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Abstract

Exposure to chemicals in the environment is believed to play a critical role in the etiology of many human diseases. To
enhance understanding about environmental effects on human health, the Comparative Toxicogenomics Database (CTD;
http://ctdbase.org) provides unique curated data that enable development of novel hypotheses about the relationships
between chemicals and diseases. CTD biocurators read the literature and curate direct relationships between chemicals-
genes, genes-diseases, and chemicals-diseases. These direct relationships are then computationally integrated to create
additional inferred relationships; for example, a direct chemical-gene statement can be combined with a direct gene-disease
statement to generate a chemical-disease inference (inferred via the shared gene). In CTD, the number of inferences has
increased exponentially as the number of direct chemical, gene and disease interactions has grown. To help users navigate
and prioritize these inferences for hypothesis development, we implemented a statistic to score and rank them based on
the topology of the local network consisting of the chemical, disease and each of the genes used to make an inference. In
this network, chemicals, diseases and genes are nodes connected by edges representing the curated interactions. Like other
biological networks, node connectivity is an important consideration when evaluating the CTD network, as the connectivity
of nodes follows the power-law distribution. Topological methods reduce the influence of highly connected nodes that are
present in biological networks. We evaluated published methods that used local network topology to determine the
reliability of protein–protein interactions derived from high-throughput assays. We developed a new metric that combines
and weights two of these methods and uniquely takes into account the number of common neighbors and the connectivity
of each entity involved. We present several CTD inferences as case studies to demonstrate the value of this metric and the
biological relevance of the inferences.
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Introduction

A consequence of our highly industrialized society is exposure to

an increasing number of chemicals that may influence human

health. Environmental factors are implicated in many complex

diseases including asthma, cancer, diabetes and Parkinson’s

disease. However, the mechanisms of actions of most chemicals

and the etiologies of environmentally influenced diseases are not

well understood [1]. The Comparative Toxicogenomics Database

(CTD; http://ctdbase.org) promotes understanding about the

effects of environmental chemicals on human health [2]. CTD

integrates manually curated data reported in the peer-reviewed

literature with select public data sets to provide a freely available

resource for exploring cross-species chemical-gene and protein

interactions and chemical- and gene-disease relationships. CTD

provides transitive inferences between chemicals, genes and

diseases that are intended to help users develop experimentally

testable hypotheses about mechanisms of chemical actions and

disease etiologies. A transitive inference between a chemical and

disease is made when one or more genes have curated interactions

with the chemical and the disease (Figure 1A). Likewise, a

transitive inference between a gene and disease is made when one

or more chemicals have curated interactions with the gene and the

disease. In CTD, there are two classes of transitive inferences: a)

inferred relationships that also have direct evidence curated from

the published literature and b) inferred relationships that do not

yet have directly curated evidence. Recent reports citing

Swanson’s ABC model underscore the potential value of transitive

inferences for predicting disease treatments [3,4,5]. Data in CTD

facilitate similar discovery processes for chemical-gene-disease

interaction networks.

All inferences in CTD are built upon manually curated

chemical-gene interactions, gene-disease relationships or chemi-

cal-disease (C–D) relationships. Integration of these components

allows inferences to be constructed reciprocally. For example,

inferred chemical relationships can be viewed for a given disease

and inferred disease relationships can be viewed for a given

chemical. The former provide insights into the potential environ-
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mental influences on a disease, whereas the latter provide insight

into the potential health effects of exposure to a chemical. The

gene sets that underlie these inferences are unique to CTD and

provide a foundation for developing novel hypotheses about the

mechanisms by which specific environmental factors affect human

health. (Analogous data are provided for gene-disease inferences).

As the data in CTD have grown, the number of inferences has

increased exponentially. To assist users with interpretation and

prioritization of inferences, we developed a statistical method for

ranking CTD inferences.

We modeled CTD data as a network where chemicals, genes

and diseases are nodes, and the relationships between them are

edges. Like other biological networks, the CTD network is a scale-

free random network that contains highly connected hub nodes

[6]. The presence of hubs introduces a statistical challenge when

evaluating networks, as not all edges are equally likely to occur.

For C–D inferences, we construct a local network that consists of

the chemical, disease and the set of genes that interact with the

chemical and the disease. To rank order C–D inferences, the

similarity among the local networks have to be compared. In these

comparisons, hub nodes will appear in multiple local networks by

chance and make inferences appear more similar unless they are

discounted. The following example illustrates the scale of this

statistical problem both in terms of the number of disease

inferences for a chemical and the topology of the local network

for a particular C–D inference.

Bisphenol A (BPA) is a ubiquitous endocrine disruptor that has

been associated with developmental abnormalities and cancer

[7,8]. In the July 2011 release of CTD, BPA had abundant and

varied types of C–D relationships including four that were directly

curated, seven that were curated and inferred, and 798 that were

only inferred. BPA was associated with breast neoplasms based on

both curated evidence [9] as well as by inference via 73 common

interacting genes. The local network for this inference consists of

the chemical (BPA), the disease (breast neoplasms) and each of the

73 genes. A subset of these 73 genes is also associated with many

other diseases and chemicals. In this example, such hub genes

include BCL2, CYP1A1, ESR1, IL1B, NOS2, PTGS2, TNF and

TP53, each of which have over 400 curated interacting chemicals.

In addition, BPA and breast neoplasms have been targeted for in-

depth CTD curation and are hubs themselves. BPA has curated

interactions with 1,235 genes, and breast neoplasms has 266

curated gene relationships. In developing a mechanism for

statistically ranking inferences, it was also important to determine

the relative influence of hub versus non-hub data.

