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Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that can establish
symbiotic associations with Vitis vinifera roots, resulting in positive effects on grapevine
performance, both in terms of water use efficiency, nutrient uptake, and replant
success. Grapevine is an important perennial crop cultivated worldwide, especially
in Mediterranean countries. In Italy, Piedmont is one of the regions with the longest
winemaking tradition. In the present study, we characterized the AMF communities
of the soil associated or not with the roots of V. vinifera cv. Pinot Noir cultivated
in a vineyard subjected to conventional management using 454 Roche sequencing
technology. Samplings were performed at two plant phenological stages (flowering
and early fruit development). The AMF community was dominated by members of
the family Glomeraceae, with a prevalence of the genus Glomus and the species
Rhizophagus intraradices and Rhizophagus irregularis. On the contrary, the genus
Archaeospora was the only one belonging to the family Archaeosporaceae. Since
different AMF communities occur in the two considered soils, independently from
the plant phenological stage, a probable role of V. vinifera in determining the AMF
populations associated to its roots has been highlighted.

Keywords: Vitis vinifera, arbuscular mycorrhizal fungi, biodiversity, conventional management, soil, grapevine
roots

INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) are beneficial symbiotic soil microorganisms that improve
the plant nutritional state by increasing the interface area between roots and soil (Hodge et al.,
2010). Moreover, the arbuscular mycorrhizal symbiosis provides other advantages for plants, such
as better tolerance versus biotic or abiotic stresses (Hodge et al., 2010; Bona et al., 2011; Lingua et al.,
2012; Degola et al., 2015) and improved fruit yield and quality (Baslam et al., 2013; Berta et al., 2014;
Bona et al., 2015, 2017, 2018; Todeschini et al., 2018).

Grapevine (Vitis vinifera L.) is an important perennial crop cultivated in all continents where
the climatic conditions are permissive. Italy is one of the five major grape producers in the world,
with about 8,600,000 tons which represent 11% of the production in the world (IOV, 2019).
It has been widely demonstrated that the inclusion of fresh grape and its derivates in the diet
(Vislocky and Fernandez, 2010) and also the reasonable consumption of wine (Georgiev et al., 2014;
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Artero et al., 2015) can give beneficial effects for human health,
decreasing the risk factors associated with cancer and age-related
cognitive decline as well as cardiovascular and neurodegenerative
diseases (Torres et al., 2018). Pinot Noir is a grapevine cultivar
from which both white and red fine wines, with typical
organoleptic characteristics, are produced all over the world.
In particular, the surface area dedicated to this cultivation
corresponds to 112,000 ha. Germany, Italy, and Switzerland
in Europe and United States, New Zealand, and Australia
in non-European countries are the main producers (IOV,
2017). Grapevines, during their life cycle, are subjected to
various cultivation practices which can interfere with the native
microbiota and also the fungal soil population. It is well
documented that practices like tillage, as well as the use of
fertilizers and/or pesticides, can reduce soil microbial biodiversity
(Berruti et al., 2014; Trouvelot et al., 2015; Zaller et al., 2018;
Nogales et al., 2019). The intensity and frequency of these
practices vary according to the type of vineyard management,
which can be classified into conventional, organic, and/or
integrated (Likar et al., 2017; Zaller et al., 2018). The growth and
development of grapevines are dependent on AMF (Linderman
and Davis, 2001; Schreiner, 2005), and the occurrence of species
specificity between V. vinifera and AMF has been observed
(Holland et al., 2014). In addition, if compared to non-native
ones, AMF native of a certain area are often reported to be more
effective in plant growth promotion (Schreiner et al., 2006). In
order to realize and manage a sustainable agricultural ecosystem,
the study of AMF communities associated with grapevines, in
the context of conventional management, becomes of great
importance (Likar et al., 2013). Several works described the
biodiversity of AMF in vineyards subjected to conventional
management. The AMF community of two differently managed
vineyards (tilled and covered) in Sardinia was characterized by
Lumini et al. (2010). Conventional management of the vineyard
leads to the development of different fungal and bacterial
microbial communities according to specific local biogeographic
factors (Likar et al., 2017). The differences between AMF
communities in a vineyard and in nearby unmanaged areas
were analyzed in order to highlight the impact of viticulture
on AMF community diversity and composition (Holland et al.,
2016). Finally, AMF biodiversity was studied in the roots of
V. vinifera cv. Pinot Noir and Chardonnay in Burgundy (France)
and Oregon (United States) (Bouffaud et al., 2016; Schreiner,
2020). In the past, the study of AMF communities was exclusively
based on the morphological identification of isolated spores.
More recently, this methodology has been complemented and/or
replaced by molecular techniques, applied both to roots and
soils as, for example, cloning followed by Sanger sequencing
(Vasar et al., 2017). Then, since the early 2000s, the use
of next-generation sequencing, including Roche 454 platform,
allowed the analysis of a huge number of sequences (hundreds
of thousands) per sample, enormously increasing the depth
of investigation. Molecular approaches are based on nuclear
ribosomal markers such as the small subunit (SSU) rRNA gene,
the internal transcribed spacer region (ITS), and the large subunit
(LSU) rRNA gene (Öpik and Davison, 2016). Based on the idea
that Piedmont has winemaking tradition that we can define

