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While microbial communities in the human body (microbiota) are now com-
monly associated with health and disease in industrialised populations, we
know very little about how these communities co-evolved and changed with
humans throughout history and deep prehistory. We can now examine these
communities by sequencing ancient DNA preserved within calcified dental
plaque (calculus), providing insights into the origins of disease and their
links to human history. Here, we examine ancient DNA preserved within
dental calculus samples and their associations with two major cultural
periods in Japan: the Jomon period hunter–gatherers approximately 3000
years before present (BP) and the Edo period agriculturalists 400–150 BP.
We investigate how human oral microbiomes have changed in Japan
through time and explore the presence of microorganisms associated with
oral diseases (e.g. periodontal disease, dental caries) in ancient Japanese
populations. Finally, we explore oral microbial strain diversity and its poten-
tial links to ancient demography in ancient Japan by performing
phylogenomic analysis of a widely conserved oral species—Anaerolineaceae
oral taxon 439. This research represents, to our knowledge, the first study
of ancient oral microbiomes from Japan and demonstrates that the analysis
of ancient dental calculus can provide key information about the origin of
non-infectious disease and its deep roots with human demography.

This article is part of the theme issue ‘Insights into health and disease
from ancient biomolecules’.
1. Introduction
Microbiota within the human body possess functions that can influence the
development, physiology, behaviour and the health of their hosts [1–8]. Therefore,
altering these functions can lead to disease, compromising the health of the host
[9,10]. Microbiota alterations result from a range of factors, including the use of
antibiotics [11,12], changes in diet [13], infection by pathogens [14,15] and the
adoption of lifestyles associated with industrialization [16]. Evidence suggests
that specific microbes within the microbiota can be vertically inherited [17–20]
and have been co-speciating with humans throughout hominid evolution
[21,22]. Consequently, different human populations can have distinct microbiota
as a result of their unique evolutionary and demographic histories [16,23–25].

Understanding the factors that drive microbial variation and examining
how these microbial communities have changed and adapted over time with
humans can provide key insights into human health. However, little is known
about how the human microbiome has adapted and evolved in human history,
especially during cultural admixture (e.g. when Europeans first met the peoples
of the Americas). Such cultural admixtures could disrupt long-term relationships
between microbiomes and host, and potentially contribute to microbiome dis-
turbances that could influence host health [26]. Additionally, microbial lineage
replacement owing to cultural/population admixture could also shape the

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2019.0578&domain=pdf&date_stamp=2020-10-05
http://dx.doi.org/10.1098/rstb/375/1812
http://dx.doi.org/10.1098/rstb/375/1812
mailto:laura.weyrich@adelaide.edu.au
https://doi.org/10.6084/m9.figshare.c.5096374
https://doi.org/10.6084/m9.figshare.c.5096374
http://orcid.org/
http://orcid.org/0000-0001-5243-4634


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190578

2
microbiome in distinct ways; for example, ‘signatures’ of past
human interaction and population replacement (e.g. loss of
particular species or strains)may still be present in living popu-
lations today [27].

Recently, ancient human calcified dental plaque (calculus)
was identified as a robust source of ancient human-associated
microbial DNA [28–31] and now allows researchers to examine
human-associated microbial communities from the past. Dental
calculus is the result of a microbial biofilm that grows on teeth
and undergoes periodic mineralization events that lock oral
microorganisms in place within a robust calcium phosphate
matrix [32]. The direct association of dental calculus on human
teeth, coupledwith its robust nature, provides an unprecedented
opportunity to examine the bioarchaeological record of past
humanoralmicrobiomes, allowing researchers to identify factors
that have altered the oral microbiome through time [28–30]. For
example, dental calculus research has correlated shifts in the
European microbiota community composition to large-scale
dietary and lifestyle changes (e.g. from hunting–gathering to an
agricultural lifestyle in Europe) [28]. Dental calculus is, therefore,
a tool that can be used to sample the oral microbiome of past
human populations and explore how the microbiome adapts
and evolves following major cultural and demographic shifts.

