
Frontiers in Oncology | www.frontiersin.org

Edited by:
Jiuquan Zhang,

Chongqing University, China

Reviewed by:
Haitao Yang,

Chongqing Medical University, China
Shengsheng Xu,

The First Affiliated Hospital of
Chongqing Medical University, China

*Correspondence:
Yu Zhang

zhangyusdfyy@163.com
Chunhong Hu

sudahuchunhong@163.com

†These authors have contributed
equally to this work and share

first authorship

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 01 September 2020
Accepted: 11 January 2021

Published: 24 February 2021

Citation:
Xiong X, Wang J, Hu S, Dai Y, Zhang Y

and Hu C (2021) Differentiating
Between Multiple Myeloma and
Metastasis Subtypes of Lumbar
Vertebra Lesions Using Machine

Learning–Based Radiomics.
Front. Oncol. 11:601699.

doi: 10.3389/fonc.2021.601699

ORIGINAL RESEARCH
published: 24 February 2021

doi: 10.3389/fonc.2021.601699
Differentiating Between Multiple
Myeloma and Metastasis Subtypes of
Lumbar Vertebra Lesions Using
Machine Learning–Based Radiomics
Xing Xiong1†, Jia Wang1†, Su Hu1,2, Yao Dai1, Yu Zhang1,2,3*‡ and Chunhong Hu1,2*‡

1 Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China, 2 Institute of Medical Imaging,
Soochow University, Suzhou, China, 3 State Key Laboratory of Radiation Medicine and Protection, Soochow University,
Suzhou, China

Objective: To determine whether machine learning based on conventional magnetic
resonance imaging (MRI) sequences have the potential for the differential diagnosis of
multiple myeloma (MM), and different tumor metastasis lesions of the lumbar vertebra.

Methods: We retrospectively enrolled 107 patients newly diagnosed with MM and
different metastasis of the lumbar vertebra. In total 60 MM lesions and 118 metastasis
lesions were selected for training classifiers (70%) and subsequent validation (30%).
Following segmentation, 282 texture features were extracted from both T1WI and T2WI
images. Following regression analysis using the least absolute shrinkage and selection
operator (LASSO) algorithm, the following machine learning models were selected:
Support‐Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF),
Artificial Neural Networks (ANN), and Naïve Bayes (NB) using 10-fold cross validation,
and the performances were evaluated using a confusion matrix. Matthews correlation
coefficient (MCC), sensitivity, specificity, and accuracy of the models were also calculated.

Results: To differentiate MM and metastasis, 13 features in the T1WI images and 9
features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier
from the T2WI images achieved the best performance (MCC = 0.605) with accuracy,
sensitivity, and specificity of 0.815, 0.879, and 0.790, respectively, in the validation cohort.
To differentiate MM andmetastasis subtypes, eight features in the T1WI images and seven
features in the T2WI images were obtained. Among the 10 classifiers, the ANN classifier
from the T2WI images achieved the best performance (MCC = 0.560, 0.412, 0.449),
respectively, with accuracy = 0.648; sensitivity 0.714, 0.821, 0.897 and specificity 0.775,
0.600, 0.640 for the MM, lung, and other metastases, respectively, in the validation
cohort.

Conclusions: Machine learning–based classifiers showed a satisfactory performance in
differentiating MM lesions from those of tumor metastasis. While their value for
distinguishing myeloma from different metastasis subtypes was moderate.
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INTRODUCTION