as historic, it becomes of extreme ecological and applicative
importance to get information on the AMF communities
associated with the vines. In this geographical zone, we therefore
identified a vineyard cultivated with grapevine cv. Pinot Noir and
subjected to conventional management. A detailed description of
the native AMF communities of the soils associated or not with
the grapevine roots at two plant phenological stages (flowering
and early fruit development) was obtained.

MATERIALS AND METHODS

Soil Sampling
The experimental vineyard is located in Mantovana (Predosa
municipality, Alessandria, Southern Piedmont, Italy – altitude:
215 m a.s.l., latitude: 44.730294◦ N, and longitude: 8.6226556◦E),
and it is subjected to conventional management. Glyphosate
treatment was performed in the vineyard in June. Trifloxistrobin
and Fosetyl-Al + copper were employed as fungicides against
Oidium spp. and Peronospora spp., respectively, and were
distributed in June and July, coupled with one insecticide
(thiamethoxan) and two sulfur treatments in July.

The soil, hereafter indicated as Bs, was sampled close to
the vineyard, in a not cultivated area covered in part with
grasses (Figure 1). The soil associated to the roots (Rs) of
V. vinifera cv. Pinot Noir, grafted onto SO4 rootstock, was
collected from grapevine roots entrapped in the soil cores taken
near the plant. Samplings were carried out in May 2014 (Bs1S
and Rs1S, flowering) and July 2014 (Bs2S and Rs2S, early fruit
development). For each soil (Bs or Rs) and time point (1S or
2S), five samples were collected from the topsoil (5–30 cm).
According to the Italian guide for soil analysis (GU 179/2002),
for each plant, three soil cores were taken, pooled, and mixed
to prepare one sample. The soil samples were stored at −20◦C
until DNA extraction.

The soil of the vineyard was clay-loam and acidic, as reported
in Gamalero et al. (2020); moreover, the climatic conditions
of the area, such as temperature, humidity, and rainfall, are
detailed in Bona et al. (2019).

AMF Root Colonization
Mycorrhizal colonization was evaluated microscopically
following the method of Trouvelot et al. (1986) as mycorrhizal
frequency, degree of AMF root colonization, and arbuscule
and vesicle abundance. Briefly, from grapevine roots, 30
randomly chosen 1-cm-long pieces were cut, cleared at 80◦C
for 90 min in 10% KOH, stained with 1% methyl blue in lactic
acid, and mounted onto slides. The results were analyzed by
ANOVA; differences were considered statistically significant for
p-values less than 0.05.

DNA Extraction and Amplification
Power Soil R DNA Isolation Kit (MO BIO Laboratories,
Inc., Carlsbad, CA, United States) was used, following the
manufacturer’s instructions, to extract DNA from five samples,
both of Bs and of the soil associated with the roots of V. vinifera
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FIGURE 1 | Vineyard aerial view showing the sampling points. The vineyard is located in Mantovana (Predosa municipality, Alessandria, Italy). The two soil sampling
sites included one in an area just outside the borders of the vineyard in the absence of grapevines (Bs, white dots) and one inside the vineyard corresponding to the
grapevine plants (Rs, cyan dots). Google Earth online version was used to produce this image (https://earth.google.com/web/).