Japan is an ideal location to examine human-associated
microbiota change and evolution, as Japan has experienced
large shifts in diet, culture, and demography over time and is
geographically isolated from mainland Asia. The Japanese
Archipelago was largely inhabited by the Jomon culture
from approximately 16 000 to 3000 years before present (BP)
[33,34]. Agriculture-bearing migrants from continental Asia
came to the Japanese Archipelago and admixed with
the Jomon during the early Yayoi period around 3000 BP
[35–37]. Both modern and ancient DNA studies suggest that
the admixture was weighted towards migrants, with modern
estimates of Jomon contribution to mainland Japanese popu-
lations being less than 20% [37,38]. Before this admixture, a
mitochondrial divergence estimate suggests that over 22 000
years of separation existed between the Jomon and continental
Asian populations [39], which, coupled with their putatively
disparate lifestyles (e.g. hunter–gatherer versus agriculturalist),
may have resulted in divergent coevolution of their micro-
biomes. Here, we examine bacterial DNA preserved within
ancient dental calculus from the Jomon (approx. 3000 BP)
and Edo periods (400–150 BP) in Japan to investigate how
and why microbial communities changed in the past.
2. Methods
(a) Ancient dental calculus samples
Ancient dental calculus samples (5 = Jomon, approx. 2400–3000
BP; 10 = Edo, 400–150 BP) (figure 1) were collected from the
Natural Museum of Nature and Science in Tsukuba, Ibaraki,
Japan. Of the Jomon samples, one was from the Ebishima shell
mound in Iwate prefecture [40]. One was from the Ikenohata
Shichikencho site in Ikawazu, Aichi prefecture, with radiocarbon
dates of associated skeletal remains being 2440–3070 cal BP. [41].
Three were from a site in Miyano, Iwate prefecture [42]. The Edo
period samples originated from the Ikenohata-Shichikencho
site [43], which is located in Taito-ku, Tokyo. The excavation
of this site was undertaken between 1993 and 1995 and
yielded about six hundred graves which belong to the period
from the late seventeenth to the nineteenth centuries [43]. The
graves represented samurai and townsmen, known from the
fact that the burials contained ceramic coffins (kamekan) and
wooden coffins (mokkan) that were used for samurai and
commoners, respectively.

Dental calculus was removed from specimens as previously
described [44]. Briefly, a sterile dental pick was used to carefully
remove dental calculus from one side of one tooth, and the speci-
men was placed in a sterile plastic bag for transport at room
temperature to the Australian Centre for Ancient DNA at the
University of Adelaide. Accompanying metadata was also col-
lected at this time (electronic supplementary material, table S1).

(b) DNA extraction and library preparation
As authentic ancient DNA can be contaminated by modern DNA,
steps to minimize and monitor the introduction of contaminant
DNAwere used [45]. All sample processing andmolecular biology
procedures prior to polymerase chain reaction (PCR) amplification
were carriedout at theAustralianCentre forAncientDNAfacilityat
the University of Adelaide. These experiments were performed
within a specialized ancientDNA laboratory,whichmaintainsposi-
tive air pressure,HEPA filtered air, daily ultraviolet (UV)-treatment,
regular 3% bleach cleanings, and work in isolated still-air hoods
located in isolated rooms to limit the introduction of modern con-
taminant DNA. All technicians entered the facility using a
dedicated entry room and wore full-body clean suits, gloves, and
facemasks. Dental calculus samples were decontaminated to mini-
mize environmental contamination by UV-irradiation for 15 min
on each side, following bysoaking in 2 ml of 5% sodiumhypochlor-
ite for 3 min, rinsing in 80% ethanol for 1 min, and drying at room
temperature for 2 min. Immediately post-decontamination, dental
calculus sampleswere crushed on the side of plastic tubeswith ster-
ile tweezers, andDNAwas extracted using an in-house silica-based
method described previously [46]. Extraction blank controls were
included to monitor microbial DNA background signals through-
out this process; one extraction blank control was analysed for
each DNA extraction batch (1 control: 10 samples).

Shotgun metagenomic libraries were constructed as previously
described [47], using unique combinations of 7 bp forward
and reverse barcodes. Thirteen cycles of PCR were used for
the first amplification with P5/P7 barcoded adapters (Platinum™
Taq HiFi Polymerase), followed by an additional 13 cycles for the
addition of GAII-index and sequencing primers. Metagenomic
shotgun libraries were cleaned using Ampure XP, quantified using
an Agilent TapeStation, and pooled at equimolar concentrations
prior to initial sequencing on the Illumina NextSeq (2 × 150 bp),
and further sequencing on an Illumina HiSeq (2 × 150 bp). All
samples were sequenced together in the same sequencing pool.

