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Objective: Understanding speech in noisy conditions is challenging even for people

with mild hearing loss, and intelligibility for an individual person is usually evaluated

by using several subjective test methods. In the last few years, a method has been

developed to determine a temporal response function (TRF) between speech envelope

and simultaneous electroencephalographic (EEG) measurements. By using this TRF it is

possible to predict the EEG signal for any speech signal. Recent studies have suggested

that the accuracy of this prediction varies with the level of noise added to the speech

signal and can predict objectively the individual speech intelligibility. Here we assess

the variations of the TRF itself when it is calculated for measurements with different

signal-to-noise ratios and apply these variations to predict speech intelligibility.

Methods: For 18 normal hearing subjects the individual threshold of 50% speech

intelligibility was determined by using a speech in noise test. Additionally, subjects listened

passively to speech material of the speech in noise test at different signal-to-noise ratios

close to individual threshold of 50% speech intelligibility while an EEG was recorded.

Afterwards the shape of TRFs for each signal-to-noise ratio and subject were compared

with the derived intelligibility.

Results: The strongest effect of variations in stimulus signal-to-noise ratio on the TRF

shape occurred close to 100 ms after the stimulus presentation, and was located in the

left central scalp region. The investigated variations in TRF morphology showed a strong

correlation with speech intelligibility, and we were able to predict the individual threshold

of 50% speech intelligibility with a mean deviation of less then 1.5 dB.

Conclusion: The intelligibility of speech in noise can be predicted by analyzing the

shape of the TRF derived from different stimulus signal-to-noise ratios. Because TRFs

are interpretable, in a manner similar to auditory evoked potentials, this method offers

new options for clinical diagnostics.

Keywords: speech intelligibility, objective speech audiometry, EEG measures, speech tracking, auditory evoked

potentials, speech in noise
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1. INTRODUCTION

According to the latest World Health Organization world report
on hearing, more than 430 million people suffer from hearing
impairment and hearing loss (HL) is the third largest cause of
disability during a person’s lifetime (World Health Organization,
2021). Even mild HL may lead to communication deficits

caused by impaired speech intelligibility, particularly in noisy

conditions (Dubno et al., 1984). The primary aims of audiological

diagnosis are (1) to identify the underlying pathology for HL,
and (2) to quantify the amount of HL and its effects on
communication in daily life.

A number of objective audiological tests—such as
measurements of acoustic impedance, of otoacoustic emissions,
and of auditory evoked responses—are aimed at localizing the
source of the deficiency. The determination of the degree of
HL is usually carried out by subjective tests, in which the test
person has to cooperate actively and to indicate the perception
of auditory stimuli. The problem gets worse when we want to
quantify the impact of a person’s HL on their social life. Most
often, this is carried out by using speech tests in quiet and in
noise. These tests are usually performed by counting the number
of words repeated correctly from certain test lists in a specific
acoustic situation. Speech intelligibility measurements, especially
in noise, require a high level of vigilance and cooperation. Hence,
methods to measure the intelligibility of speech in noise (SiN)
without active cooperation by the subjects are highly desirable in
clinical audiological diagnosis.

A commonly used objective method for diagnosis is
the measurement of auditory evoked potential (AEP)
using electroencephalography (EEG). From repeated EEG
measurements synchronized with the beginning of the auditory
stimuli, as tone-bursts or clicks, specific waveforms can be
derived. EEG changes caused by auditory processing can last up
to 500 ms after the stimulus onset (Burkard et al., 2007). The
AEPs are classified as short (1–10 ms, cochlear), middle (10–50
ms, auditory brainstem), and long (50–300 ms, auditory cortex)
latency. Long latency AEP possesses a waveform structure
characterized by the peaks P1 (positive, around 50 ms), N1
(negative, around 100 ms), P2 (positive, around 150 ms), and
N2 (negative, around 300 ms). Compared with the background
EEG, AEPs are considerably smaller, with a signal to noise ratio
(SNR) of about -10 dB (Hoppe et al., 2001). Hence, to extract an
AEP, the stimulus needs to be presented over several iterations
(trials), and the EEG signals should be averaged over these trials
(Burkard et al., 2007). In the past few decades it has been shown
that short speech stimuli, presented as syllables, can be used for
AEP measurements (Burger et al., 2009; Digeser et al., 2009).
However, it was observed that the latency of the N1 peak and
the P2 peak differs between syllables depending on the stimulus
onset time (Sharma and Dorman, 1999), making it difficult
to compare or average them.Moreover, presenting the speech
stimulus repeatedly over several trials may not be the best choice
because of altered speech processing caused by repetition. The
analysis becomes more challenging when cortical responses
to continuous speech are measured. Contrarily, to short and
isolated stimuli, a continuous and time varying stimulus that

elicits a lot of concatenated responses, can not be averaged over
several trials. Hence, an alternative method to estimate cortical
responses to continuous speech would be highly attractive.