(Rs), collected at flowering (1S) or at fruiting (2S) times. A hemi-
nested PCR, employing as template the previously extracted
DNA, was performed using LR1 and FLR2 (Cesaro et al., 2008)
primers for the first amplification and LR1 and FLR4 (Cesaro
et al., 2008) primers tagged with Multiplex Identifier sequences
for 454 Pyrosequencing (Roche) for the second one. In particular,
the FLR2 and FLR4 primers are specific for fungi and for
Glomeromycota, respectively (Farmer et al., 2007). The reactions
were performed at the conditions described in Massa et al. (2020).

Pyrosequencing employing 454 technology was performed on
the products of the second PCR (size, 700 bp). DNA-carrying
beads were loaded on a PicoTiterTM plate and surrounded by
enzyme beads (sulfurylase and luciferase). The light signals were
represented in flow grams and analyzed; a nucleotide sequence
was determined for each read with the GS Amplicon Variant
Analyzer software.

Bioinformatic Analysis
Data were analyzed using a custom bioinformatic pipeline as
fully described in Massa et al. (2020). Raw sequence reads were
demultiplexed. The reads with the following characteristics were
discarded: (1) read length less than 200 nucleotides, (2) average
Phred quality score less than 25 (Ewing et al., 1998), and (3)
presence of at least one ambiguous base inside the read. Then,
an alignment of each sequence was performed against our AMF

LSU rDNA database, consisting of 3.803 univocal sequences
downloaded from online sources: EBI and SILVA databases,
and from the web site1 (Krüger et al., 2011). Our database was
prepared as described in Massa et al. (2020). The alignment of
each sequence was performed using BLASTN (Altschul et al.,
1997). Two criteria were applied in order to identify the taxa at
species level (named “known”): coverage ≥80% and similarity of
sequences≥97% according to Lindahl et al. (2013) and Hart et al.
(2015). Following these criteria, chimeras were also removed.
All the sequences that did not satisfy both afore-mentioned
criteria were then aligned against themselves. After comparing
one sequence to each other, all those with coverage ≥80% and
similarity of sequences ≥97% were grouped together, and each
group was named de novo (Massa et al., 2020).

Bioinformatic analysis was performed on a database
containing the results normalized at 8,000 sequences. The
rarefaction curves were plotted with the RAM package of R (R
Core Team., 2018; Supplementary Figure 1).

Taxa Abundance and Biodiversity
Analysis
In order to describe the distribution of “known” and de novo
taxa in the different samples, the number of taxa with at least 10

1http://www.amf-phylogeny.com/amphylo_species.html
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sequences in one replicate was calculated, considering altogether
the replicates for each sample (if the same taxon was present
more than one time in the different replicates of the sample,
it was counted as one). The freely available Venny version 2.1
software2 was used to construct the Venn diagrams of AMF taxa
in Bs and Rs soils.

For abundance analysis, only taxa present with at least
10 sequences in one replicate were used (“known” reported
in Supplementary Table 1 and de novo in Supplementary
Table 2). Then, the de novo taxa were BLASTed against the NCBI
database to give them a name (Supplementary Table 2) as fully
described in Massa et al. (2020).

Using these data, the four AMF communities were compared
also by analysis with MicrobiomeAnalyst, a freely available online
software3, according to Berlanas et al. (2019) and to Sergaki et al.
(2018), which allow community description by alpha diversity,
heat trees, beta diversity, and linear discriminant analysis effect
size (LDA-LEfSe).

In particular, alpha diversity analysis was performed using the
phyloseq package (McMurdie and Holmes, 2013). The results
were represented as box plots for each sample. The statistical
significance was also estimated using either parametric or non-
parametric tests.

Heat tree method was used to compare abundance at
the species taxonomic level for space and time factors. Heat
tree uses a hierarchical structure of taxonomic classifications
to quantitatively (median abundance) and statistically (non-
parametric Wilcoxon rank-sum test) describe taxon differences
among communities. The resulting differential heat tree shows
the relative abundance of each taxon in two different samples.
Heat tree analysis was performed using R metacoder package
(Foster et al., 2017).