(c) Data used from other previously published studied
Eighteen modern dental plaque samples from the Human Micro-
biome Project (HMP) [48] were downloaded (SRS011098,
SRS011126, SRS011152, SRS011255, SRS011343, SRS012285,
SRS013170, SRS013252, SRS013533, SRS013723, SRS013836,
SRS013949, SRS014476, SRS014578, SRS014690, SRS014894,
SRS015044, SRS015063). Because MALT does not have a paired-
end alignment mode, only the R1 files were used. The R1 files
were randomly subsampled to a depth of 1 500 000 sequences
using SEQTK with a seed of 666 https://github.com/lh3/seqtk.
Modern and ancient dental calculus DNA sequences were
obtained from a previous study [30] (https://www.oagr.org.au/
experiment/view/65/).

(d) Data processing and taxonomic composition
analyses

The resulting data converted into FASTQ format using Illumina’s
bcl2fastq software, before being demultiplexed, trimmed and
merged using ADAPTERREMOVAL 2 based on unique P5/P7 barcodes
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Figure 1. Map of Japan illustrating sites where ancient dental calculus samples were collected. EB, Ebishima; IK, Ikawazu; IS, Ikenohata Shichikencho, MI , Miyano.
Yellow arrow in top right box denotes black teeth painting (Ohaguro). Yellow arrow in bottom right box denotes dental calculus.
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[49]. Only merged reads were used for subsequent analyses.
Merged reads from separate sequencing runs were concatenated
per sample. Taxonomic composition was determined using
MEGAN Alignment Tool (MALTn) v. 0.3.8 [50], whereby DNA
reads from samples were aligned (default settings) against the
RefSeqGCS database (2017) [51] containing 47 713 archaeal and
bacterial genome assemblies from the NCBI Assembly database
[52]. The resulting blast-text files were converted into RMA files
via the blast2rma script included in the program MEGAN
v.6.11.1 [53], with the following lowest common ancestor (LCA)
parameters: weighted-LCA= 80%, minimum bitscore = 44,
minimum E-value = 0.01, minimum support per cent = 0.1 [51].

Samples were first assessed for ancient DNA authenticity by
comparison to extraction blank controls. Subtractive filtering was
used to remove species found in the extraction blank controls
from ancient dental calculus samples. For analysis in QIIME [54],
the filtered, species-level taxonomic composition was exported
from MEGAN into BIOM format, and imported into QIIME 1.9.1
and rarefied to86 267 species-level readsper sample. SOURCETRACKER

(v.0.9.8) analysis [55] was also carried out on this rarefied BIOM
table to help examine exogenous contamination using various, pre-
viously publishedwell-characterized source sample types: soil [56],
skin [57,58], gut [25,59,60], saliva [61,62], dental plaque [63] and
ancient dental calculus [30,31] (see the electronic supplementary
material, table S7 for more information and accession numbers).
Raw sequences from these studieswere downloaded andprocessed
in the same manner as the samples in the present study. PERMA-
NOVA was used to test for statistical significance in composition
between groups using the compare_categories.py script with 999
permutations. Differential abundance of species between groups
was tested using the Kruskal–Wallis test with Bonferroni-correction
in the group_significance.py script. The rarefied table was impor-
ted into STAMP [64] to calculate and plot the Welch’s t-test of
Methanobrevibacter oralis relative abundance (figure 4).

(e) Whole-genome phylogenetic analysis
Genomic sequences were assembled by mapping reads to the
Anaerolineaceae sp. oral taxon 439 genome (RefSeq accession:
GCF_001717545.1) using BWA-ALN [65] with the seed disabled, as
recommended for ancient DNA [66]. The resulting BAM files were
filtered to remove readswithmapping quality of less than 1 (keeping
reads that only have 1 best hit) using SAMTOOLS [67], and duplicates
were removedusingDEDUP [68]. Estimation of cytosinedeamination
was performed usingMAPDAMAGE2 [69] using theAnaerolineaceae sp.
oral taxon 439 reference genome (RefSeq accession:
GCF_001717545.1). Edit distances were calculated using BAMstats
(https://github.com/guigolab/bamstats). Coverage visualizations
were created using ANVI’O [70]. Samples with fewer than 100 000
mapped reads (electronic supplementary material, table S6) were
excluded from phylogenetic analyses (A18017_Japan_Jomon_3,
A18019_Japan_Jomon_5, and A18022_Japan_Edo_3). Variant call-
ing was performed using the SNIPPY pipeline (https://github.
com/tseemann/snippy), which uses FREEBAYES [71]. The pipeline
was adjusted to use a FREEBAYES –ploidy of ‘1’. Using a .bed file,
we masked 16S rRNA and tRNA gene regions and putative
phage regions identified using PHASTER [72] (electronic
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supplementary material, file 5). To account for cytosine deamina-
tion, a minimum depth of 3 sequences was required to call a
variant. A minimum fraction of 90% (i.e. greater than 90% of
nucleotides at a site had to be the same) was used to ensure the
dominant variant was used. Missing data (depth less than 3)
were labelled as N’s. Phylogenetic reconstruction was perfor-
med on the masked whole genome single nucleotide
polymorphism alignment (.full.aln SNIPPY suffix) using RAXML
[73], with the GTR-GAMMA substitution model and autoMRE
bootstrapping (raxmlHPC-PTHREADS-SSE3 -f a -x 12345 -p
12345 -# autoMRE -m GTRGAMMA -s ‘alignment’ -o Elsidron1).
Trees were visualized and annotated using FIGTREE (https://
github.com/rambaut/figtree).
3. Results
(a) Authentic ancient microbial DNA was isolated from