Different methods that circumvent the aforementioned
constraints in estimating the response to continuous speech by
using ridge regression (Machens et al., 2004), boosting (David
et al., 2007) , or the Bayesian principle (Kuruvila et al., 2020)
have been described recently. Roughly, these methods consider
speech evoked EEG responses as a linear convolution of the
speech envelope and an unknown impulse response plus internal
noise. The impulse response function is determined by the
auditory system and is referred to as the temporal response
function (TRF), or the forward model (Speech → EEG). The
method to estimate the TRF used in this paper is a regularized
ridge regression based on the least-squares estimation principle
(Lalor et al., 2006, 2009). Numerous studies have used the
intensity of the stimulus as the acoustic cue to estimate the
TRF (Aiken and Picton, 2008; Lalor and Foxe, 2010; Ding and
Simon, 2012a; Mesgarani and Chang, 2012), and intensity is
represented to a good approximation by the acoustic envelope
of the stimulus. Since TRF describes the impulse response,
once determined, it can be used to predict the EEG response
to any input signal. Conversely, the response function could
be estimated in the backward direction (EEG → Speech). The
estimated backward model could then be used to reconstruct the
stimulus from the EEG, accordingly this method is known as
stimulus reconstruction (O’Sullivan et al., 2014). The accuracy of
prediction, or reconstruction, can be estimated as the correlation
coefficient between the derived and the predicted EEG, or
between the original and the reconstructed envelope.

The relationship between recognition of speech in noise and
the accuracy of stimulus reconstruction has been the focus of
several recent studies (Etard and Reichenbach, 2019; Iotzov
and Parra, 2019; Zou et al., 2019). Vanthornhout et al. (2018)
investigated stimulus reconstruction accuracy for measurements
with different SNRs using EEGmeasurements from 64 electrodes.
They found a strong correlation between speech envelope
reconstruction and actual speech envelopes. The method was
refined by Lesenfants et al. (2019) using a forward model and
the prediction accuracy of selected electrodes. They were able to
predict individual’s speech recognition thresholds (i.e. the SNR
at which 50 % is understood, SRT50) with an accuracy of 1–2
decibels. In all of the studiesmentioned, EEGmeasurements were
used for speech in quiet to estimate the TRF, and these TRFs
were applied to SiN measurements. Hence, those authors did not
take account of possible changes in TRF morphology caused by
the noise, even though such changes are well known (Zou et al.,
2019; McHaney et al., 2021). Accou et al. (2021) chose a nonlinear
approach by using a convolutional model, trained on speech in
quiet, to solve a match—mismatch paradigm at different stimulus
SNR and predict the SRT50. As the convolutional model can bee
seen as a black-box, it is hardly physiologically interpretable.

The aim of this study was to determine the TRFs associated
with speech signals in noise, at different SNRs covering the
complete transition region of speech intelligibility. The shape of
the individual TRFs was used to extract intelligibility relevant
parameters as an objective and physiologically interpretable
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measure of speech intelligibility. By comparing these parameters
with individual speech intelligibility scores, we aimed to derive
EEG based measures of SiN. Finally, the combination of scalp
electrodes and features yielding the highest correlation with
changes of SNR were compared with subjective evaluation of
speech intelligibility.

2. MATERIALS AND METHODS

2.1. Participants
Eighteen normal hearing, right-handed German native speakers
(6 male / 12 female) with a median age of 31 years (range 20–
60 years) were recruited for this study. All subjects reported no
history of neurological disorders and underwent an audiological
examination including pure tone audiometry and otoscopy
before the experiment. Normal hearing was defined as a
maximum pure tone threshold of 25 dB HL for all octave
frequencies between 0.5 and 4 kHz at the better ear. Additionally,
the speech recognition for Freiburg monosyllabic words had to
be 100% at a presentation level of 50 dB SPL.