Two previously published studies used local topology-based

statistics to assess the reliability of protein-protein interactions

generated from high-throughput assays, such as yeast two-hybrid

technology [10,11]. These studies examined the reliability of an

interaction between two proteins (A and B) based on how many

other proteins (called common neighbors) interacted with A and B.

These data were modeled as a network where each protein was a

node and the interactions were edges connecting the nodes. The

number of interactions for a node are defined as the node degree.

Goldberg and Roth [12] applied four different methods to

calculate a probability that a given interaction between proteins

A and B was reliable based on the node degree of A and B and the

number of additional proteins that interacted with both A and B.

Among these methods, the hypergeometric clustering coefficient

performed best, but this method did not take into account the

node degree of the additional proteins. Li and Liang [13]

developed two common neighbor statistics to assess the reliability

of a given protein-protein interaction. Similar to the hypergeo-

metric clustering coefficient, one metric (p1) took into account the

number of common neighbors and the degree of the two proteins

that form the interaction of interest. The second metric (p2) took

into account the degree of each common neighbor. The authors

presented a sequential process of evaluating interactions with each

Figure 1. Transitive chemical-disease inferences and the computational approaches used to score inferences. A) Diagram of local
network for the transitive chemical-disease inference (dotted line) between a chemical, X, and a disease, Y, using a set of genes, A, that have both
curated chemical-gene interactions and gene-disease associations (solid lines). The chemical, disease and each gene involved have interactions and
relationships to other nodes (chemicals, genes, diseases) in the database. Chemical X has some number of other genes (grey circles) that it interacts
with and associated diseases (grey squares). Disease Y has other associated genes and curated relationships to other chemicals (grey triangles). Each
gene used to make the inference, g1 to gn, are known to interact with other chemicals (grey triangles) and are associated with other diseases (grey
squares). B) Diagrams showing three methods to score inferences. The first, CXY and p1, is based on the number of genes (circles) used to make the
inference and the connectivity (bold lines) of the chemical (triangle) and disease (square). The second, p2, takes the number of genes (circles) used to
make the inference and their connectivity (bold lines) into account. The third, SXYA and WXYA, takes the number of genes into account as well as the
connectivity of the chemical, disease and each of the genes into account.
doi:10.1371/journal.pone.0046524.g001
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statistic rather than presenting a combined statistic. We explored

whether these methods could be modified for ranking C–D

inferences by substituting protein A with a chemical, protein B

with a disease, and the common protein neighbors with the set of

genes underlying a C–D inference.

Here, we present a novel method that combines and weights the p1

and p2 metrics, taking into account the properties of the local

networks containing the chemical, disease and each of genes used

to make CTD inferences. This method addresses the challenges

presented by the large number of possible inferences, as well as the

presence of hub data. The score rewards inferences by the number

of genes used to make the inference, and penalizes networks

containing nodes where the node degree is high. Figure 1B

illustrates the difference between the hypergeometric clustering

coefficient and the p1 and p2 metrics. We provide several examples

to demonstrate the value of the statistic as well as the biological

relevance of the inferences.

Results

Transitive Chemical-Disease Inferences in CTD
We modeled the associations among chemicals, genes and

diseases in CTD as a binary tripartite network. The network is

tripartite because it comprises three types of nodes: chemicals,

genes and diseases. Associations between the nodes were modeled

as binary edges that had a value of either present or absent. As the

node degree influences the number of transitive inferences that can

be made, we investigated the distribution of degrees for all nodes.

Like other biological networks, the CTD network was found to be

a scale-free random network where node degree can be described

by the power-law distribution (Figure S1). The observed distribu-

tion shows that the degree of nodes was not uniform. Instead, 89%

of nodes have fewer than 20 edges and there are just a few hub

nodes. The connectivity of chemicals, genes and diseases in CTD

reflects one or more factors including a) biological function, b)

representation in the peer-reviewed scientific literature, or c) the

current level of manual curation for an entity. Table 1 shows the

top 20 hub chemicals, genes and diseases in the July 2011 release

of CTD. The top ten chemicals and diseases reflect the large

volume of published studies and priority areas for CTD curation.

The high connectivity of the top ten genes reflects their roles in

diverse curated chemical and disease processes. Indeed, TNF is

involved in 46,587 C–D inferences alone. Any analyses done on

scale-free random networks must take network topology into

account due to the presence of hub nodes. Accounting for

topology is especially important when examining inferences, as

they could be solely based on hub nodes rather than a

combination of hub and low-degree nodes. The purpose of using

a topologically based method was to reduce the influence of hub

nodes in C–D inferences.

Transitive C–D inferences are made in CTD when a chemical

is known to interact with one or more genes that are also

associated with a disease. In the July 2011 data release, CTD

contained curated data from 26,247 references for 6,406

chemicals, 20,898 genes and 3,999 diseases. Using these data, a

total of 338,484 C–D transitive inferences were made for 5,959

chemicals and 3,305 diseases. Because of hub chemicals, genes and

diseases, and the underlying scale-free properties of the CTD

network, the proportion of disease inferences per chemical is not

uniform. For example, warfarin has curated interactions with just

32 genes that are used to make 164 C–D inferences. Warfarin has

55 edges making it a relatively high-degree chemical as 92% of

chemicals have fewer edges. In contrast, BPA is a hub chemical

with a total of 1,247 edges. BPA has 1,235 gene interactions and

858 C–D inferences. All but eight of BPA’s inferences appear

novel because either direct evidence in the literature is lacking or

the evidence has not yet been curated for CTD. While novel

inferences may generate new hypotheses about environmental

influences on diseases, in the absence of a ranking metric, the large

number of inferences makes it challenging to prioritize them for

further investigation.