dental calculus
We applied metagenomic shotgun sequencing to 15 ancient
Japanese dental calculus samples: five male Jomon period
(approx. 3000 BP) and 10 (five male; five female) from the
Early Edo period 400–300 BP) (figure 1). An average of 8 992
067 sequences per sample was obtained, with the fragment
length distributions being as expected for ancient DNA (aver-
age size 78 bp; electronic supplementary material, table S2).
We used MALTn (MEGAN Alignment Tool) to align DNA
sequences to a reference database containing 47 713 archaeal
and bacterial genome assemblies, and as expected for ancient
dental calculus studies [51]; an average of 49.8% (±10.1%) of
DNA sequences in each sample could be assigned taxonomy.
The ancient Japanese calculus samples looked similar to
previously published ancient calculus samples (figure 2) and
were distinct from extraction blank controls (EBCs) (figure 2).
Additionally, there were phyla present in the ancient calculus
samples that were absent in modern plaque samples from the
HMP and included Synergistetes, Chloroflexi, Candidatus Sac-
chararibacteria, and Euryarchaeota (figure 2). These phyla
contain several species that can be associated with periodontal
disease in modern populations, such as Synergistetes: Fretibac-
terium fastidiosum [74]; Chloroflexi: Anaerolineaceae sp. oral
taxon 439 [75]; Candidatus Sacchararibacteria: TM7x [76]; and
Euryarchaeota: Methanobrevibacter oralis [77]. Therefore, the
absence of these phyla from the modern plaque samples
might be associated with disease-state, as all HMP samples
were taken from healthy individuals [27], but a current lack of
information regarding the microbiome in health status of
ancient individuals makes this difficult to classify [78].

As background DNA contamination can influence ancient
microbiome studies [27,79,80], we next assessed oral and
contaminant DNA levels in the samples by ordinating Bray
Curtis dissimilarity in a principal coordinates analysis
(PCoA) (figure 3), which included EBCs, ancient Japanese
samples, previously published ancient calculus specimens
[30], and modern healthy plaque samples from the HMP
[27]. Ancient Japanese calculus specimens clustered with pub-
lished ancient calculus specimens andwere dissimilar to EBCs,
as expected (figure 3). Except for one Edo calculus specimen
(A18022), ancient Japanese samples were distinct from
modern plaque samples from the HMP (figure 3). We took a
conservative approach and removed any species found in the
EBCs (electronic supplementary material, table S3) from the
Japanese calculus samples to help eliminate the contributions
of contaminant DNA [81]; an average of 94.8% species-
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assigned sequences remained after filtering, highlighting
the robust preservation of the specimens (electronic sup-
plementary material, table S4). Species present in ancient
Japanese samples after filtering by EBCs were largely pre-
viously identified in other oral microbiome studies [27,82]
and have entries in the Human Oral Microbiome Database
(HOMD) (electronic supplementary material, table S5), [83].
Lastly, we ran SOURCETRACKER on the filtered dental calculus
samples, which, of the source sample types used (skin, soil,
gut, saliva, modern plaque and ancient dental calculus), pre-
dicted dental calculus was the most likely source, with the
exception of sample A18022, which was predominantly
modern plaque (electronic supplementary material, figure S8).