2.2. Test Procedure
Figure 1 displays an overview of the entire test procedure.
Measurements were carried out on two different days in
order to avoid effects of fatigue. On the first day, otological
and audiological assessments were carried out. Thereafter, the
behavioral SiN measurements were performed by using the
Oldenburg Sentence test (Wagener et al., 1999c). At first, the
individual’s speech recognition threshold, SRT50 (i.e. the SNR at
which 50 % of the speech material can be repeated correctly)
was measured by using an adaptive routine (Kollmeier et al.,
2015) with constant speech level at 60 dB SPL. Thereafter, the
speech recognition rate at each of six different SNRs below and
above the individual SRT50 (SRT50 +4 dB, +2 dB, +0.5 dB, –
0.5 dB, –2 dB, and –4 dB) was determined by evaluating 20
sentences per condition. The masker noise was played without
interruption during every test. According to the psychometric
function of Wagener et al. (1999b), recognition rates of 93, 80,
60, 40, 20, and 6% are expected (Wagener et al., 1999c). The
different SNR conditions will hereinafter be referred to as 1SNR.
With the aim of comparing theoretical and measured values, the
psychometric function f (SNR) = 1

1+exp(−
SNR−SRT50

s )
of Wagener

et al. (1999b) ,with s indicating the slope, was fitted to the
evaluated intelligibility over all subjects by using a non linear least
squares approach.

All stimuli were presented diotically via Etymotec ER-2
insert phones connected to a Fireface UC sound card (RME
Haimhausen Germany). The insert phones were calibrated to
a speech level of Ls = 60 dB with a 2 cc coupler. EEGs were
recorded by using a 32-channel gTec USBAMP device with active
electrodes (g.tec, Schiedlberg, Austria) and all the measurements
took place in a soundproof and acoustically damped room.
Analyses and results presented in this paper were carried out
with MATLAB R2019b (MathWorks, Nattick, MA; USA) in
combination with the EEGLAB Toolbox (Brunner et al., 2013;

Iversen and Makeig, 2019) and SPSS 24 (IBM, New York,
NY, USA).

2.2.1. EEG Experiments
EEG measurements were performed on a single day, 1 week
later. Subjects listened passively to sentences of the Oldenburg
Sentence test (OlSa). For each 1SNR condition the same
10 sentences of the OlSa content where put in a complete
randomized order, with every sentence appearing 15 times.When
presenting the sentences, they were concatenated per condition
while the masking noise (randomly overlapped sentences of
the OlSa content; Wagener et al., 1999a) was played without
interruption. The speech level was kept fixed at a level LS = 60
dB SPL in all trials, to avoid effects of stimulus intensity on the
derived TRFs (Verschueren et al., 2021). The noise level was
adjusted per condition. The mean interval between sentences was
1.4 s (ranging from 0.9 to 1.8 s) and as a result, the duration of the
experiment per 1SNR condition was about 9 min. In order to
keep the vigilance constant over the test duration (Vanthornhout
et al., 2019) and to reduce eye movement (Kong et al., 2014),
subjects were allowed to watch a silent movie. After measurement
under each condition short breaks were taken. EEG and stimuli
were synchronized to the recording system at the beginning and
at the end of each sentence. Electrodes were mounted according
to the international 10–20 system: the reference electrode was
placed at the right earlobe and ground was placed at the F9
location. EEG was recorded at a sampling rate of 4,800 Hz.

2.3. Data Processing
The quality and reliability of the estimated TRF depends on
the upper and lower cut-off frequencies of the bandpass filter
applied to the raw EEG-recordings. While some studies reported
that the highest correlation between speech intelligibility and
analyzed EEG was obtained when a filter in the delta band (1–
4 Hz) was used (Ding and Simon, 2014; Etard and Reichenbach,
2019; Iotzov and Parra, 2019), other studies reported the highest
correlation when the theta band (4–8 Hz) was used (Lesenfants
et al., 2019). However, we found the most highly significant
results when we applied a filter including the delta and theta
bands, resulting in a frequency band from 1 to 10 Hz. The
chosen range includes the mean matrix test syllable rate of 3.8 Hz
(Wagener et al., 1999a), which is close to the cut off frequency
between delta and theta band.