Scoring Chemical-Disease Inferences
To facilitate interpretation and prioritization of inferences for

hypothesis development and further study, we explored statistical

methods that would allow C–D inferences to be ranked. We

compared results from several methods developed to study the

reliability of protein-protein interactions. All C–D inferences in

CTD were analyzed using: the hypergeometric clustering coeffi-

cient (Cxy) [12]; the two common neighbor statistics (p1 and p2)

[13]; and two novel variants on these metrics, including the

product (SXYA) and weighted product (WXYA) of those statistics. We

evaluated these four metrics by comparing:

1. The ranked order of disease inferences for a given chemical in

different contexts.

2. C–D inferences with particular local network topological

features versus curated C–D relationships.

3. The extent to which the C–D curated relationships supported the

relative rankings of C–D inferences versus following data randomiza-

tion.

Ranked order of disease inferences. Due to scale-free

random network properties of the CTD network, many chemicals

have a large number of disease inferences. Initially, the C–D

inferences were ranked first by the presence of curated evidence

and then by the number of common interacting genes. Although

the number of interacting genes was useful for conveying the

current state of the data, this metric alone failed to take into

account the context of these genes. For example, many ‘‘ties’’

existed where disease inferences were based on the same number

of genes, regardless of the differences among the genes. Table 2

provides 21 disease inferences for BPA that are based on sets of

five genes. Among these inferences, 20 involve at least one gene

with more than 100 edges. We applied Cxy, p1, SXYA and WXYA

statistics to determine whether their inclusion of contextual

information would distinguish between these ‘‘ties.’’ Table 2

shows how the five different statistics for these 21 BPA-disease

inferences can start to rank and order the inferences (e.g.,

Disorders of Sex Development vs. Kidney Diseases), even though

all 21 inferences are made via five genes each. Consistently, we

found that SXYA and WXYA had the lowest frequency of ties among

all inferences (Figure S2). Consistent with this observation, we also

found that inferences based on fewer rather than larger genes were

often scored higher using these two metrics. For example, the

inference between BPA and Female Urogenital Diseases involved

seven genes (ESR1, HOXA10, HOXA11, IGF1, LIF, WNT4,

WNT5A) and had a WXYA score of 12.93, which was higher than

an inferred relationship with Rheumatoid Arthritis that involved

nine genes (AHR, ENO1, IL18, LCN2, MMP2, PTGS2, PTPRC,

TNF, VEGFA) and had a score of 6.96. The more significant score

for Female Urogenital Diseases reflected the lower connectivity of

the genes involved in this inference. For these two inferences, the

geometric mean of the node degree was 55.9 for Female

Urogenital Diseases versus 160.7 for the Rheumatoid Arthritis.

Four of the five statistics take the degree of the chemical and

disease and the number of genes used to make the inference into

account. We compared these four statistical methods (Cxy, p1, SXYA

Ranking Chemical-Disease Inferences in CTD
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and WXYA) by examining C–D inferences for which the degrees of

the chemical and disease were similar and the number of genes involved were

the same. We provide an example involving the chemicals,

malathion and pioglitazone, and their inferred relationships to

Breast Neoplasms (Figure 2). Although both relationships have

supporting evidence in the literature, CTD also infers these

relationships based on common interacting genes. Malathion is an

organophosphorous pesticide that has been shown to induce

malignant transformation in a human breast epithelial cell line

[14]. Pioglitazone is an activator of peroxisome proliferator-

activated receptor gamma that has been used to treat Type 2

Diabetes, and in this context, was correlated with a decreased

incidence of breast cancer [15]. In the local network for each of

these inferences, malathion has 54 edges, pioglitazone has 60

edges and the disease has 443 edges. In both cases, each inference

is based on nine genes; however, the gene sets differ in content.

Both include CYP3A4 and IFNG, but the degrees for the seven

remaining genes underlying the pioglitazone inference are much

higher than those for the malathion inference. Each of the

pioglitazone inference genes has at least 167 edges with a

geometric mean of 383.6 edges for the full gene set, whereas the

malathion inference has five genes with fewer than 167 edges and

a geometric mean of 125.8 edges for the full gene set. Cxy and p1

statistics could not distinguish between these inferences as they do

not consider the degree of the genes. In contrast to the four

statistics (Cxy, p1, SXYA and WXYA), the p2 statistic calculates the

degree of the genes, and consequently, the malathion inference

score is higher since the degrees of five of its underlying genes

(CENPF, HRAS, HRAS1, IFNB1 and TYMS) are lower than the least

connected gene (CDKN1B) for the pioglitazone inference. In this

example, the aggregate statistic, SXYA, and the weighted aggregate,

WXYA, both ranked the Breast Neoplasms inference as more

significant for malathion than for pioglitazone since it includes p2.

