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ABSTRACT

The study of dynamic cellular processes in living
cells is central to biology and is particularly
powerful when the motility characteristics of indi-
vidual objects within cells can be determined and
analysed statistically. ¥ However, commercial
programs only offer a limited range of inflexible
analysis modules and there are currently no open
source programs for extensive analysis of particle
motility. Here, we describe ParticleStats (http://
www.ParticleStats.com), a web server and open
source programs, which input the X,Y coordinate
positions of objects in time, and output novel
analyses, graphical plots and statistics for motile
objects. ParticleStats comprises three separate
analysis programs. First, ParticleStats:
Directionality for the global analysis of polarity, for
example microtubule plus end growth in Drosophila
oocytes. Second, ParticleStats:Compare for the
analysis of saltatory movement in terms of runs
and pauses. This can be applied to chromosome
segregation and molecular motor-based move-
ments. Thirdly ParticleStats:Kymographs for the
analysis of kymograph images, for example as
applied to separation of chromosomes in mitosis.
These analyses have provided key insights into mo-
lecular mechanisms that are not possible from
qualitative analysis alone and are widely applicable
to many other cell biology problems.

INTRODUCTION

Live cell imaging of dynamic cellular components has
become a central method in Biology. The quantification
and analysis of the resulting images allows very powerful

dissection of the mechanisms underlying dynamic cellular
processes. Statistical analysis of the resulting data is often
required to reach clear conclusions regarding the likely
mechanisms of motility. One field that has used such an
approach extensively, is the study of the mechanism of
molecular motor driven transport of cytoplasmic compo-
nents, such mitochondria (1), lipid droplets (2), Xenopus
melanocytes (3) and RNA particles (4-7). Particle tracking
algorithms are used to track the movement of
fluorescently labelled objects over time, resulting in X
and Y coordinates as a function of time (8,9), and are
able to output a variety of data, such as speed, direction
and run lengths (10). While these parameters are sufficient
for some applications, it is often essential to perform more
sophisticated specific analyses to generate appropriate
parameters for a given type of experiment.

We have developed ParticleStats to perform analyses on
X, Y coordinates describing the motion of a variety of
kinds of objects within cells; yielding insights into molecu-
lar mechanisms that would not be possible from qualita-
tive analysis alone. First, ParticleStats:Directionality maps
globally intracellular polarity or directionality of particle
movements. We developed new methods for analysing,
displaying and statistically evaluating the overall direc-
tionality and polarity of fields of microtubules in cells,
as described by the growth of the plus ends of microtu-
bules in living cells. Second, we have developed
ParticleStats:Compare for the analysis, display and statis-
tical evaluation of saltatory motility of objects, by
comparing, for example, the movements of wild type
and mutant particles. We successfully applied the
method to RNA particle localization in Drosophila (11).
Finally, ParticleStats:Kymographs provides novel analysis
tools and displays of kymograph images. We successfully
applied the method to sister chromatid separation in
Drosophila blastoderm embryos (12). These tools are
provided as a web server and as open source programs
available at www.ParticleStats.com.
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METHODS
ParticleStats:Directionality