The EEG-recording was down sampled to 120 Hz.
Subsequently the signal was band-pass filtered non causal,
zero phase between 1 and 10 Hz by applying a Hamming
windowed-sinc FIR filter, order 397. Finally, an independent
component analysis was applied to the EEG recordings in order
to reduce the influence of eye blinks (Mennes et al., 2010). The
envelope of the speech signal was obtained by taking the absolute
value of the speech signal followed by power law compression
by 0.6 according to Biesmans et al. (2017). Afterwards, the
speech signal was down sampled to to 120 Hz to apply the
same band-pass filter as had been used for filtering the EEG
recordings. The standard functions of the EEGLAB Toolbox
(Brunner et al., 2013; Iversen and Makeig, 2019) were used for
the preprocessing procedure.
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FIGURE 1 | Scheme of the test procedure for each subject. First the individual SRT50 was obtained (upper left). The subsequent tests were all performed under six

different 1SNR conditions (defined below). TRF estimation is shown in the lower left and feature extraction in the lower right corner. Finally, features with highest

correlation with speech intelligibility in per cent per 1SNR condition were compared. All behavioral measurements took place on the first and all objective

measurements on the second day.

2.4. TRF Using Regularized Linear
Regression
For a given input stimulus s and the observed response r(t) at an
EEG electrode, the TRF of the system can be approximated by a
linear regressionmodel (Lalor et al., 2006, 2009). Mathematically,
the predicted response r̂ at time t can be expressed as a linear
convolution between the input stimulus s and the TRF for the
specified time lags τ , such that

r̂(t) =
∑

τ

TRF(τ )s(t − τ ). (1)

The cost function J(t), which is defined as the squared error
between the measured response and the predicted response, can
be written as

J(t) =
∑

t

[r(t)− r̂(t)]2. (2)

An optimum estimate of the TRF can be obtained by minimizing
the cost function J(t) (Kay, 1993). At minima, the gradient of J(t)
vanishes and the estimated TRF can be expressed as

TRF = (STS)−1STr. (3)

The columns of the correlation matrix S are generated from
the time-lagged versions of the stimulus envelope s. As a result,
the TRF may overfit to fast fluctuations of the specific data set,
particularly in noisy conditions (Crosse et al., 2016). Hence,
regularization is employed by penalizing the L2 norm of the

solution (Lampe and Voss, 2013) in order to smooth the TRF.
The regularized solution of (3) is given by

TRFreg = (STS+ λI)−1STr, (4)

where λ is the regularization parameter and I is the
identity matrix.

In our analysis, a single TRF was calculated at every electrode,
for each 1SNR condition and subject. Time lags τ considered to
generate the correlation matrix S were chosen from –200 ms to
500 ms in steps of 8,3 ms. Since the regularization parameter λ

has an effect on the shape and the amplitude of TRF, it was kept
constant (λ = 215) through out the analysis. The λ parameter was
optimized iterative in order to maximize Spearman correlation
(see Section 2.6). The TRF estimations were performed using the
mTRF Toolbox for MATLAB (Crosse et al., 2016).

2.5. TRF Feature Extraction
From the evaluated data, we calculated a total of 192 TRFs
for each subject, corresponding to 32 channels and six SNR
conditions. Because a TRF can be interpreted similarly to slow
AEP (Picton, 2013; Di Liberto et al., 2015; Fiedler et al., 2019;
Kuruvila et al., 2021), peaks corresponding to the waves N1 and
P2 of AEP can be detected. Here they are designated as N1TRF
and P2TRF (see Figure 1). Five features (the absolute amplitude
and latency of N1TRF, the amplitude and latency of P2TRF, and a
windowed root mean square (RMS) value (Zou et al., 2019) were
extracted for each TRF in order to analyze speech intelligibility.
N1TRF was determined as the center of the first local minimum in
the latency range between 75 and 175 ms, identified by evaluating
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the first derivative. Similarly P2TRF was identified as the first local
maximum in a range from 175 ms to 300 ms. If no N1TRF and
P2TRF were detected, latency was set to its maximum value and
amplitude was set to zero. The RMS value was calculated as the
root mean square of the TRF per EEG channel, after applying a
time window to the TRF. The lower (0 to 100 ms) and the upper
(108 to 200 ms) limits of the windows were optimized around the
prominent N1 peak (Billings et al., 2013; Bidelman and Howell,
2016) for each electrode in order to achieve maximum Spearman
correlation with 1SNR over all subjects (see Section 2.6).