Beta diversity was analyzed using the phyloseq package
(McMurdie and Holmes, 2013). Principal coordinate analysis
(PCoA) was applied using Bray–Curtis distance-based method.
Permutational ANOVA (PERMANOVA) was employed for the
evaluation of the statistical significance of the clustering pattern
in ordination plots.

Moreover, LDA-LEfSe analysis using the non-parametric
factorial Kruskal–Wallis sum-rank test was applied. Features
were considered significant for adjusted p-value cutoff at 0.05 and
LDA score at 1.0.

Finally, for each sample, considering the sequence abundance
in the single replicates, the median value of the number of
sequences was calculated, and only the taxa with a median
higher than 0 (yellow lines in Supplementary Tables 1, 2) were
considered to be assigned to the different taxonomic groups.

Data Availability
The genomic datasets are available in NCBI using BioProject
ID PRJNA613620 containing the following BioSamples:
SAMN14411203, SAMN14411449, SAMN14411451, and
SAMN14411452 (project name: Vitis vinifera association with

2www://bioinfogp.cnb.csic.es/tools/venny
3https://www.microbiomeanalyst.ca

local AMF communities in an Italian vineyard at two different
phenological stages).

RESULTS

AMF Root Colonization
Arbuscular mycorrhizal fungi root colonization was checked
in grapevine plants in both sampling times. The frequencies
of colonization were 92.0 ± 2.5% at the first sampling and
94.2 ± 3.3% at the second sampling (p-value = 0.3658). The
degrees of mycorrhizal colonization were 35.4 ± 5.5 and
44.5 ± 8.0% (p-value = 0.3379), the arbuscule abundances were
13.9 ± 3.6 and 16.8 ± 5.3% (p = 0.6547), and the vesicle
abundances were 11.3 ± 3.0 and 17.6 ± 7.7% (p = 0.9491) in
the first and the second sampling, respectively. No significant
differences between the two sampling times were detected in all
the considered parameters.

Taxa Abundance and Analysis of
Biodiversity
Table 1 shows the real number of sequences for each replicate of
Bs and Rs soils. On average, the number of obtained sequences
was about 9,000. As the rarefaction curves reached a plateau
(Supplementary Figure 1), the number of obtained sequences
was adequate to properly describe the biodiversity of the AMF
community in the samples. A total of 467 taxa (305 univocal
taxa) were obtained from the two soils at the two sampling
times, including 177 (87 univocal taxa) “known AMF” and 290
(218 univocal taxa) de novo taxa (Supplementary Tables 1, 2).
Figure 2A shows the distribution of taxa in the different samples.
In Bs soil, 108 and 118 taxa were obtained in the first and the
second sampling time, respectively. In particular, 42 “known
AMF” taxa occurred in Bs1S sample and 49 in Bs2S (factor time),
while the number of de novo AMF taxa at the two sampling times
was 66 and 69, respectively. In Rs soil, a total of 104 and 137 taxa
was found in the first and the second sampling time, respectively.
In particular, in this soil, 48 “known AMF” taxa were observed

TABLE 1 | Number of sequences obtained from the different replicates of the soils
associated (Rs) or not (Bs) with the roots of Vitis vinifera cv. Pinot Noir at the two
sampling times (1S = flowering; 2S = fruit development).

Soil sample Replicate Number of sequences Average number
of sequences

1S 2S

Bs 1 2,492 9,670

2 10,949 9,730

3 6,252 11,639 9,133

4 9,685 12,169

5 11,600 7,145

Rs 1 6,286 8,153

2 13,603 6,405

3 9,910 6,623 9,224

4 10,229 12,570

5 9,641 8,816

Frontiers in Microbiology | www.frontiersin.org 4 July 2021 | Volume 12 | Article 676610

www://bioinfogp.cnb.csic.es/tools/venny
https://www.microbiomeanalyst.ca
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-676610 July 13, 2021 Time: 17:17 # 5