The majority of eukaryotic cells are highly polarized, as
manifested by their asymmetric morphology and localized
distribution of proteins and mRNA. The ParticleStats dir-
ectionality method was developed to analyse the polariza-
tion of the MT network. Setting up a distinct microtubule
polarity is the key symmetry breaking event in the
Drosophila oocyte responsible for asymmetric localization
of mRNA and proteins to set up the primary body axes.
Our method for mapping overall MT polarity first rotates
the time lapse movies according to a user-specified axis, so
that they are all consistently aligned (Figure 1A). To
provide a visual means of assessing the directionality of
a population of particles we created a windmap style rep-
resentation of net bias. This is achieved by dividing the
images into an array of squares, ranging in number from 1
to 4096. Each track is converted to a vector describing its
length and direction and is assigned to a specific square or
number of squares in the array. A single resultant vector is
calculated for each square by summing up the vectors rep-
resenting all the tracks that cross the square. The resultant
vector then provides the direction for that particular
square, and the colour intensity of the square is propor-
tional to the number of tracks or magnitude of the vector
(Figure 1B). Rose diagrams/circular histograms are
plotted to summarize an entire population or
sub-population of tracks. The angles of individual tracks
are plotted on the circumference of the rose diagram. The
petals of the rose diagrams are calculated by summing the
number or magnitude of all the tracks travelling in a par-
ticular angle range (Figure 1C). To assess the directional-
ity of subregions of images, we have provided the option
of only considering tracks crossing a region of interest
(ROI). This ROI is provided as a list of polygon vertices
by the user and can be any shape or size. We also provide
a simple graphical tool for creating ROI coordinates
(Figure 1D). To determine if a population of particles
has a directionality bias, we have utilized circular statistics
and implemented the Watson’s test of uniformity, which
compares against a Uniform distribution and the von
Mises distribution (13). The von Mises distribution is a
special case of the normal distribution for circular data.

ParticleStats:Compare

The transport of mRNA by molecular motors is a key
mechanism for axis specification in development;
fluorescently labelled mRNAs are transported by the mo-
lecular motors and can be tracked over time (11,14,15).
ParticleStats:Compare aids the determination of the
mechanistic basis of molecular motor based movements
through detailed analysis of the frequency of runs and
pauses. X and Y coordinates are used to determine runs
as well as frequency and statistics of pausing. The direc-
tions of the runs are determined when an orientation axis
is provided, allowing the image to be rotated to this axis.
The linear regression method of least squares was used to
fit a linear model to a set of data to determine the close-
ness of fit of the data to the model. This coefficient of

determination (+*) measures the proportion of the data
that can be accounted for (Figure 2A and B). The * co-
efficient also determines whether a particle can reasonably
be assumed to be travelling in one direction along a single
microtubule. Runs are further divided up into overlapping
three frame segments and the segment speeds determined
(Figure 2C) in addition to maximum speeds for the run
segments (Figure 2D). The directionality of the runs are
plotted onto rose diagrams to show if the kinetochore
separations are directed rather than showing less
directed lateral movements with respect to the user
supplied orientation axis (Figure 2E). The frequency of
changes in direction of the movements were also
determined to provide further insight into the separation
dynamics (Figure 2F). Plots of runs for two populations of
particles reveal whether there are differences in the distri-
bution of run lengths and speeds. The direction a particle
travels in most frequently, the average run lengths and
frequency of pauses can all be determined easily and
provide insight into the molecular motors involved
in the transport. We also successfully applied
ParticleStats:Compare to the separation of sister chroma-
tids in mitosis (12).