Bone metastasis and multiple myeloma (MM) are two different
diseases, although both frequently involve bone marrow
evaluation during clinical workup (1), which may result in
bone pain and fractures for patients (2). Metastasis is the most
common outcome of tumors and is often displayed as an
osteolytic or sclerosing lesion on bone tissue (3). To identify
metastasis, 18F-Fluorodeoxyglucose (18F-FDG) Positron
Emission Tomography (PET) and Computed Tomography
(CT) (18F-FDG PET/CT) play irreplaceable roles in detecting
primary cancer and evaluating metastasis, but are accompanied
by high radiation exposure and expensive costs for patients. For
example, metastases from lung cancer are the most prevalent
type of metastases (4). If these lesions were accurately predicted
by conventional magnetic resonance imaging (MRI), it would
narrow the examination range to using chest CT, which is easily
accessible and much cheaper. The identification of cheaper
imaging examinations to detect primary cancer will thus
provide a beneficial cost-effective approach for the
management of patients. Recently, the morbidity of MM has
increased (5, 6). Although MM can be adequately monitored by
quantifying paraproteins (M-protein) in the serum and urine,
some myelomas are non-secretory or hypo-secretory and are
therefore difficult to manage after the primary diagnosis (7).
Thus, precise identification of vertebra lesions using medical
images could be beneficial for follow-up examinations and
treatment strategies. In particular, for patients who do not
have a known primary cancer, a correct diagnosis would
provide important information for choosing the most
appropriate clinical workup. Chemotherapy and radiation
therapy are the two main options for the treatment of
myeloma patients (8). With regard to metastatic cancer,
further follow-up for detecting the primary cancer may be
needed before choosing the optimal treatment strategy, which
may include surgery, radiation, and/or chemotherapy. While
MRI can provide detailed morphological information about
lesions and is the most sensitive imaging modality for tumor
infiltration in bone marrow, MM and metastasis appear similar
and are often indistinguishable (9), particularly for multiple
vertebra focal osteolytic lesions (10). Previous studies have
reported that vascular parameters measured by dynamic-
contrast-enhanced (DCE) MRI can help identify primary
spinal cancers (11, 12) and metastatic cancers of different
primary tumors (13, 14).

Machine learning is an emerging area of “radiomics” that
extracts, analyzes, and interprets quantitative imaging features
and has been applied in many fields (15–17). Machine learning
allows for objective evaluation of lesions and organ heterogeneity
beyond a subjective visual interpretation and may provide
valuable information about the tissue microenvironment (18).
Machine learning algorithms are categorized into supervised
(using labeled data) and unsupervised (using unlabeled
examples) learning and are able to process a large number of
radiomic variables to characterize tumor phenotypes. The goal of
supervised learning is to learn from a certain portion of a trained
data set with known labels and to predict the classification for
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unknown patterns from datasets using algorithms such as
Support Vector Machine (SVM), Random Forest (RF), and
Artificial Neural Network (ANN).

To the best of our knowledge, there have been no studies to
date focusing on the differential diagnosis of MM and metastasis
subtypes on lumbar vertebra based on conventional MRI
sequences. This study aimed to determine whether machine
learning–based classifiers could be helpful to differentiate MM
lesions on lumbar vertebra from metastatic lesions and their
respective subtypes.
MATERIAL AND METHODS

Patients
This study was approved by the Ethics Committee of our
institution and the need for informed consent was waived. We
retrospectively collected clinical and MRI information of patients
experiencing back or lumbar pain from January 2018 to May
2020. Inclusion criteria: (1) patients diagnosed with MM
according to the International Myeloma Working Group
Diagnostic Criteria (19) or metastatic tumors on lumbar
vertebra confirmed by core needle or excisional biopsy; (2)
patients with no MRI examination contradiction; (3) patients
with intact and high quality MRI images before treatment,
including sagittal T1WI and sagittal and transverse T2WI
sequences; (4) at least one lesion having a diameter >1 cm; and
(5) availability of complete clinical information. Exclusion
criterion: (1) patients presenting solely lumbar disc herniation;
(2) patients presenting solely spinal degenerative changes; and
(3) patients with primary bone neoplasm. All patients in the
study had no prior history of malignant tumor diagnosis, and all
metastasis patients had been subjected to pathological analyses
for primary cancer. The eligible patients were randomly divided
into the training and validation cohorts at a ratio of 7 to 3. The
flowchart shows the analysis pathway for this study (Figure 1).

MRI Examination
All patients underwent MRI examinations using a 3.0T MRI
scanner (Magnetic Verio, Siemens Healthcare, Erlangen,
Germany) equipped with a Total imaging matrix system. The
protocol included the following parameters: sagittal T1W turbo
spin echo (TSE) (repetition time/echo time, 1,700 ms/8.6 ms;
section thickness, 4 mm; gap, 0.8 mm; turbo factor, 8; FOV,
448 mm × 448 mm), sagittal T2W TSE fs (repetition time/echo
time, 3,000 ms/91 ms; section thickness, 4 mm; gap, 0.8 mm;
turbo factor, 15; FOV, 448 mm × 448 mm), as well as transverse
T2W TSE (repetition time/echo time, 4,040 ms/100 ms; section
thickness, 4 mm; gap, 0.8 mm; turbo factor, 25; FOV, 348 mm ×
384 mm). The scanning region ranged from T11 to S1.