Cesaro et al. AMF Communities in Italian Vineyard

A

B

FIGURE 2 | (A) Abundance of the taxa obtained from the soils associated (Rs) or not (Bs) with the roots of Vitis vinifera cv. Pinot Noir during the two sampling times
(1S = flowering and 2S = fruit development). Bars represent the percentage of known (white) or de novo (gray) arbuscular mycorrhizal fungi taxa, while labels inside
the bars indicate the actual number of taxa. (B) Venn diagrams showing the number of taxa that were exclusive or common to (a) Bs and Rs soils in the first (1S) or in
the second (2S) sampling time (upper part on the left of the figure), (b) the first (1S) and the second (2S) sampling times in Bs or in Rs (lower part on the left of the
figure), and (c) the four soil samples (Bs1S, Rs1S, Bs2S, and Rs2S—on the right of the figure). The Venn diagrams were calculated by the freely available Venny
version 2.1 software (http://bioinfogp.cnb.csic.es/tools/venny).

at the first sampling time while 38 taxa in the second one; on
the contrary, the number of de novo AMF taxa was 56 and 99,
respectively (factor time).

Bs1S and Rs1S or Bs2S and Rs2S (factor space) shared 41 and
44 taxa, respectively (Figure 2B and Supplementary Table 3).
The AMF communities in Bs soils at the two sampling times
showed 43 taxa in common. On the other hand, the number
of taxa shared between the two sampling times in Rs soil was
57. Finally, all samples had 20 taxa in common (Figure 2B and
Supplementary Table 3).

To compare AMF alpha diversity, the number of observed
species, Simpson and Shannon indices were calculated (Figure 3).
For all these indices, differences were not significant, even if
an increased number of observed species occurred in Rs2S
compared to the other samples.

The heat trees reported in Figures 4, 5 represented time and
space effect on the AMF community. In particular, Figure 4A is

relative to time effect in Bs and displays the increased (blue line)
abundance of Rhizophagus irregularis in Bs2S compared to Bs1S
(Supplementary Table 4). Figure 4B reports the time effect in
the soil associated to V. vinifera roots and shows the increase
(blue lines) of de novo_570 (uncultured Glomus), de novo_660
(R. irregularis), and de novo_10711 (uncultured Glomus) and the
decrease (red line) of Septoglomus viscosum in the Rs2S compared
to Rs1S samples (Supplementary Table 4). In Figure 5A, is
represented the heat tree related to the space effect in the
first sampling time: while Glomus sp., Rhizophagus irregularis,
de novo_1903 (R. irregularis), and de novo_4639 (Glomus sp.)
increased (blue lines) in Rs1S compared to Bs1S soil, de
novo_358 (uncultured Archaeospora), de novo_581 (uncultured
Archaeospora), de novo_627 (uncultured Archaeospora), and
de novo_681 (uncultured Archaeospora) decreased (red lines)
(Supplementary Table 4). Finally, Figure 5B shows the heat
tree related to the space effect in the second sampling time.
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A B C

FIGURE 3 | Alpha diversity indices. (A) Number of observed arbuscular mycorrhizal fungi species (p-value, 0.5393), (B) Simpson index (p-value, 0.4700), and
(C) Shannon’s index (p-value, 0.8177) of biodiversity detected in the soils associated (Rs) or not (Bs) with the roots of Vitis vinifera cv. Pinot Noir at the two sampling
times (1S = flowering and 2S = fruit development). Alpha diversity analysis was performed using the phyloseq package of MicrobiomeAnalyst, a freely available online
software (https://www.microbiomeanalyst.ca).

Although de novo_660 (R. irregularis) and de novo_10711
(uncultured Glomus) increased (blue lines) in Rs2S compared
to Bs2S soil, de novo_358 (uncultured Archaeospora), de
novo_479 (uncultured Glomerales), and de novo_581 (uncultured
Archaeospora) decreased (red lines) (Supplementary Table 4).

Data analyzed by PCoA underlined a different community
composition between the two soils (PERMANOVA p-value,
<0.005), with Rs samples distributed more homogeneously than
Bs ones at both sampling times (Figure 6A), but no difference
occurred between the two sampling times (PERMANOVA
p-value, 0.994) (Figure 6B).

