented with 10 mM coelenter-

azine-h for 10 minutes and then were treated with 5 mM H-89 or

vehicle. There was a rapid, initial decrease in signal upon H-89

addition. Subsequent doses of H-89 further decrease the signal.

The signal from the vehicle control cells also decreases due to a

combined effect of enzymatic coelenterazine-h oxidation and

product (coelenteramide) inhibition of RLuc8. The study supple-

ments that of the single cell experiments (n = 3).

Found at: doi:10.1371/journal.pone.0005642.s004 (0.04 MB TIF)

Figure S5 H-89 shifts the emission spectrum of coelenterazine-h.

The emission spectra of 10 mM coelenterazine-h in HBSS excited

H-89 Attenuates RLuc Signal
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at 280 nM. When compared to vehicle control, 10 mM H-89

changes the emission spectrum.

Found at: doi:10.1371/journal.pone.0005642.s005 (0.03 MB TIF)

Figure S6 H-89 and coelenterazine-h do not form a covalent

adduct. All samples were diluted in 50% ACN, 0.1% FA, loaded

into electrospray needle, sprayed at 900 V, and detected from m/z

between 350–1200. A) spectra of H-89. B) Spectra of coelenter-

azine-h. C) spectra of 1:1, H-89:coelenterazine-h

Found at: doi:10.1371/journal.pone.0005642.s006 (0.04 MB TIF)
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