Lesion Segmentation
All images were collected from the institution’s Picture
Archiving and Communication System (PACS) in the form of
DICOM with accordant window width and window location.
The region of interest (ROI) was created manually from T2WI
February 2021 | Volume 11 | Article 601699
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using MaZda (version 4.6.0, Institute of Electronics, Technical
University of Lodz). Only lesions with hypointensity on the T1W
TSE images and corresponding intermediate to high signal
intensity on T2W TSE fs images were selected for analysis.
Since there may be multiple lesions on each patients’ lumbar
vertebra, only the lesions whose diameters were >1 cm were
Frontiers in Oncology | www.frontiersin.org 3
selected to avoid the partial volume effect. Meanwhile, if the
number of lesions on the vertebra meeting the requirements were
more than 3, then the largest of the 3 lesions was chosen for the
analysis. The detailed procedures were as follows: ROI were
manually defined along the largest cross-sectional area on the
sagittal T2W TSE fs in MaZda carefully avoiding the edge of the
vertebra, Schmorl nodule, vessels, and vertebral hemangiomas.
Classical vertebral hemangiomas are usually displayed as high-
signal intensities both on T1W TSE and T2W TSE fs images.
Next, the ROIs of the T2W TSE fs images were copied to the
same location of the T1W TSE sequence (Figure 2).

Texture Feature Extraction
Before feature extraction, gray-scale normalization was
performed between m ± 3s (where m, the mean value of the
gray levels within the ROI; s, the standard deviation) to reduce
brightness and contrast variations and minimize the influence of
inter-scanner as well as field strength differences, in order to
improve the robustness and repeatability of texture features, as in
previous studies (20, 21). Each lesion was jointly selected by two
radiologists (one having 3 years’ experience and was reassessed
by another senior radiologist with 10 years’ experience). They
were both blinded to the clinical results.

As many as 282 variables were generated within each ROI,
which were derived from 5 different statistical image descriptors:
histogram features, gradient features, gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GRLM), and an
autoregressive model (AR). GLCM and GRLM features were
calculated at 6 bits per pixel, gradient features were calculated at
4 bits per pixel, the first-order histogram and the AR features
were calculated at 8 bits per pixel. A detailed description of these
textural features can be found at the official MaZda website
(https://www.Eletel.p.Lodz.Pl/mAzda/).
A B

FIGURE 2 | An example of the manual segmentation in one lesion with myeloma. (A) The segmented area was within the red contour on the largest cross-sectional
area on sagittal T2WI. (B) The segmented area was copied to the same slice of T1WI images. The two slices were from the same patient at the same axis.
FIGURE 1 | The flowchart of inclusion and exclusion criteria.
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Feature Selection
All features were first normalized by subtracting the mean value
and divided by the standard deviation. Then, to evaluate the
reproducibility and stability of the features, another radiologist
with 7 years’ experience independently segmented the ROIs in 30
randomly selected patients. All radiologists were blinded to the
clinical information. Intraclass correlation coefficient (ICC)
values were calculated for each texture feature. Only the
features with ICC value ≥ 0.80 were termed as excellent
reproducibility and were selected for further analysis. Then the
least absolute shrinkage and selection operator (LASSO)
regression method was performed for each classifier based on
binomial deviance minimization criteria in the train cohort. A
10-fold cross-validation method was adopted to avoid
potential bias.

Classification and Validation
Five supervised machine‐learning algorithms were implemented
in this study: SVM, RF, Naïve Bayes (NB), K-Nearest Neighbor
(KNN), and ANN. A combination of two sequences, a total of 10
machine‐learning classifiers were constructed in the train cohort
and tested in the validation cohort. For each model, 10‐fold
cross‐validation was used to verify the classification accuracy in
the train cohort, and the Matthews correlation coefficient (MCC,
Eq. 1) of the generated confusion matrix was applied to quantify
the differentiation performance in function of its robustness in
the imbalanced data, as previously reported (22, 23). Accuracy,
specificity, and sensitivity were also calculated.

MCC = ½(TP � TN) − (FP � FN)�=½(TP + FP)(TP + FN)(TN

+ FP)(TN + FN)�1=2

Eq.1. The equation of MCC; MCC, Matthews correlation
coefficient; TP, true positive; TN, true negative; FP, false positive,
FN, false negative.