The LEfSe results, presented in Figure 7 and Supplementary
Table 5, showed the 13 taxa that better explained the differences
in the AMF community analyzed. In particular, Glomus sp.
showed a LDA score of 6.1 (p-value, 0.033341), the highest values
in Rs1S followed by Bs2S. Other important taxa present in the
soil associated to V. vinifera roots (Rs) were de novo_10711 that
was uncultured Glomus (LDA score, 3.8), de novo_570 that was
uncultured Glomus (LDA score, 3.79), de novo_10732 that was
Rhizophagus intraradices (LDA score, 3.77), de novo_660 that
was R. irregularis (LDA score, 3.58), and de novo_11975 that
was uncultured Rhizophagus (LDA score, 3.51). On the contrary,
the seven de novo taxa – de novo_358 that was uncultured
Archaeospora (LDA score, 5.62), R. irregularis (LDA score, 5.47),
de novo_561 that was uncultured Archaeospora (LDA score, 5.16),
de novo_581 that was uncultured Archaeospora (LDA score, 4.62),
de novo_627 that was uncultured Archaeospora (LDA score, 4.52),
de novo_681 that was uncultured Archaeospora (LDA score, 3.63),
and de novo_919 that was uncultured Archaeospora (LDA score,
3.58) – mostly explained the differences in Bs soil.

The de novo AMF taxa were named after being BLASTed
against NCBI database (Supplementary Table 2). Then,
for each sample, all the “known AMF” (yellow lines in
Supplementary Table 1) and the de novo-BLASTed (yellow lines
in Supplementary Table 2) taxa belonging to the same taxonomic

group were added (Figure 8A). Two taxa corresponded to higher
AMF classification levels (subphylum and order; Figure 8A –
cyan area on the left). Many taxa were included in the family
Glomeraceae (Figure 8A – central green area); the genus Glomus
was the most abundant group (22 taxa in Rs2S). All the other
remaining taxa of the family Glomeraceae belonged to the genus
Rhizophagus, with the exception of S. viscosum. All the taxa
belonging to the family Archaeosporaceae were included in only
one genus (Archaeospora; Figure 8A – orange area on the right).

Most of the taxonomic groups were detected in both soils, with
the exception of unidentified species of the genus Rhizophagus
that were observed only in Rs2S and S. viscosum that was detected
only in Bs soils at both sampling times (Figure 8A). Moreover,
the species Rhizophagus diaphanum was present in both soils, but
only at the second sampling time (Figure 8A).

The de novo AMF taxon identification by NCBI permitted
to highlight the presence of the genus Archaeospora that did
not appear among the “known AMF” taxa (Figure 8B). In
fact, the “known AMF” taxa belonged only to the family
Glomeraceae (Figure 8B).

All the identified de novo AMF taxa corresponded to
uncultured AMF, with the exception of four taxa: one belonging
to Glomeromycota, five to the genus Glomus, three to the
species R. irregularis, and one to the species R. intraradices
(Supplementary Table 2).

DISCUSSION

Arbuscular mycorrhizal fungi are widespread symbionts able to
colonize the roots of a lot of terrestrial plant species, including
V. vinifera (Trouvelot et al., 2015). The characterization of AMF
communities associated to grapevines is of interest by both
economic and historical viewpoints. In fact, Piedmont is one the
most important Italian regions for vineyard cultivation and wine
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A

B

FIGURE 4 | Heat tree based on the factor “time”, reporting the effect of sampling time on the hierarchical structure of taxonomic classifications (median abundance,
non-parametric Wilcoxon rank–sum test). (A) Bs1S vs. Bs2S. (B) Rs1S vs. Rs2S. Heat tree analysis was performed using the R metacoder package of
MicrobiomeAnalyst, a free available on-line software (https://www.microbiomeanalyst.ca).

production (ISTAT, 2018), and since 2014, the UNESCO World
Heritage list has included the hills of the Piedmont area covering
the Langhe, Roero, and Monferrato4. Therefore, we focused our
attention on the AMF community associated to the Pinot Noir
grapevine cultivar, which is largely cultivated in Piedmont.