Upon closer taxonomic investigation of our samples, we
noted that one sample (A18019_Japan_Jomon_5)wasmore con-
taminated and poorly preserved than the others. This sample
was pulled towards the EBCs in the PCoA (figure 3) and had
8 out of 41 species classified that were of oral origin (HOMD)
after filtering by EBCs (electronic supplementary material,
figure S1). As samples with poorer preservation typically
yield lower quantities ofDNA,which can lead to higher percen-
tages of duplicates, we assessed the percentage of duplicate
sequences in this sample using BBMAP’s dedupe2 (sourcefor-
ge.net/projects/bbmap/) and found that 81.9% of sequences
were duplicates. In the light of these findings, we removed
this sample from subsequent compositional analyses.

(b) Comparing the oral microbiota of Jomon and Edo
periods Japan

As the Jomon and Edo cultures are associated with distinct
diets and lifestyles, we wanted to explore the similarities
and differences between the microbiomes found in both cul-
tures. We found no significant differences in alpha diversity
between Jomon and Edo period Japanese samples (Shannon
and observed species non-parametric t-test p-values greater
than 0.05), which probably reflects the difficulty in obtaining
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clear diversity signatures in ancient calculus specimens [84].
We also found no significant differences in composition
(PERMANOVA of Bray-Curtis and Binary Jaccard distance
p-values greater than 0.05) or differentially abundant species
between the Edo period or Jomon samples (Kruskal–Wallis;
Bonferroni-correction p-values greater than 0.05). However,
one Edo period sample clustered closely with the modern
dental plaque samples in figure 3 (A18022) and had 10
classified species that were not present in any other sample:
Rothia aeria, Corynebacterium durum, Actinomyces johnsonii,
Actinomyces sp. HPA0247, Haemophilus parainfluenzae, Neis-
seria meningitidis, Neisseria sicca, Neisseria sp. HMSC072F04,
Fusobacterium hwasookii and Porphyromonas sp. KLE 1280.

(c) Oral microbiota correlates with disease status and
sex in the Edo period Japan

All of the female specimens in this study had evidence of per-
iodontal disease and had their teeth dyed black, which was a
common cultural practice of females in the Edo period (called
Ohaguro). Therefore, we wanted to test if the female samples
had different microbiota to male samples in our study. Again,
we found no significant differences in alpha diversity (Shannon
and observed species p-values greater than 0.05), as expected.
However, we did find a significant difference in microbiota
composition (PERMANOVA of Bray–Curtis distances p-value
0.028, test statistic 2.35) in females versus males, although this
was not observed in non-abundanceweightedmetric (PERMA-
NOVA of Binary Jaccard p-value greater than 0.05). No species
were significantly differentially abundant between males and
females with periodontal disease (Kruskal–Wallis test with
Bonferroni-correction p-values greater than 0.05). We also
tested for signatures of periodontal disease [85–87] in female
Edo individuals. No species were significantly associated
with caries prevalence or periodontitis (Kruskal–Wallis test
with Bonferroni-corrected p-values greater than 0.05), including
members of the periodontitis-associated ‘red-complex’ (Trepo-
nema denticola, Tannerella forsythia, Porphyromonas gingivalis)
[88]. However, the abundance of the periodontitis-associated
archaeon, Methanobrevibacter oralis [77,89,90], was substantially
higher in the females (mean abundance in females = 32%,
mean abundance in males = 5%) (figure 4), although this differ-
ence was not statistically significant when controlling for
multiple comparisons (Welch’s t-test Benjamini-Hochberg
false discovery rate corrected p-value 3.795). These results
suggest that the oral microbiota composition in Japanese Edo
women, who both practiced Ohaguro and suffered from
periodontal disease, is distinct from Edo men.

(d) Phylogenomic analysis
To further explore factors that drive microbial variation in
ancient Japan, we performed phylogenomic analysis to explore
strain diversity present in both periods. To find suitable candi-
dates for phylogenomic analysis, we determined the core oral
microbiome in ancient Japan (i.e. species present in every
sample). We found Actinomyces sp. oral taxon 414, Actinomyces
dentalis, Anaerolineaceae sp. oral taxon 439, and Olsenella sp. oral
taxon 807 to be present in all samples.