Statistical Analysis
Statistical tests were performed using R statistical software
(version 3.3.3, https://www.r-project.org). Student’s t‐test or
Mann-Whitney U test was applied for the continuous
variables, and the c2 test was applied for the categorical
Frontiers in Oncology | www.frontiersin.org 4
variables between the two cohorts as appropriate. A value of
two-tailed P < 0.05 was regarded as statistically significant in
this study.
RESULTS

Patients
Overall, 107 patients were enrolled in the study, which included
60 patients with metastases (37 males, 23 females; age, 61.5 ± 8.6
years old) and 47 patients with MM (29 males, 18 females; age,
59.5 ± 10.9 years old). According to the International Staging
System classification, MM were 8 in stage I, 25 in stage II, and 14
in stage III. Distribution of primary tumor included: lung cancer
(n = 30), stomach cancer (n = 2), hepatocellular carcinoma (n =
2), renal cell carcinoma (n = 1), nasopharyngeal cancer (n = 13),
rectal cancer (n = 1), and breast cancer (n = 11). Among them, 60
MM lesions and 118 metastasis lesions were selected for the
training and validation of classifiers. There was no statistically
significant difference in age or sex distribution between the
training (n = 75) and validation (n = 32) cohorts (P = 0.910,
0.268, respectively).

Analysis of Feature Reproducibility
In T1WI images, 194 out of 282 features showed excellent
reproducibility (ICC ≥ 0.80). In T2WI images, 232 out of 282
features showed excellent reproducibility (ICC ≥ 0.80).
Therefore, these features were accepted for further analysis.

Diagnostic Performance Between
Myeloma and Metastasis
For the classification of myeloma and metastasis, 13 features in
T1WI images and 9 features in T2WI images were generated
using the LASSO algorithm. The selected features and their
values are presented in Table 1 and Figure 3.

After cross-validation training, the ANN-based classifiers
from T1WI and T2WI images achieved optimal performance
with an MCC and accuracy value of 0.965, 0.912 and 0.960,
0.984, respectively. While in the validation cohort, the ANN-
based classifier from T2WI images outperformed the other
classifiers with an MCC and accuracy value of 0.605 and 0.815,
TABLE 1 | Selected features for classification.

Sequence Classification between myeloma and metastasis Classification between myeloma and metastasis subtypes

T1WI Kurtosis 50th percentile 50th percentile S(5.5)DifEntropy
S(0.3)Correlation S(3.3)InvDfMom S(0.4)InvDfMom S(4.4)InvDfMom
S(3.3)DifEntropy S(4.0)SumAverg S(0.5)AngScMom S(5.5)AngScMom
S(4.0)SumVariance S(5.0)SumAverg S(5.5)Contrast S(5.5)Entropy
S(5.5)AngScMom S(5.5)Contrast
S(5.5)Correlation S(5.5)InvDfMom
Teta1

T2WI MinNorm S(0.1)SumAverg MinNorm S(4.4)DifEntropy
S(1.1)SumOfSqs S(5.0)SumAverg S(1.1)SumOfSqs S(5.5)Entropy
S(5.5)Entropy S(5.5)DifEntropy S(3.3)SumVariance S(5.5)DifEntropy
S(5.5)DifEntropy GrSkewness S(4.4)SumVariance
Teta2
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respectively (Table 2, Figure 4). Figure 4 shows the ANN-based
confusion matrix generated for the training and validation
cohorts and the performance of five classifiers from
T2WI images.

Diagnostic Performance for Myeloma and
Metastasis Subtypes
To differentially classify myeloma from metastasis from lung
cancer (Met-Lung) and metastasis from other tumors (Met-
Others), 8 features in TIWI images and 7 features in T2WI
images were identified using the LASSO method. The selected
features and their values are presented in Table 1 and in
Figure 5.
Frontiers in Oncology | www.frontiersin.org 5
After cross-validation training, the ANN-based classifiers
from T1WI and T2WI images achieved the optimal
performance with MCC = 0.818, 0.704, 0.631, accuracy = 0.750
and MCC = 0.800, 0.774, 0.692, accuracy = 0.831, respectively
(Table 3). While in the validation cohort, the ANN-based
classifier from T2WI images outperformed the other classifiers
with MCC = 0.560, 0.412, 0.449 and accuracy = 0.648,
respectively (Table 3, Figure 6). To differentiate myeloma
lesions from metastasis, the ANN-based classifier from T2WI
images achieved a better performance in comparison with
differentiating Met-Lung or Met-Others lesions from others
tumor lesions in both the training and validation cohorts.
Figure 6 shows the ANN-based confusion matrix obtained for
A