4http://whc.unesco.org/en/list/1390

At the beginning, the mycorrhizal colonization of grapevine
roots was evaluated to assess the actual interaction between the
plant and the AM fungi present in the soil. The plant roots
were colonized by AMF at levels that were similar to those
reported in the literature (Schreiner, 2005, 2020; Likar et al.,
2013; Bouffaud et al., 2016; Massa et al., 2020), and no significant
differences between the two sampling times were observed. This
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FIGURE 5 | Heat tree based on the factor “space” reporting the effect of the presence of Vitis vinifera roots on the hierarchical structure of taxonomic classifications
(median abundance, non-parametric Wilcoxon rank–sum test). (A) Bs1S vs. Rs1S. (B) Bs2S vs. Rs2S. Heat tree analysis was performed using the R metacoder
package of MicrobiomeAnalyst, a freely available online software (https://www.microbiomeanalyst.ca).

is in contrast with the findings of Schreiner (2005) who reported
that the mycorrhizal colonization of V. vinifera cv. Pinot Noir
roots increased before bud break in the spring, reaching values
of about 50–60% of root length in early summer, that remained
constant until leaf senescence in late fall.

Fragments resulting from pyrosequencing analysis were
700 bp in length, so they have a larger size if compared to

those obtained in previously published works (Lumini et al.,
2010; Holland et al., 2014). A total of 467 taxa have been found.
This result is consistent with that reported by Holland et al.
(2016), in which 816 taxa were obtained using the SSU rDNA
marker for studying the AMF biodiversity in different vineyards
in Canada. Similarly, Massa et al. (2020) found 528 taxa of
AMF in an integrated pest-managed (IPM) vineyard in Piedmont
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FIGURE 6 | Comparison by principal coordinate analysis of the ecological distance (based on Bray–Curtis distance method) of the different compartments. (A) Soil
effect (Bs = soil not associated to grapevine roots, Rs = soil associated with the roots of Vitis vinifera cv. Pinot Noir); PERMANOVA F-value: 1.787, R-square:
0.090312, and p-value < 0.005. (B) Sampling time effect (1S = flowering and 2S = fruit development); PERMANOVA F-value: 0.48119, R-square: 0.026037, and
p-value < 0.994. Beta diversity analysis was performed using the phyloseq package of MicrobiomeAnalyst, a freely available online software
(https://www.microbiomeanalyst.ca).
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FIGURE 7 | Linear discriminant analysis–effect size (LDA–LEfSe) results using non-parametric factorial Kruskal–Wallis sum–rank test. Adjusted p-value cutoff = 0.05
and LDA score = 1.0; Glomus sp. (LDA score 6.1); de novo_358 – uncultured Archaeospora (LDA score 5.62), Rhizophagus irregularis (LDA score 5.47), de
novo_561 – uncultured Archaeospora (LDA score 5.16), de novo_581 – uncultured Archaeospora (LDA score 4.62), de novo_627 – uncultured Archaeospora (LDA
score 4.52), de novo_10711 – uncultured Glomus (LDA score 3.8), de novo_570 – uncultured Glomus (LDA score 3.79), de novo_10732 – Rhizophagus intraradices
(LDA score 3.77), de novo_681 – uncultured Archaeospora (LDA score 3.63), de novo_660 – Rhizophagus irregularis (LDA score 3.58), de novo_919 – uncultured
Archaeospora (LDA score 3.58), and de novo_11975 – uncultured Rhizophagus (LDA score 3.51). LEfSe analysis was performed with MicrobiomeAnalyst, a freely
available online software (https://www.microbiomeanalyst.ca).

(Italy). Considering the distribution of taxa among the different
samples, the highest number of taxa was observed in Rs2S. The
two soils showed different taxa: in the second sampling, only
44 taxa were shared by both soils, while 74 were present only
in Bs2S and 93 only in Rs2S. Moreover, only 20 taxa were
common to the two soils at the two sampling times. Compared
to the AMF community characterization performed in the IPM
vineyard considered in Massa et al. (2020), in the present work,
focused on a conventionally managed vineyard, a higher number
of taxa shared between the two soils and a lower number of taxa
exclusive of each soil were observed at the two sampling times.
On the contrary, considering the sampling time, both Bs and Rs
soils shared numbers of taxa similar to those reported in Massa
et al. (2020). However, a lower number of exclusive taxa for each
sampling time was observed. The differences between the AMF
community described in these two studies could be due to the
different vineyard management (IPM vs. conventional), but the
impact of chemical–physical soil parameters cannot be ruled out.