The oral bacterium Anaerolineaceae sp. oral taxon 439 was
chosen for phylogenetic analysis owing to its highmean relative
abundance within calculus samples (16.5%), which yielded a
greater depth of coverage and higher quality variant calls for
our fairly low coverage sequencing data (electronic supplemen-
tary material, table S6). This bacterium is present at low
abundance in healthy human plaque and higher abundance
in individuals with periodontal disease [75]. This bacterium
also has a high-quality, complete genome assembly needed
for phylogenomic reconstructions, although it remains the
only human-associated Anaerolineaceae genome currently pub-
licly available. Sequences mapped against the Anaerolineaceae
sp. oral taxon 439 genome had terminal cytosine deamination
typical of ancient DNA (electronic supplementary material,
figures S2 and S3), with the sequences mapping from Jomon
and El Sidron Neanderthal samples having higher levels of
cytosine deamination at terminal ends (13.9%) compared to
the more recent (400–150 year old) Edo samples (6%), as
expected with the increasing age of the samples [91].

We then used a conservative approach to examine Anaeroli-
neaceae genomic variants in all individuals. DNA sequences
mapped evenly across the genome (figure 5), and whole-
genome phylogenetic reconstruction found strong support for a
distinct Jomon clade (figure 6), which clustered separately from
Edo period samples (figure 6). This suggests that at least two dis-
tinct lineages of Anaerolineaceae strains existed in ancient Japan.
4. Discussion
This study is, to our knowledge, the first to explore oral micro-
biomes from ancient Japanese individuals, providing evidence
for past microbial changes in response to disease and changes
in human demography. While we did not observe major
differences between Jomon and Edo period microbiome com-
positions, differences between male and female Edo period
Japanese individuals were apparent, although the contri-
butions of cultural practices and periodontal disease need
further investigation. Finally, phylogenomic investigations
revealed at least two distinct Anaerolineaceae sp. lineages
between Jomon and Edo periods.

The switch to agricultural lifestyles from hunting and gath-
ering has been associated with a compositional change in oral
microbiota [28,30]. Here, we assessed dental calculus in both
hunter–gatherers and agriculturalists in ancient Japan. Archae-
ological evidence suggests that Jomon hunter–gatherers relied
on both terrestrial and marine resources, including nuts, deer,
boar, marine fishes and shellfish [92]. Carbon isotope ratios
of human teeth also suggest that C3 plants and terrestrialmam-
mals were major dietary resources for the Jomon people [41].
This is in stark contrast to individuals from the Edo period,
who led a predominantly agricultural subsistence [43].
Contrary to published research conducted in Europe, we did
not detect a statistically significant difference in microbiome
composition between Jomon (hunter–gatherer) and Edo (agri-
cultural) period Japanese. Furthermore, no microbial species
were found to be differentially abundant between cultures,
which could suggest that the classifiable oral microbiome com-
position did not drastically change in Japan from Jomon to
Edo periods. This supports findings that oral microbiota are
highly stable through time [93,94] and maybe minimally influ-
enced by certain dietary changes [95,96]. This is also consistent
with other studies comparing modern hunter–gatherer popu-
lations to industrialized populations, which failed to see
large changes in oral microbiota between these two lifestyles,
despite findings changes in gut microbiota [16]. However,
there are several alternative explanations. First, the limited
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sample size of our study (four Jomon and 10 Edo period) could
have prevented the detection of such differences. Additionally,
we were not able to control for tooth type owing to our
small sample size, which has been shown to influence the
microbial composition of modern plaque [97] and ancient
dental calculus samples [98]. Bioinformatically, we may have
also experienced biases in our species identifications, as the
species that we classified maybe biased towards core oral
taxa that are stable through time in Europeans, given that
most modern oral reference genomes are more commonly gen-
erated from European and American isolates [93,94,97,99].
Furthermore, we were only able to classify on average
approximately 49.8% of sequences from the ancient Japanese
samples, consistent with other ancient calculus studies
(e.g. [51]), and therefore, perhaps missed some of the microbial
diversity present in these ancient samples that were unique to
each culture or labile to dietary changes. Future improvements
of analytical tools and further sampling of oral microbial gen-
omes from broader human populations could allow for
classification of the unclassified portion of our data and poten-
tially provide enhanced bio-archaeological information from
ancient dental calculus.