B D

C

FIGURE 3 | Heat-maps of the selected features from T1WI (A, B) and T2WI (C, D) for train (A, C) and validation (B, D) cohort show distribution and differences of
normalized (z-score) feature values by presenting each lesion’s individual value.
February 2021 | Volume 11 | Article 601699
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TABLE 2 | Classification results of machine learning–based classifiers in differentiating myeloma and metastasis.

Sequence Classifier Train cohort Validation cohort

ACC SEN SPE MCC ACC SEN SPE MCC

T1WI ANN 0.984 1.000 0.954 0.965 0.685 0.764 0.550 0.318
RF 0.742 0.880 0.462 0.329 0.704 0.886 0.368 0.301
SVM 0.774 0.843 0.634 0.484 0.704 0.829 0.474 0.381
NB 0.790 0.916 0.537 0.502 0.648 0.829 0.316 0.166
KNN 0.734 0.268 0.964 0.345 0.704 1.000 0.158 0.329

T2WI ANN 0.960 0.988 0.909 0.912 0.815 0.879 0.790 0.605
RF 0.726 0.831 0.512 0.359 0.778 0.914 0.526 0.492
SVM 0.774 0.988 0.342 0.475 0.685 0.943 0.211 0.233
NB 0.750 0.904 0.439 0.396 0.796 0.943 0.526 0.539
KNN 0.766 0.342 0.976 0.468 0.704 0.914 0.316 0.295
Frontiers in Oncology
 | www.frontiersin.org
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ANN, artificial neural network; RF, random forest; SVM, support vector machine; NB, Naive Bayesian; KNN, K-nearest neighbor; ACC, accuracy; SEN, sensitivity; SPE, specificity; MCC,
Matthews correlation coefficient.
A B

C

FIGURE 4 | The ANN-based confusion matrix of train (A) and validation (B) cohort. Histogram (C) shows the performance of classifiers from T2WI images for
discriminating myeloma and metastasis in train and validation cohort. ANN, artificial neural network; RF, random forest; SVM, support vector machine; NB, Naive
Bayesian; KNN, K-nearest neighbor; MCC, Matthews correlation coefficient.
01699
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the training and validation cohorts and the performance of five
classifiers from T2WI images.
DISCUSSION

In this study, machine learning–based MRI classifiers were
constructed to establish a noninvasive classification of MM and
metastasis subtypes of lumbar vertebra. The ANN-based classifier
from T2WI images achieved satisfactory performances for
differentiating myeloma from metastasis and moderate
Frontiers in Oncology | www.frontiersin.org 7
performance for classifying metastasis subtypes. To our
knowledge, this is the first study to establish machine learning–
based classifiers using conventional MRI sequences to distinguish
MM and metastasis subtypes. The analysis revealed the value of
machine learning–based classifiers from T2WI images in
discriminating malignant tumors of lumbar vertebra.

Prior radiological study reported that compare with MM,
bone metastases more commonly affect the vertebral pedicles
rather than vertebral bodies, rarely involve mandible and distal
axial skeleton (24). Uygar et al. (25) have compared the CT
features of MM and osteolytic metastatic bone lesions. The result
A

B D

C

FIGURE 5 | Heat-maps of the selected features from T1WI (A, B) and T2WI (C, D) for train (A, C) and validation (B, D) cohort show distribution and differences of
normalized (z-score) feature values by presenting each lesion’s individual value; MET, metastasis.
February 2021 | Volume 11 | Article 601699
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confirmed that the presence of high density, lesional
homogeneity, perilesional sclerosis, and marginal features
could be used to distinguish metastatic from MM lesions. Lee
et al. (26) found that the salt and pepper infiltration pattern, the
presence of more than five lesions within one vertebra, and the
involvement of more than three consecutive vertebrae on MRI
images were useful findings for differentiation between MM and
metastasis involving the spine, but there were no significant
differences in signal intensities or enhancement patterns. They
concluded that it is difficult to distinguish between the two
conditions in most cases. In additional, these conventional
radiological features were assessed visually, so they depend on
readers’ subjective evaluation and are not always typical.