2.6. Statistical Analysis
We expected a lower amplitude and a higher latency of waves
N1TRF and P2TRF with decreasing SNR (Mirkovic et al., 2019;
Zou et al., 2019). Consequently, we expected smaller RMS values
for lower SNRs. To find out which electrodes best fulfilled
this expectation (e.g. higher SNR =̂ lower latency; higher
SNR =̂ higher amplitude), the monotonicity was evaluated
by calculating Spearman’s ρ of 1SNR and the investigated
feature for each subject and electrode. Furthermore, for each
electrode the mean over all subjects was determined. In order
to test the hypothesis that 1SNR conditions have the same
mean, a Kruskal-Wallis test was performed for each electrode
and feature. If the hypothesis was rejected, a Dunn-Bonferroni
post-hoc test was performed for a pairwise comparison of
1SNR conditions.

3. RESULTS

3.1. Behavioral Test
The individual SRT50 for the SiN test was used as the baseline
for all tests for each subject. Mean SRT50 was –7.0 dB±0.9 dB

FIGURE 2 | Speech intelligibility in percentage for the six 1SNR conditions.

Blue dots represent single measurements and the blue line displays a sigmoid

function fitted to the single values. The red line represents the reference

function according to Wagener et al. (1999c).

(standard deviation), ranging from –4.9 to –8.9 dB. Individual
speech intelligibility scores evaluated at the six 1SNR conditions
are shown in Figure 2 together with the sigmoid fit (Wagener
et al., 1999b) and the reference psychometric function according
to Wagener et al. (1999c). The root mean square error of actual
values and the reference function was 6.9%, the largest difference
was 29%.

3.2. TRF Analysis
EEG measurements for six SNR × 32 electrodes × 18 subjects
were performed resulting in estimations of 3456 TRFs which
were further analyzed. Figure 3 shows the grand average for
the TRFs from electrode C3 at 1SNR from –4 to +4 dB. At
the highest SNR a clear negative deflection at about 100 ms is
seen followed by a positive deflection at about 200 ms. TRF
morphologies and latencies are congruent with those obtained
from tone evoked AEP measurements. With decreasing SNR,

FIGURE 3 | Temporal response functions for the six 1SNR conditions,

calculated as grand average over all subjects for electrode C3. TRFs exhibit

peaks N1TRF and P2TRF down to a 1SNR of –2 dB.
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N1TRF and P2TRF amplitudes decrease while corresponding
latencies increase.

3.2.1. Amplitude and Latency for N1TRF
For each subject and electrode the Spearman correlation as
described in Section 2.6 was calculated. The highest correlation
for feature N1TRF amplitude was found at electrode C3 (ρ = 0.78;
p < 0.001). The distribution of Spearman’s ρ is displayed in
detail in Figure 4A and shows a slight dominance in the left
hemisphere. Amplitude decreased significantly with decreasing
SNR for 27 out of 32 electrodes, reaching highest significance
on electrode C3 (χ2 = 53.3; p< 0.001). The values of N1TRF
amplitude obtained for the electrode with the highest correlation
are shown in Figure 4B.

The highest correlation for N1TRF latency was also found
on electrode C3 (ρ = –0.59; p < 0.001). The distribution
of Spearman’s ρ for N1TRF latency, displayed in detail in
Figure 4C, shows a slight dominance of the left hemisphere.
Latency increased significantly with decreasing SNR for 19 out
of 32 electrodes, reaching the highest significance at electrode
C3 (χ2 = 32.7; p < 0.001). The values of N1TRF latency
obtained for the electrode with the highest correlation are shown
in Figure 4D.

3.2.2. Amplitude and Latency for P2TRF
Spearman correlation for P2TRF features reached a medium effect
size, with a maximum for amplitude of ρ = 0.35 (p < 0.001)
and a maximum for latency of ρ = –0.45 (p < 0.001). For
the amplitude feature, the mean of amplitude was found to be
the same across different conditions at all electrodes. Findings
were the same for the latency feature except for three fronto-
temporal electrodes (maximum χ2 = 20.1; p = 0.001). Therefore,
detection of P2 seems not to be appropriate for evaluating
speech intelligibility.