Local network topological features versus curated C–D

relationships. Both aggregate statistics (SXYA and WXYA)

consider the degrees of the chemical, disease and genes in addition

to the number of genes involved (m) and, thus, offer advantages

over the two statistics that do not (Cxy, p1). The unweighted

aggregate statistic, SXYA, was our first attempt to combine p1 and

p2, but we found it to be highly correlated with m. We explored

several ways to weight the calculation using constant values or

values proportional to m. To objectively evaluate these weighting

schemes, we leveraged the curated C–D relationships in CTD to

determine whether the ranking of inferences from a given method

would correlate with whether the inferences also had curated

evidence (i.e., would inferences that are additionally supported by

curated evidence rank higher than those without). It is important

to note that in the examples studied, curated evidence was derived

from sources independent of those involved in forming the

inference. We evaluated the top 100 scoring inferences (Figure S3)

and found that WXYA ranked the C–D inferences with curated

evidence higher than SXYA. In fact, six of the top ten scoring

inferences ranked by WXYA are C–D inferences that also have

curated evidence (Table 3A) whereas only three of the top ten

scoring inferences ranked by SXYA were validated by curated data

(Table 3B). The six curated inferences ranked highest by WXYA

included a range of diseases and chemicals (Table 3A). In contrast,

all but one of top ten inferences ranked highest by SXYA involved

prostatic neoplasms (Table 3B). Prostatic neoplasms is the top

disease hub node in CTD and dominates the top inferences by

Table 1. Top 20 hub chemicals, genes and disease in the CTD network.

Chemical Name (ID) Edges Gene Symbol Edges Disease Name (ID) Edges

Tetrachlorodibenzodioxin (D013749) 7176 TNF 835 Prostatic Neoplasms (D011471) 515

Acetaminophen (D000082) 6362 CASP3 581 Breast Neoplasms (D001943) 442

pirinixic acid (C006253) 5664 CYP1A1 553 Autistic Disorder (D001321) 303

Ammonium Chloride (D000643) 5271 MAPK1 551 Lung Neoplasms (D008175) 240

Ethinyl Estradiol (D004997) 5066 MAPK3 546 Liver Cirrhosis, Experimental
(D008106)

230

Cyclosporine (D016572) 4601 PTGS2 521 Stomach Neoplasms (D013274) 210

Benzo(a)pyrene (D001564) 3397 IL6 517 Colorectal Neoplasms (D015179) 197

7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
(D015123)

2918 IL1B 492 Craniofacial Abnormalities (D019465) 179

4,49-diaminodiphenylmethane (C009505) 2702 CYP1A2 473 Carcinoma, Hepatocellular (D006528) 173

2,4-dinitrotoluene (C016403 2647 TP53 458 Drug-Induced Liver Injury (D056486) 167

2,6-dinitrotoluene (C023514) 2628 NOS2 456 Melanoma (D008545) 157

Estradiol (D004958) 2620 ESR1 453 Colonic Neoplasms (D003110) 126

Tamoxifen (D013629) 2259 BCL2 443 Inflammation (D007249) 124

Carbon Tetrachloride (D002251) 2237 CYP3A4 414 Liver Diseases (D008107) 122

Diethylnitrosamine (D004052) 2153 FOS 404 Liver Neoplasms (D008113) 122

Tretinoin (D014212) 1957 BAX 380 Neoplasms (D009369) 118

arsenic trioxide (C006632) 1938 CDKN1A 375 Schizophrenia (D012559) 115

sodium arsenite (C017947) 1910 HMOX1 374 Alzheimer Disease (D000544) 109

Dietary Fats (D004041) 1907 RELA 368 Leukemia, Myeloid, Acute (D015470) 107

Phenobarbital (D010634) 1831 IL8 367 Adenocarcinoma (D000230) and
Seizures (D012640)

95

doi:10.1371/journal.pone.0046524.t001

Ranking Chemical-Disease Inferences in CTD

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e46524



SXYA since p1 is large with so many genes involved in those

inferences. Because WXYA weights p1 by the number of genes

involved, prostatic neoplasms does not dominate the list of top

ranked inferences. Upon further examination of the published

literature, all ‘‘novel’’ inferences among the top ten ranked

inferences by WXYA are substantiated. Ammonium chloride

induced hypertrophy in the DU-145 prostatic cell line [16]. A

pilot study of Vietnam veterans exposed to tetrachlorodibenzo-

dioxin had increased risk for developing prostate cancer [17]. Rats

exposed to nitrobenzenes were reported to have lesions in several

organs including the liver [18]. Vorinostat is currently being

evaluated as a therapeutic for acute myeloid leukemia [19]. In a

similar fashion, all but two (pirinixic acid and biethylnitrosamine

and prostatic neoplasms) of the top ten inferences are substantiated

by further examination of published literature. Together, these

results demonstrate that ranking inferences using WXYA is less

biased by major hub nodes than SXYA, and WXYA may, therefore,

be a potentially valuable predictor of novel C–D relationships.

Corroboration of C–D curated relationships of actual vs.

randomized inferences. The extent to which specific chem-

icals give rise to disease is not well understood. Consequently,

there is no strong validation set with which to estimate the rate of

true positives vs. false positives. As a possible alternative, we

explored two approaches that utilized CTD data to assess the

validity of particular inferences. First, we investigated C–D

inferences that are also supported by a curated relationship in

CTD, which we refer to hereafter as ‘‘curated inferences’’ (curated

relationships were derived from one or more references indepen-

dent of those involved in the inference). Second, we examined C–

D inferences generated from randomized C–G interactions.

Table 2. Disease inferences for BPA that are based on five interacting genes.