Considering the difficulty of classification based on
conventional radiological features, in recent years, advanced
MRI technologies have been gradually applied to the
differential diagnosis of focal vertebral lesions. Park et al. (1)
held that the value of ADCav, ADCmin, and ADCvol of MM
were significantly lower than those of metastasis. This study
suggested that the addition of axial DWI to standard MR
imaging can be helpful to diagnose MM from metastasis at 3T.
In Lang et al.’s study (27), the characteristic DCE parameters
between the myeloma and metastatic cancer groups were
compared, and the findings showed that the myeloma group
Frontiers in Oncology | www.frontiersin.org 8
had a significantly higher Ktrans and Kep compared to the
metastatic cancer group. Based on these findings, Lang et al.
explored how to differentiate metastatic lesions in the spine that
originated from primary lung cancer from other cancers using
radiomics and deep learning based on DCE-MRI (28). However,
advanced imaging is not included in all medical conditions and
places high demands on acquisition and analysis methods. Thus,
the ability to classify vertebra tumors based on conventional MRI
sequences would be beneficial for clinical work-up.

Recently, radiomics has been proposed as an approach to
overcome the limitations of visual assessment and has become a
promising tool in modern radiology. By extracting and analyzing
high throughput of image features, radiomics can provide
important information about tissue physiology. A method that
combines radiomics and machine learning has produced a non-
invasive classification and prediction model able to distinguish
histological subtypes of lesions (29, 30), distant metastasis of
tumors (31), and therapeutic response or prognosis (32). In the
current study, feature selection was performed by the LASSO
method, which had proven to be efficient and effective for feature
dimensionality reduction (33).

The results of feature selection showed that the most
contributory features to the classification between subtypes
derive from GLCM. This feature set is calculated by the number
TABLE 3 | Classification results of machine learning–based classifiers in differentiating myeloma and metastasis subtypes.

Sequence Classifier Train cohort Validation cohort

ACC SEN SPE MCC ACC SEN SPE MCC

T1WI ANN 0.750 0.970 0.901 0.818 0.519 0.588 0.767 0.336
0.704 0.825 0.704 0.758 0.381 0.148
0.656 0.917 0.631 0.763 0.625 0.324

RF 0.492 0.537 0.735 0.267 0.551 0.588 0.865 0.470
0.857 0.250 0.138 0.694 0.389 0.083
0.642 0.674 0.302 0.771 0.684 0.446

SVM 0.621 0.707 0.747 0.436 0.556 0.467 0.769 0.231
0.389 0.875 0.299 0.765 0.450 0.223
0.723 0.805 0.525 0.800 0.737 0.526

NB 0.565 0.439 0.916 0.400 0.537 0.625 0.895 0.542
0.417 0.727 0.141 0.771 0.316 0.095
0.787 0.701 0.474 0.629 0.684 0.299

KNN 0.581 0.537 0.892 0.465 0.518 0.474 0.857 0.360
0.306 0.852 0.181 0.250 0.816 0.075
0.830 0.610 0.430 0.790 0.600 0.373

T2WI ANN 0.831 0.969 0.891 0.800 0.648 0.714 0.775 0.560
0.756 0.975 0.774 0.821 0.600 0.412
0.809 0.883 0.692 0.897 0.640 0.449

RF 0.476 0.585 0.735 0.311 0.481 0.579 0.686 0.257
0.194 0.807 0.002 0.188 0.816 0.004
0.595 0.662 0.253 0.632 0.714 0.336

SVM 0.637 0.707 0.819 0.518 0.556 0.526 0.771 0.302
0.444 0.898 0.387 0.313 0.816 0.141
0.723 0.727 0.509 0.790 0.743 0.512

NB 0.589 0.561 0.892 0.487 0.574 0.526 0.829 0.440
0.278 0.875 0.185 0.375 0.895 0.317
0.8511 0.597 0.440 0.790 0.629 0.400