3.2.3. Windowed RMS-Power
The RMS value of every TRF was calculated by applying a
rectangular time window to each TRF that was optimized in
order to reach maximum correlation for each electrode. The
resulting lower and upper limits of the windows are displayed
in Figures 5A,B. The highest Spearman correlation for feature
RMS was found at electrode CP3 (ρ = 0.81; p < 0.001).
The distribution of Spearman’s ρ is displayed in Figure 5C,
showing a slight dominance of the left hemisphere. The RMS
value decreased significantly with decreasing SNR for 30 out
of 32 electrodes, reaching highest significance at electrode CPz
(χ2 = 60.7; p< 0.001) for a window from 83 to 133 ms, followed

FIGURE 4 | Analysis of the N1TRF. (A) Distribution of the monotonicity for amplitude of the N1TRF evaluated by using Spearman’s ρ, reaching its maximum value at

electrode C3 (ρ = 0.78; p < 0.001). (B) Amplitude values for N1TRF as a function of 1SNR at electrode C3. Asterisks denote significant differences evaluated by a

Dunn-Bunferroni post-hoc test. (C) Distribution of the absolute monotonicity for the N1TRF latencies evaluated by using Spearman’s ρ, reaching its maximum value at

electrode C3 (marked with a cross; ρ = 0.48; p < 0.001). (D) Latencies for N1TRF as a function of 1SNR at electrode C3.
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FIGURE 5 | Analysis of wave RMS-power. (A) Optimal lower limits of the time window. (B) Optimal upper limits of the time window. (C) Distribution of monotonicity for

windowed RMS-power, with an optimized window for each channel, evaluated using Spearman’s ρ, which reached its maximum value at electrode CP3 (marked with

a cross; ρ = 0.81; p < 0.001). (D) RMSsum values as sum of RMS values for electrode C3, CP3, and CPz for six 1SNR and 18 subjects. Asterisks show significant

differences evaluated by a Dunn-Bonferroni post-hoc test, all with a strong effect.

by electrodes CP3 (92 ms to 125 ms), and C3 (83–125 ms). It can
be observed that the highest Spearman’s ρ are related to narrow
windows around the N1 peak.

For further investigations the RMS values for the three
electrodes CPz, CP3, and C3 were summed up to give RMSsum.
RMSsum achieved a strong Spearman correlation (ρ = 0.82;
p < 0.001) and increased significantly with increasing SNR
(χ2 = 60.0; p < 0.001). Detailed results of RMSsum displayed
in Figure 5D show increasing variance with increasing SNR.

3.2.4. Features vs. Speech Intelligibility
A high Spearman correlation and a good ability to discriminate
between the six 1SNR conditions were achieved by the
RMSsum feature. The optimum time windows of the three
electrodes for evaluating RMSsum cover a narrow region close
around the prominent N1TRF peak. Finally, the simple RMSsum
feature was chosen as the single feature to be compared with
speech intelligibility.

To estimate individual SRT50 a psychometric function was
fitted to the speech intelligibility evaluated at the different
1SNRs. In the same way, to obtain the threshold related to an
intelligibility of 50% (RMS50), we fitted the exponential function
Intelligibility = 100 · (1 − e(−b·RMSsum))%, with b being

the optimized parameter, by using a non-linear least squares
approach. The resulting function starts from zero% for a RMSsum
of zero and converges to 100% for higher values. When using the
RMSsum data of all subjects to fit the function, the RMS50 thus
determined was 0.287 (Figure 6) and b was 2.415 with a 95%
confidence interval from 2.03 to 2.799.

In order to prevent from over fitting, a leave one out method
was applied to predict the individual SRT50 per subject. This
was done by calculating the RMS50, without considering the
RMSsum data of the investigated subject. Subsequently, the value
of 1SNR at which RMSsum exceeds the threshold RMS50 for the
first time with increasing SNR and increasing RMSsum, indicates
the predicted SRT50.

Individual speech intelligibility and RMSsum are compared
with respect to 1SNR in Figure 7, showing a strong correlation
(Spearman’s ρ = 0.71; p < 0.001). The mean deviation
between predicted and behavioral SRT50 was 1.2 dB in a range
from –1.8 dB to +3.1 dB.