Disease (# edges) Gene Symbols (# edges) Cxy p1 p2 SXYA WXYA

Disorders of Sex Development
(MESH:D012734) (5)

CYP19A1 (202); HSD17B3 (27); LHB (83);
LHCGR (34); NR3C1 (189)

7.48 17.21 27.02 22.04 17.10

Muscular Dystrophy, Facioscapulohumeral
(MESH:D020391) (9)

CDKN1A (375); DCN (49); ELN (32);
HSPA1B (84); LUM (25)

5.42 12.51 27.77 20.21 12.45

Osteosarcoma (MESH:D012516) (11) CYP3A4 (414); FOLR1 (39); JUN (305);
NR1I2 (216); TP53 (458)

4.88 11.27 22.54 16.91 11.38

Metabolic Syndrome X
(MESH:D024821) (16)

ADIPOQ (89); CCL2 (283); LEP (106);
SHBG (48); TRIB3 (51)

3.96 9.19 26.30 18.36 10.27

Precancerous Conditions
(MESH:D011230) (20)

CCND1 (327); IRS1 (47); MAPK8 (200);
MAPK9 (109); PTGS2 (521)

3.46 8.05 23.44 15.74 8.19

Myocardial Reperfusion Injury
(MESH:D015428) (22)

ADIPOG (89); EDN1 (186); NOS2 (456);
PTEN (100); SLC8A1 (31)

3.25 7.59 25.19 16.39 7.75

Drug Hypersensitivity
(MESH:D004342) (22)

ABCC2 (204); HSPA1A (122); IL4 (228);
IL4RA (17); TNF (835)

3.25 7.59 24.13 15.86 7.74

Limb Deformities, Congenital
(MESH:D017880) (25)

CACNA1C (23); FGFR2 (90); HOXA11 (22);
TBX3 (21); TGFB2 (70)

2.98 6.98 30.32 18.98 7.41

Carcinoma (MESH:D002277) (25) BCL2 (443); EGFR (204); KRAS (79);
PTGS2 (521); TARBP2 (11)

2.98 6.98 24.73 15.86 7.14

Endometrial Neoplasms
(MESH:D016889) (34)

BIRC5 (167); DCN (49); HOXA11 (22);
PTEN (100); SUZ12 (13)

2.37 5.62 29.24 17.79 6.07

Cleft Lip (MESH:D002971) (28) FGFR1 (73); FGFR2 (90); FGFR3 (60);
SPRY2 (19); TYMS (113)

2.75 6.46 28.09 17.28 5.83

Leukemia, Promyelocytic, Acute
(MESH:D015473) (34)

AKT1 (315); CD44 (70); CEBPA (78);
ITGB2 (46); RARA (81)

2.37 5.62 26.32 15.97 5.81

Dermatitis, Atopic (MESH:D003876) (37) CXCL10 (87); IFNG (347); IL1B (492);
IL4 (228); TSLP (18)

2.21 5.27 24.37 14.82 5.44

Neuroblastoma (MESH:D009447) (39) IFNB1 (48); MET (61); MYC (253);
MYCN (31); NTRK2 (37)

2.11 5.05 28.09 16.57 5.26

Glioblastoma (MESH:D005909) (42) IL1B (492); MMP2 (194); NCOR1 (39);
TGM2 (75); VEGFA (271)

1.97 4.76 24.17 14.46 4.94

Cardiovascular Diseases
(MESH:D002318) (43)

CBS (24); CCL2 (283); EDN1 (186);
GH1 (70); VCAM1 (123)

1.93 4.67 25.86 15.27 4.86

Liver Cirrhosis (MESH:D00103) (49) CTGF (77); FGFR2 (90); MMP2 (194);
SPP1 (113); THBS1 (68)

1.70 4.18 25.90 15.04 4.38

Colitis, Ulcerative (MESH:D003093) (50) GNA12 (18); IL12B (194); IL1B (492);
PTPN2 (18); STAT3 (127)

1.67 4.11 26.77 15.44 4.32

Cell Transformation, Neoplastic
(MESH:D002471) (60)

NOS2 (456); SLC16A1 (73); SLC2A1 (88);
TSC22D1 (46); WNT5A (38)

1.37 3.48 26.52 15.00 3.70

Lupus Erythematosus, Systemic
(MESH:D008180) (62)

CLU (115); ETS1 (35); FASLG (72);
IL12B (194); IL4 (228)

1.32 3.38 25.71 14.55 3.58

Kidney Diseases (MESH:D007674) (71) CDKN1A (375); HOXA11 (22);
LCN2 (64); LRP2 (19); TERT (80)

1.11 2.97 28.15 15.56 3.20

doi:10.1371/journal.pone.0046524.t002
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Of the C–D inferences in CTD, 3,542 are supported by a

curated relationship and 334,942 are not. All but eight curated

and 84 novel C–D inferences (those currently without curated

support) have a Bonferroni-corrected WXYA score greater than 2.0

(-log10(0.05)). The distributions of Bonferroni-corrected WXYA

scores among curated and novel inferences had significantly

different means (p,0.001, Welch’s t-test). Curated C–D inferences

had a mean WXYA score of 12.46+/217.85 (median = 6.27) and

novel inferences had a mean of 5.81+/23.76 (median = 4.88).

Since the means were significantly different, we applied a simple

binary classifier to determine which novel inferences were most

like curated inferences by selecting those novel inferences with

WXYA scores greater than the median of curated inferences.

Among these, 74,119 (22.13%) of all novel inferences scored above

the threshold. We also applied the same threshold to all curated

inferences and found that the sensitivity was, by definition, 50%.

The specificity for the classifier could not be calculated since there

were no known negative C–D relationships.

Finally, we evaluated the significance of C–D inferences by

comparing the distribution of WXYA scores made from CTD data

and those that can be made after randomizing C–G interactions.

This analysis sought to determine whether we would expect to find

the observed distribution of WXYA scores by chance. We used a

shuffling technique that preserves the underlying power-law

distribution of node degrees [20]. Preserving the distribution of

degrees was important, as we would expect to find some high

degree hub nodes in any biological network. The shuffling

procedure randomly selected two C–G interactions and then

switched the genes with which the two chemicals interacted.