The biodiversity indices (number of observed species –
Shannon and Simpson’s indices) did not show significant
differences according to soil type (Bs vs. Rs) and sampling time
(1S vs. 2S). Our results confirmed what was previously reported
by Schreiner and Mihara (2009), demonstrating that AMF

vineyard communities did not change with season succession,
but differed according to the vineyard age and type of soil.
Consistently, the impact of seasonality on the biodiversity
of AMF has been described in crops other than grapevines
(Dumbrell et al., 2011; Bouamri et al., 2014; Vargas-Gastélum
et al., 2015).

Going into deeper detail and considering time and space
as separate factors, some significant differences have been
highlighted. In particular, an increase of R. irregularis in Bs and
an increase of R. irregularis and uncultured Glomus, combined
with a reduction of S. viscosum in Rs, were observed in the
second sampling time compared to the first one. Moreover, in
both sampling times, an increase of Glomus and R. irregularis
and a decrease in uncultured Archaeospora were recorded in
Rs compared to Bs.

Finally, the phylogenetic distance obtained by PCoA
supported the difference between Bs and Rs soils, confirming
what was previously discussed. These data are in accordance with
what was reported in other scientific works, which demonstrated
the effect of the plant in selecting the associated AM fungal
population (Cesaro et al., 2008; Holland et al., 2014).

Consistently with Massa et al. (2020), no fungal sequences
belonging to Claroideoglomeraceae, Acaulosporaceae,
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FIGURE 8 | (A) Number of taxa belonging to the different taxonomic groups –
obtained by adding the “de novo-BLASTed AMF” taxa with the “known AMF”
ones on the basis of the group to which they belonged – in the different
samples (Bs = soil not associated to grapevine roots, Rs = soil associated
with the roots of Vitis vinifera cv. Pinot Noir) at the two sampling times
(1S = flowering and 2S = fruit development). (B) Relative abundance of taxa
obtained considering separately “known AMF” and “de novo-BLASTed AMF”,
belonging to each taxonomic group, in Bs and Rs soils at the two sampling
times (1S = flowering and 2S = fruit development).

Gigasporaceae, and Diversisporaceae were detected even if
the primers used were specific for all AMF. Many fungal
taxa corresponded to Glomeraceae, which is one of the most
represented family in agricultural lands (Cesaro et al., 2008;
Berruti et al., 2014) and also in vineyards (Balestrini et al., 2010;
Lumini et al., 2010; Holland et al., 2014; Trouvelot et al., 2015;
Bouffaud et al., 2016; Massa et al., 2020). This abundance could
be explained by the high growth rate and the fast recovery of the
hyphal network following the disturbance caused by agricultural
practices (Berruti et al., 2014; Trouvelot et al., 2015) that are
typical of the fungi belonging to this family. Although the genus
Glomus was the most abundant, all the other remaining taxa
of the family Glomeraceae, with the exception of S. viscosum,
belonged to the genus Rhizophagus.

In agreement with Schreiner and Mihara (2009); Balestrini
et al. (2010), Oehl and Koch (2018); Massa et al. (2020),
and Schreiner (2020), we found AMF members of the family
Archaeosporaceae represented only by one genus, Archaeospora.

The AMF community of a conventionally managed vineyard
(with a prevalence of Glomeraceae and Archaeosporaceae)
described in this work partly overlapped with those characterized
in other vineyards subjected to a different management
(Schreiner and Mihara, 2009; Balestrini et al., 2010; Holland
et al., 2016; Massa et al., 2020). However, a lot of uncontrolled
variables such as soil tillage, cover crops, manure application,
and quality and amount of herbicides, fertilizers, and pesticides
can influence the AMF diversity or community composition
(Turrini et al., 2017).

In conclusion, in this work, a difference in AMF communities
was observed between the two considered soils (Bs and Rs)
independently from the plant phenological stage, suggesting a
possible role of V. vinifera in modulating the AMF populations
associated to its roots.

Overall, looking at the improvement in the global
sustainability of viticulture practices, this study broadens
the knowledge already gained by other works (Novello et al.,
2017; Bona et al., 2019; Gamalero et al., 2020; Massa et al.,
2020) regarding the microbiota associated with Pinot Noir
grapevines cultivated in a geographic region historically
dedicated to viticulture.
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