4. DISCUSSION

Reduced understanding of speech in noise is one of the first
symptoms of hearing loss. All available tests to evaluate the
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FIGURE 6 | Comparison of speech intelligibility and the RMSsum obtained for

each 1SNR condition and subject. Single values are indicated by blue dots.

The red line shows a exponential function fitted to the single values. Root

mean square error of the dots compared with the fitted curve is 25% and the

RMSsum value related to an intelligibility of 50% is 0.287.

intelligibility for an individual person are subjective tests that
require subjects to repeat the words that they understood. First
attempts to evaluate the SRT50 of a SiN test using EEG techniques
was recently undertaken by Vanthornhout et al. (2018) and
Lesenfants et al. (2019). In one procedure the reconstruction
accuracy, and in the other procedure the prediction accuracy was
chosen as predictor for SRT50. Regrettably, the authors of both
studies used prediction or reconstruction accuracy to indicate
intelligibility, without taking a closer look at changes in TRF
morphology. Our results presented here show that changes in
the TRF obtained at different SNRs can be used as a feature to
predict individual SRT50 values for an SiN test. Because a TRF
shows a waveform similar to an AEP (Ding and Simon, 2012b;
Picton, 2013; Di Liberto et al., 2015; Fiedler et al., 2019), TRF
morphology can be regarded as more amenable to physiological
interpretation for clinical diagnostics than reconstruction or
prediction accuracy. In order to find the features of TRF that are
most strongly correlated with speech intelligibility we analyzed
five features of TRF (N1TRF amplitude, N1TRF latency, P2TRF
amplitude, P2TRF latency and RMSsum) evaluated for 18 subjects
at six SNR values close to the respective individual SRT50.

The largest Spearman correlation with changes in SNR was
found for the RMSsum feature, using optimum windows, i.e.,
in the range from 82 to 133 ms. This range covers the latency
of N1TRF, and N1TRF amplitude also revealed a high Spearman
correlation. In contrast, P2TRF features showed only weak
correlations with changes in SNR. Our findings correspond to
those described in Billings et al. (2013) and Bidelman and Howell
(2016), the authors of which investigated AEP evoked by syllables
at different SNRs. The authors of both publications found the best
correlation with speech intelligibility for the amplitude of wave

N1, and the RMSsum feature was finally used for comparison with
speech intelligibility in our study.

We found the highest amplitudes for N1TRF and RMSsum in
the central and fronto central scalp region, corresponding to the
N1 wave of an AEP measurement that is known to be evoked in
the planum temporale and Heschl’s gyrus (Woods, 1995; Picton
et al., 1999). Highest reconstruction accuracy is also often found
in this scalp region (Etard and Reichenbach, 2019; Zou et al.,
2019). Electrodes in the central and the fronto-central region
have also been used by Lesenfants et al. (2019) to predict speech
intelligibility. In contrast to those authors findings, the electrodes
found in our study to be best suited for prediction of speech
intelligibility were located in the central and the left-central scalp
area (CPz, C3, and CP3). The distribution of monotonicity shows
that the region crucial for speech intelligibility is concentrated
slightly more in a posterior orientation with dominance of the
left hemisphere. Our results correspond to the findings of other
authors (Leff et al., 2008; Abrams et al., 2013) that the posterior
superior temporal sulcus has a strong influence on processing
speech intelligibility.

Even in a passive listening task the focal attention of the
subject could vary with the perceived stimulus quality (e.g.
SNR). The focal attention could affect the quality and amplitude
of the derived TRF and probably has an effect on this study
(Lesenfants and Francart, 2020). Speech in noise measurements
for native and non-native speakers has been investigated by
Etard and Reichenbach (2019) and by Zou et al. (2019). Those
authors described similar behavior for both groups tested for
reconstruction accuracy and power of a TRF by using the
EEG theta band. Additionally, differences have been described
between the groups only in the low-frequency EEG delta band
(Etard and Reichenbach, 2019). We used a combination of both
frequency bands and thus presumably included both effects. The
correspondence of the location of best electrodes with earlier
findings (Leff et al., 2008; Abrams et al., 2013) indicates a
connection with speech intelligibility, whereas the presentation
of the silent movie may have reduced slightly the subjects active
listening and comprehension (Vanthornhout et al., 2019). On the
contrary to repeating the same stimulus (Billings et al., 2013), we
presented 10 different sentences in a random order and there was
no a priori knowledge about the next sentence. Hence, listening
to every sentence 15 times should have no effect due to the
complete random order.