Shuffling was repeated a total of 1,000,000 times before C–D

inferences were made and WXYA calculated. The entire procedure

was repeated three times. Since the topological properties of the

networks were preserved, the distributions of the Bonferroni-

corrected WXYA scores from the three shuffled networks were

similar to the non-shuffled data. We compared the significance of

C–D inferences made in non-shuffled network with inferences

made from the three shuffled data sets. Among the 338,484

inferences that were made in the non-shuffled network, 94,222

(27.8%), 93,365 (27.6%) and 94,370 (27.9%) were also made in the

first, second and third shuffled networks, respectively (Table 4).

The mean differences of the WXYA score for inferences in the

shuffled networks were significantly lower than those from the

non-shuffled network. Among curated inferences from the non-

shuffled network, the mean differences were 6.68, 6.96 and 6.86 in

the three shuffled networks, respectively. Similarly for novel

inferences, the mean differences were 0.80, 0.79 and 0.78,

respectively. These results demonstrate that inferences from the

non-shuffled network consistently scored higher than inferences

from the shuffled network and therefore, may not be due to

chance.

Relevance of Chemical-Disease Inferences
One of the most valuable abilities of CTD is facilitating

development of novel and potentially biologically important

hypotheses about C–D relationships through transitive inferences.

By virtue of CTD’s unique data curation and integration, these

inferences can be further validated and explored through other

associated data, including pathways in which the unique

underlying gene sets are involved and the functional roles of these

genes.

Chemical-Pathway analysis. Chronic diseases have many

possible etiologies that reflect genetic predisposition and varied

environmental factors that perturb important biological pathways.

Diverse environmental factors have been suspected in playing a

role in breast cancer, although the underlying mechanisms are

often not well understood. CTD contains many C–D relationships

for breast cancer including two that involve the ubiquitous

compounds, BPA and arsenic. To gain insight into the basis of

Figure 2. Example chemical-disease inference networks with similar numbers of genes, but with different node degrees. A)
Malathion-Breast Neoplasms inference network with Cxy = 7.49, p1 = 17.30, p2 = 40.32, SXYA = 28.81 and WXYA = 17.31 that used the following genes
(degrees listed in parentheses and used to set gene node diameter): CENPF (29), CYP3A4 (414), HRAS (95), HRAS1(42) IFNB1 (48), IFNG (347), SOD2
(191), TP53 (458) and TYMS (113). B) Pioglitazone-Breast Neoplasms inference network with Cxy = 7.24, p1 = 16.72, p2 = 32.10, SXYA = 24.46 and
WXYA = 16.73 that used the following genes: CDKN1B (167), CYP3A4 (414), IFNG (347), IL1B (492), NOS2 (456), PTGS2 (521), RB1 (209), RELA (368) and
TNF (835).
doi:10.1371/journal.pone.0046524.g002
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these relationships, we computed enriched pathways from the

underlying gene sets using Ingenuity Pathways Analysis (IPA;

Ingenuity Systems, Inc.).

BPA is a ubiquitous endocrine disruptor that is used to

manufacture polycarbonate and resin-lined food containers,

polyvinyl chloride and some dental sealants [21]. Large-scale

production and incorporation of BPA into products used to store

food and water has resulted in human exposures. Low levels of

BPA are detectable throughout the population of the United

States. The consequences of developmental exposure to BPA are

not well understood, although several lines of evidence suggest

there is reason for concern: BPA has been detected in blood of

pregnant women, breast milk of lactating women, and breast- and

bottle-fed infants; BPA easily crosses the placenta; infants cannot

efficiently metabolize BPA; nontoxic doses of BPA cause

epigenetic modifications; and exposure has been associated with

a range of endocrine related conditions such as abnormal sex-

specific behavior and reproductive development, and cancers such

as breast cancer [22]. The mechanisms underlying these effects

remain largely unknown.

CTD’s BPA-breast neoplasm relationship is supported by direct

evidence from the literature but is also inferred based on a novel

set of 73 common interacting genes. Notably, the direct evidence

in the literature does not include a proposed etiological

mechanism. To assess the overall potential connectivity among

the 73 genes, we constructed a network containing 70 of these

genes based on known protein-protein and gene regulatory

interactions using the IPA network explorer tool (Figure 3A).

Although this network shows all known interactions, we also

examined canonical pathways to provide context for subsets of

interactions in the network. To identify canonical pathways that

are enriched among the 73 genes, we conducted an IPA core

analysis. Consistent with its known role as an endocrine disruptor,

two of the three top enriched pathways among the 73 genes were

involved in glucocorticoid receptor signaling (p-val-

ue = 1.21610222) and estrogen-dependent breast cancer signaling

(p-value = 9.13610214). Among the 57 genes in the latter

pathway, 11 have CTD-curated interactions with BPA and breast

cancer (AKT1, CCND1, CYP19A1, EGFR, ESR1, ESR2, FOS, IGF1,

IGF1R, JUN and KRAS; Figure 3A). In addition, another 11 genes

in the estrogen-dependent breast cancer signaling pathway have

curated interactions with BPA but do not currently have curated

relationships to breast cancer. These data demonstrate that 38

percent of the genes (22/57) thought to be involved in estrogen-

dependent breast cancer signaling are known to interact with BPA

in CTD (p-value = 1.08610218).

Arsenic is a global environmental health threat. It is a known

human carcinogen and a suspected endocrine disruptor. Over 500

million people are at risk of exposure to arsenic from contaminated

groundwater in eastern India and Bangladesh alone [23]. It is

estimated that more than 100,000 individuals in New England are

exposed to drinking water levels in wells that exceed federal

Table 3. Top ten C–D inferences by WXYA (a). and SXYA (b).