KNN 0.597 0.659 0.819 0.475 0.519 0.580 0.743 0.318
0.222 0.932 0.221 0.125 0.895 0.033
0.830 0.623 0.442 0.790 0.620 0.400
Febru
ary 2021 | Volum
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ANN, artificial neural network; RF, random forest; SVM, support vector machine; NB, Naive Bayesian; KNN, K-nearest neighbor; ACC, accuracy; SEN, sensitivity; SPE, specificity; MCC,
Matthews correlation coefficient.
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of gray-level combinations of images, distances, and angles (34),
which reflect the local heterogeneity changes inside the lesion, as
previous studies have reported (35–37). Compared with
metastases, spinal myelomas have high cellular density with little
interstitial space in histological level (27). Hence, myelomas
should have lower heterogeneity in theory than metastases,
which could explain the different gray-level distribution between
spinal myelomas and metastases. For instance, the entropy reflects
the regularity of texture and uniformity of grey-level distribution
(38). Consistent with higher heterogeneity, the entropy of
metastases from T2WI images was higher than that of
myelomas in our study.

Classifiers were trained using various machine-learning
algorithms including ANN, SVM, k-NN, NB, and RF in our
study. Prior to validation, each classifier underwent further
internal cross-validation to assess the classification accuracy. The
best classifier was obtained using the ANN algorithm in T2WI
images, regardless of differentiating myeloma from metastasis or
subtypes. It indicates that compared with T1WI, T2WI contains
Frontiers in Oncology | www.frontiersin.org 9
more valuable texture features for identifying metastasis and
myeloma. This may be because the echo time of T2WI is longer
than T1WI, which increases the contrast between tissues, thus
providing more information for identifying tissue heterogeneity
(39). Universally applied in medical practice (40, 41), the ANN
algorithm has proven its robust ability against a variety of input
features and random noise (42). There is no universal optimal
learning algorithm for all fields. Nevertheless, the classifiers
constructed in the current study showed ANN’s capability of
distinguishing myeloma from metastasis and subtypes of lumbar
vertebrae with moderate to excellent performance.

Our study has several limitations. First, this was a retrospective
study so the selection bias cannot be fully avoided; however, the
current major radiomics or machine learning studies are
retrospective in nature. Secondly, the classifiers built into this
study were validated with internal data but were not tested with an
external dataset due to the relatively small number of patients.
Thirdly, considering the limitations of lesion size, only two-
dimensional features were analyzed. Three-dimensional features
A B

C

FIGURE 6 | The ANN-based confusion matrix of train (A) and validation (B) cohort. Histogram (C) shows the performance of classifiers for discriminating myeloma
from MET-Lung and MET-Others in train and validation cohort. MET, metastasis; ANN, artificial neural network; RF, random forest; SVM, support vector machine;
NB, Naive Bayesian; KNN, K-nearest neighbor; MCC, Matthews correlation coefficient.
February 2021 | Volume 11 | Article 601699
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of tumors may be more comprehensive and representative, but
would be too time-consuming for routine clinical workup and is
sensitive to the partial volume effect. Fourthly, our study achieved
only moderate efficiency for differentiating MM and metastasis
subtypes. Though in our opinion, compared to contrast-enhanced
T1-weighted sequenced and functional sequences, such as DWI
and DCE, conventional sequences provide limited information for
tissue heterogeneity and the tumor microenvironment. However,
conventional sequences are included for almost all standard MRI
protocols, so the developed radiomics method is generalizable and
feasible for application in clinical practice. Considering the errors
involved in subjective evaluation, the diagnostic performance of
MM compared to metastasis with conventional MRI sequences
has not been calculated. More advanced sequences and
conventional MRI features may be selected for further
prospective studies. Moreover, demographic characteristic and
laboratory examination results were excluded in current study,
model combined clinical information and radiomics may improve
the efficiency of the test. Finally, in clinical practice, not every
lesion is pathologically confirmed. Nevertheless, we believe that
this bias may be effectively avoided by using strict inclusion and
exclusion criteria.
CONCLUSION

Our findings demonstrate the satisfactory performance of
machine learning methods based on conventional MRI
sequence data to differentiate newly diagnosed myeloma
lesions from metastatic lesions localizing on the lumbar
vertebra. While the performance in distinguishing myeloma
and metastasis subtypes is moderate, machine learning
classifiers could potentially be valuable tools for optimizing
precision medicine applied to lumbar vertebra tumors, and
Frontiers in Oncology | www.frontiersin.org 10
protecting patients from unnecessary exposure to radiation
or examinations.
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