The theory of a network of speech comprehension (Leff et al.,
2008; Abrams et al., 2013) and phonetic detection (Zatorre et al.,
1992) located in different cortical areas and initialized at the
posterior and anterior superior temporal sulcus corresponds
to the electrodes used for RMSsum. It seems possible that
our findings relate primarily to investigation of the auditory
pathway to a certain stage depending on electrode localization.
Not all cognitive requirements for a complete understanding
of speech can be investigated by these measurements (Decruy
et al., 2020a; Devaraju et al., 2021). Additionally, the chosen
stimuli aim to imitate a matrix sentence test, resulting in
periods between the single sentences, which only contain noise.
Consequently, the sentence onset responses may have a slightly
larger effect on the N1TRF amplitude than the continuous speech
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FIGURE 7 | Results of the speech intelligibility and RMSsum (ρ = 0.71; p > 0.001) for the six different 1SNR conditions for each subject. A 1SNR of zero dB

corresponds to the behavioral SRT50. Blue stars are indicating the speech intelligibility in percentage and the red solid line shows the corresponding RMSsum value.

Green dashed horizontal line is representing the RMS50, determined by using a leave one out method per subject. The first intersection point with increasing RMSsum

and increasing SNR is located in a range of ±1 dB for seven and ±2 dB with respect to behavioral SRT50 for 16 out of 18 subjects.

(Brodbeck et al., 2018), suppressed with a higher noise level.
Further investigations will be required to elucidate which stage
of auditory processing is being examined here. This will be a
prerequisite for using this method for differential diagnostics.

We achieved an RMSsum level that was comparable across all
subjects with increasing standard deviation for increasing SNR.
The constancy of the TRF amplitude was supported by using
active electrodes, which are less prone to quality of connection
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(Laszlo et al., 2014) and by applying a least squares approach with
a constant regularization (Lalor et al., 2009; Power et al., 2012).
Due to these facts the threshold for RMSsum value in relation
to speech intelligibility (RMS50) was evaluated. The intersection
point of RMS50 and RMSsum for individual subjects is in a range
of ± 1 dB for 7 and ± 2 dB for 16 out of 18 subjects. Our results
compare well with the predictionmade in Lesenfants et al. (2019),
even though the earlier study was based on a relatively technical
approach while our results are more physiologically based. It
seems possible to examine the physiological requirements for
speech intelligibility in noise within a range of ± 2 dB using
features extracted from TRF at different SNR values. Part of
the variance can be explained by behavioral test-retest deviation
(Wagener and Brand, 2005) and by the spread of behavioral
speech intelligibility at fixed 1SNR.

Many subjects reported that they got tired during the
experiment. It would approve the practicability of the procedure
if the time required could be reduced, maybe by increasing the
steps between SNR conditions. Additionally, a reduction in the
time required could reduce the influence of focal attention on
the derived TRFs (Lesenfants and Francart, 2020). The procedure
and the RMS50 value will have to be verified with younger
and with hearing-impaired subjects, because the reconstruction
accuracy is known to increase with hearing impairment (Decruy
et al., 2020b), and AEPs are known to mature with age for
children (Kummer et al., 2007).

5. CONCLUSION

We have shown that single features of the shape of TRFs are
highly correlated with intelligibility for speech in noise. The
detection of a RMSsum level in the area of N1TRF allowed at
least approximate prediction of individual SRT50 values. Because
TRFs are interpretable in a manner similar to AEPs, the method
developed may offer new options for clinical diagnostics of
difficulties during speech understanding in noise. With the aim
of closer localizing the source of the deficit, it can be combined
with other audiometric diagnostics starting from pure tone
audiometry up to short and middle latency AEP which are
related to the cochlear and the auditory brainstem. Additionally

it can be possible to test subjects who may be less cooperative.
It will be necessary to investigate to which stage of auditory
processing the requirements for speech comprehension are
examined and the method should be improved by fine tuning to
make shorter trials possible. Additionally, further research should
focus on testing the procedure with hearing-impaired and with
younger subjects.
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