(a)

Chemical Disease m SXYA WXYA Comment

decitabine (C014347) Stomach Neoplasms (D013274) 102 435.03 241.34 Curated [35]

Dimethylnitrosamine (D004128) Liver Cirrhosis, Experimental
(D008106)

80 343.09 224.11 Curated (several
references in CTD)

Estradiol (D004958) Prostatic Neoplasms (D011471) 186 628.38 196.16 Curated [36]

Arsenic (D001151) Arsenic Poisoning (D020261) 55 271.92 192.09 Curated [37]

nitrofen (C007350) Hernia, Diaphragmatic (D006548) 35 194.42 189.09 Curated (several
references in CTD)

Ammonium Chloride (D000643) Prostatic Neoplasms (D011471) 242 795.14 174.28 Novel inference

Tetrachlorodibenzodioxin (D013749) Prostatic Neoplasms (D011471) 280 921.97 172.74 Novel inference

Arsenic (D001151) Skin Diseases (D012871) 55 259.37 171.16 Curated [37]

Nitrobenzenes (D009578) Liver Diseases (D008107) 29 175.48 170.82 Novel inference

vorinostat (C111237) Leukemia, Myeloid, Acute
(D015470)

38 201.93 164.18 Novel inference

(b)

Chemical Disease m SXYA WXYA Comment

Tetrachlorodibenzodioxin (D013749) Prostatic Neoplasms (D011471) 280 921.97 172.74 Novel inference

Ammonium Chloride (D000643) Prostatic Neoplasms (D011471) 242 795.14 174.28 Novel inference

Ethinyl Estradiol (D004997) Prostatic Neoplasms (D011471) 216 711.75 137.84 Novel inference

pirinixic acid (C006253) Prostatic Neoplasms (D011471) 211 680.16 111,31 Novel inference

Acetaminophen (D000082) Prostatic Neoplasms (D011471) 211 670.44 91.54 Novel inference

Estradiol (D004958) Prostatic Neoplasms (D011471) 186 628.38 196.16 Curated [36]

Cyclosporine (D016572) Prostatic Neoplasms (D011471) 172 548.78 87.27 Novel inference

Tetrachlorodibenzodioxin (D013749) Breast Neoplasms (D001943) 177 538.91 59.82 Curated [38]

Benzo(a)pyrene (D001564) Prostatic Neoplasms (D011471) 152 481.94 96.56 Curated [39]

Diethylnitrosamine (D004052) Prostatic Neoplasms (D011471) 142 466.03 135.53 Novel inference

doi:10.1371/journal.pone.0046524.t003
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standards of 10 ppb [24]. Human health effects associated with

arsenic exposure include lung, bladder and skin cancer [25]. Low-

level exposures to arsenic (,10 ppb) have potentially adverse

biologic effects such as alterations in cell cycle kinetics, cell

proliferation, endocrine signaling, cell signaling, innate immune

response and DNA repair processes [26,27,28,29].

CTD contains many curated arsenic-disease associations includ-

ing those mentioned above. However, unlike in the BPA data, the

arsenic-breast neoplasm association is currently strictly inferred,

based on 43 common interacting genes (Figure 3B). To assess the

overall potential connectivity among these genes, we were able to

construct a pathway that contained 37 of the genes. The 43 genes

used to make the novel inference between arsenic and breast

neoplasms were subjected to Ingenuity core analysis and yielded

several enriched pathways. The most significant enriched pathway

was the aryl hydrocarbon receptor (AHR) signaling pathway (p-

value = 1.62610212), which contained ten of the 43 genes (CCND1,

CDKN1B, CYP1A1, E2F1, ESR1, IL6, IL1B, NQO1, TNF and TP53).

An additional 27 of the 154 genes in the Ingenuity AHR signaling

pathway also have curated arsenic interactions (p-val-

ue = 7.78610228). Although many of these genes are not currently

associated with breast cancer in CTD, many AHR ligands have

curated mechanistic and potentially therapeutic relationships with

breast cancer such as benzo[a]pyrene and indole-3-carbinol,

respectively. Consistent with its suspected role as an endocrine

disruptor, the estrogen-dependent breast cancer signaling pathway

was marginally enriched (p-value = 0.043) because three genes

(EGFR, ESR1 and CCND1) were used to make the inference. The

activated ESR1 can activate the transcription of many targets. In

fact, arsenic has been demonstrated to be an endocrine disruptor

[30]. Of the 57 genes in the estrogen-dependent breast cancer

signaling pathway, 13 of them have characterized interactions with

arsenic in CTD (p-value = 6.93610210), 11 of which are not

currently associated with breast cancer in CTD.

Gene Ontology Enrichment Analysis. The mechanisms by

which a chemical may influence disease susceptibility can be

investigated by analyzing the genes used to make the C–D inference

to find enriched functional annotations. An examination of the 73

genes used to make the novel inference between BPA and breast

neoplasms had many enriched Gene Ontology (GO) Biological

Processes pertinent to cancer such as ‘‘negative regulation of

apoptosis’’ (Table S1A). In addition to these cancer-associated

annotations, 12 genes (BCL2, BRCA1, CCND1, ESR1, ESR2, FOS,

IL1B, KRAS, PTEN, PTGS2, STAT3, TNF) were enriched for

‘‘response to steroid hormone stimulus’’ (FDR-adjusted p-val-

ue = 7.361026). We observed similar cancer-relevant enriched

annotations for the 43 genes used to make the inference between

arsenic and breast neoplasms (Table S1B). ‘‘Response to steroid

hormone stimulus’’ was also enriched among this data set and

annotated to 12 genes (BCL2, CCND1, ESR1, HMOX1, IL1B, IL6,

PTGS2, TNF; FDR-adjusted p-value 1.861024).