We found a significant difference between the microbiome
composition of female andmale Edo period Japanese. A poten-
tial driver of this difference is oral disease status, as all of the
female samples had evidence of periodontal disease, which
has been demonstrated inmodern populations to impactmicro-
biome composition [85,87,100]. In particular, we found the
periodontal disease-associated archaeon, Methanobrevibacter
oralis [77,89,90], to be generally more abundant in females
versus males Edo period Japanese, although members of the
periodontitis-associated ‘red-complex’were not found to be dif-
ferentially abundant in females versusmales [88]. However, this
isunsurprisinggiven recent recognition thatperiodontal disease
is of complex aetiology, not the result of a handful of periopatho-
gens [101]. Interestingly, one Edo period sample (A18022) was
also compositionally distinct from others and had 10 species
classified that were not found in any other sample. This
sampleclusteredwith themodernhealthyHMPplaque samples
on the PCoA plot and in SOURCETRACKER analysis and could rep-
resent a ‘healthy’ ancient sample. Future studies with larger
sample sizes including both periodontal-positive and negative
individualsareneededtodetermine the influenceofperiodontal
disease on the male/female split we observed in Edo period
Japanese. Overall, our findings suggest that periodontal disease
is an important factor to examine when comparing microbial
composition in ancient dental calculus studies, and future
studies should aim to control for periodontal disease when
making cultural comparisons.

It is also possible that the use of Ohaguru may have also
influenced the femaleoralmicrobiota in ancient Japan. Theprac-
tice of Ohaguru was common in higher-status women until the
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end of the Edo period, when the practice was outlawed in 1870
[102]. Women would paint their teeth with a black paste, called
kanemizu, which was typically a mixture of iron (ferric) acetate
and vegetable tannins; for example, kanemizu can be created by
dissolving iron filings in vinegar and then adding in tannins
from tea [103]. It is plausible that introduction of both iron and
vegetable tannins using this method influenced the oral micro-
biota. For example, iron availability in an in vitro model of
salivary microbiota had a significant impact on the microbiota
composition [104]. Further, tea drinking has been shown to sig-
nificantly alter both salivary oral microbiota and that surveyed
by systematic oral brushing [105,106]. Regardless, this practice
probably impacted the oralmicrobiota via access to thesemicro-
nutrients, aspreviously reported isotopedata fromthe skeletons
found no significant differences in the general dietary intake
between male and female samples from the Early Edo period
[43]. Surprisingly, the practice of Ohaguru was thought to pro-
tect teeth from dental decay [103]; however, we find it
associated with evidence of periodontal disease, raising ques-
tions about its health benefits. Future studies could
empirically test the impact of kanemizu on oral microbiota
using in vitro models or examining the impact of other tooth
blackening processes on oral microbiota and health, as tooth
blackening was practised historically and is still practised
today in Oceania [107]. Nevertheless, microbiome studies may
provide further information into how cultural practices
influenced oral health in the past and today.

It iswidely accepted that themodern Japanese population is
the result of admixture between indigenous Jomon and later
migrants from continental Asia during and after the Yayoi
period [37]. Here, we observed a separation between Edo-
associated Anaerolineaceae lineages and those found in ancient
Jomon samples. While it is unclear how these two distinct
clades originated, one potential hypothesis is that the Edo-
period Anaerolineaceae strain originated in Japan through
human demographic processes. For example, continental
Asian Anaerolineaceae lineage/s could have been brought to
Japan by migrants who arrived in Japan from mainland Asia.
It also remains unclear if either strain still exists today, or if
the prevalence of the Jomon-period strain was diminished by
the Edo strain. This later scenario is plausible if the continental
Asian contribution to modern Japanese was larger than the
Jomon, resulting in the loss of the lineage in a fashion analogous
to genetic drift. Current estimates of Jomon genetic contribution
to modern Japanese is less than 20%, supporting this scenario
[37]. However, another possibility for this finding is that the
Jomon lineage has survived to this day, but that we did
not detect it owing to the small sample size of our study and
lack of comparable modern metagenomic data. Future studies
investigating modern individuals from across Japan could test
for the presence of the Jomon Anaerolineaceae lineage and try
to pinpoint the source of the Edo strains. Spatially diverse
sampling will be important, as it has been shown that genetic
contribution from Jomon varied among populations across
the Japanese Archipelago [35–37]. Further studies using ancient
dental calculus could also assist in learning more about the
source/s of Yayoi admixture, or the diversity of Jomon strains
prior to the arrival of mainland migrants, which remain
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undetermined. Future DNA sequencing efforts will allow for
the phylogenetic reconstruction of other human-associated
microorganisms and permit investigations into how these gen-
omes have changed through time, potentially yielding insights
into mechanisms of co-speciation with humans.
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