ParticleStats:Kymographs

Kymographs are a 2D graphical representation of the
changes in one spatial dimension with time.
ParticleStats:Kymographs was developed to analyse
kymographs depicting chromosome separation during
cell division (12). During mitosis, individual sister chro-
matids move apart to opposite poles of the cell, to allow
efficient separation of the DNA into two genetically iden-
tical sets. Instead of tracking individual centromeres,
kymographs show the averaged movement of all centro-
meres. Each kymograph was treated as two halves for the
left and right kinetochores, and the pixel intensity values
were extracted for each time point. A weighted average
calculation was used to determine the average separation
distance for each of the halves of the image (Figure 3A
and B). The noise levels were estimated using the edge
pixel values with an additional customizable threshold of
95% of the maximum intensity above noise. We imple-
mented a further noise estimation method, a diagonal
edge-based pixel measure, where pixels are taken from a
diagonal line from the top centre of the image to the
bottom right. This second method improves noise estima-
tion in the kinetochore separation kymographs, as the
intensities are also mainly on a diagonal. The weighted
average distances and weighed standard deviations are
plotted on the kymographs for visual inspection, then a
user-defined time range is used to calculate the speeds of
the kinetochore separation. Linear regression is used to
calculate the best fitting line for the distances over the
specified time range (Figure 3A and B). Speeds are
calculated for each half of the kymograph as well as an
overall average speed. This average speed is used to
account for any possible misalignment in the two halves
of the kymograph. The weighted average distances for
each of the kymographs are plotted on a single graph to
allow comparison between different populations of tracks
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Figure 1. ParticleStats:Directionality. (A) The tracked particles are plotted and rotated according to a user defined axis (red arrow). (B) Windmaps
visually display trends in the directionality of tracked particles. The windmaps are created for a range of square resolutions (4-4096) and are
coloured according to the user-defined axis, e.g. dorsal (red), posterior (blue), ventral (purple), anterior (cyan). (C) A rose diagram showing the angle
of each track around the circumference of the plot. The petals of the rose show angles for tracks in defined angle ranges. (D) A screenshot of the
simple graphical tool used to generate coordinates for a regions of interest (ROI).
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Figure 2. ParticleStats:Compare. (A and B) Two examples of plots of kinetochore separation. The movements are divided up into runs (+, green; —,
blue) and pauses (red) with a user-supplied orientation line (grey). (C) A frequency distribution for run speeds, where the runs have been split into
overlapping three frame windows. (D) The maximum three frame speed is plotted for each run. (E) Rose diagram with individual run angles plotted
on the circumference, and the petals showing run angle frequencies. (F) A frequency distribution of the changes in direction for runs in a set of

kinetochore separation examples.
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Figure 3. ParticleStats:Kymographs. (A) Kymograph of eight aligned kinetochore pairs. Weighted averages of the intensities are used to pick out the
kinetochore paths (upper panel) and linear regression is used to determine the speed of the kinetochore separation (lower panel). (B) A kymograph
showing less synchronous separation of kinetochores. (C) A plot of the kinetochore paths for approximately thirty examples of four variants of
kinetochore separation experiments. Each of the four variants has an averaged line for the weighted averages. (D) A plot of the average speeds for
the four variant kinetochore separations with error bars showing weighted standard deviations.

(Figure 3C). The speeds for each of the populations are
then plotted along with weighted standard deviation
(Figure 3D).

CONCLUSION

A number of open source and commercial particle
tracking programmes exist and perform some analysis of
the resulting X, Y coordinates with time. There are also
studies performing analyses on tracked data, examples
include the use of rose diagrams in a study of myosin
motility (16) and kymograph analysis for the microtubule
mediated transport of Merlin (17). However, the software
for performing these analyses are not made publicly avail-
able. Here, we describe ParticleStats, motility analysis
tools to tackle the quantitation and statistical analysis of
three distinct classes of motility problems in cells, avail-
able as a web server and as open source code. ParticleStats
is applicable to any study yielding X and Y coordinates
and will have a wide range of possible applications
throughout cell biology. First, we have developed
ParticleStats:Directionality a new method for the global
mapping, display and statistical comparison of fields of
orientated fibres or trajectories of moving objects within
cells. This has a wide range of applications, ranging from
the polarity of MT fibres in any kind of cell as derived
from plus end tip growth, to the analysis of cell motility
trajectories. Second, ParticleStats:Compare can be applied
to many transport phenomena such as motor dependent
mRNA particle transport (11). These include, lipid droplet

transport (2,18), transport of mitochondria in Drosophila
motor axons (1,19), neurofilament proteins in squid
axoplasm (20), nuclear trafficking of HIV particles (21),
influenza viruses (22) and 1D diffusion of proteins along
DNA (23) or active transport along axons and dendrites
(24,25). Third, ParticleStats:Kymograph was developed to
be applicable to a range of applications in addition to the
segregation of chromosomes. Such cases include mito-
chondrial transport (26), protein co-transport (27) and ar-
rangement of actin bundles in Aplysia growth cones (28),
as well as any kind of one dimensional transport or diffu-
sion phenomena.
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