CTD Web Interface
C–D inferences are represented in two ways in the CTD web

interface. First, a table of all disease inferences for a given chemical

is displayed under the ‘‘Disease’’ tab associated with that chemical

(Figure 4A). The value of WXYA for an inference is displayed in the

column labeled ‘‘Network Score’’. Diseases are sorted by default to

show curated relationships first, followed by descending network

scores. Links within the table can be used to learn more about the

disease, any of the genes or the available references for the disease

relationship. Second, a table of all chemical inferences for a given

disease is displayed under the ‘‘Chemicals’’ tab associated with

that disease (Figure 4B).
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Discussion

We describe the first application of local-network-based statistics

to C2D transitive inferences. Network-based statistics encapsulate

several concepts that are important for ranking transitive

inferences. First, they reward inferences with more common

neighbors. For example, an inferred relationship between a

chemical and disease based on a single gene has a lower score

than an inference based on multiple genes. Second, these statistics

take into account the number of edges (node degree) for each node

(i.e., chemical, gene(s) and disease) involved in an inference so that

Figure 3. Network of gene regulatory and protein-protein interactions from Ingenuity Pathways Analysis for two chemical-disease
inferences. A) Network of 73 genes used to make the curated inference between BPA and breast neoplasms, and B) network of 43 genes used to
make the novel inference between arsenic and breast neoplasms.
doi:10.1371/journal.pone.0046524.g003

Figure 4. CTD web interface data tables with ranked C–D relationships. A) all curated and inferred C–D relationships for BPA (first page
only), and B) all curated and inferred C–D relationships for breast neoplasms (first page only) sorted by descending values of WXYA (‘‘Network Score’’).
Chemical and disease names along with gene symbols are hyperlinked to the CTD detail pages for the chemical, disease and gene, respectively. The
direct evidence column is used to display a ‘‘M’’ and/or ‘‘T’’ symbols to indicate whether C–D relationship is curated and the type of the relationship.
The ‘‘M’’ symbol indicates that the chemical correlates with disease (marker) or plays a role in the etiology of the disease (mechanism) and the ‘‘T’’
indicates that the chemical has a known or potential therapeutic role in the disease. The number of references in the last column is a hyperlink to the
list of references that document the C–G, G–D or C–D relationship. Any references used to make a curated relationship are marked with a ‘‘M’’ or ‘‘T’’
symbol. Users may sort the tables by clicking on the column headings and may also export the tables in Excel or comma-separated, tab-separated or
XML text files.
doi:10.1371/journal.pone.0046524.g004
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hub nodes contribute less to the overall score. By taking into

account node degree, inferences with the same number of

underlying genes but greater number of hubs among those genes

will have a lower score. Hub nodes are certainly expected as the

CTD network was found to be a scale-free random network like

other biological networks. The weighted common neighbor

statistic, WXYA, takes into account the number of edges and the

local topology of each node in an inference network. In contrast to

the other methods evaluated, inferences ranked using the WXYA

score correlated most strongly with curated disease relationships.

In addition, WXYA scores for curated and novel inferences from

non-shuffled networks were consistently higher than those from

shuffled networks.

The common neighbor statistic we applied was designed to help

users rank the many transitive disease inferences in CTD. Since

these inferences are based on curated relationships from the

primary literature, they are presumed to be potentially biologically

important. However, the inference scores cannot be interpreted as

a relative measure of correctness primarily because the underlying

network information is incomplete and reflects both the bias

inherent to our curation prioritization process and the bias among

the chemical, gene, and disease data in the published literature. A

consequence of this incompleteness is that an inference that is also

supported by curated data may not always score higher than a

novel inference.

That being said, CTD provides other important lines of

evidence that can be evaluated in conjunction with disease

inference for prioritization and hypothesis development. First, the

unique gene sets that underlie chemical-disease inferences can be

subjected to additional study, such as IPA to determine if

associated canonical pathways and their functions are consistent

with the inferred diseases. In the examples presented, gene sets

underlying arsenic- and BPA-breast neoplasm inferences were

significantly associated with IPA’s ‘‘estrogen-dependent breast

cancer signaling pathway,’’ consistent with the suspected endo-

crine-disrupting properties of both of these chemicals. Second,

CTD provides enriched GO analyses for chemicals that provide

insights into the biological processes and molecular functions that

may be affected by a chemical via their interacting genes. In the

examples presented, enriched terms such as ‘‘regulation of cell

cycle,’’ ‘‘apoptosis’’ and ‘‘response to steroid hormone stimulus’’

were significantly and logically enriched among arsenic- and BPA-

breast neoplasm inferences. Finally, CTD also integrates curated

pathways from the KEGG and Reactome databases. These

pathways are associated with chemicals when their constituent

genes have curated interactions with a chemical. Collectively,

CTD provides a unique structure for building inferences among

chemical, gene and disease data that are otherwise disconnected in

the literature, and couples it with additional biological informa-

tion, such as biological function and molecular pathways, that can

be used to strengthen hypotheses for further study.

To our knowledge, this study is the first to apply local network

topology to analyze chemical, gene and disease networks. Other

studies incorporated different evidence types or focused on either

chemical-gene interactions or gene-disease relationships. For

example, the CoPub database scores transitive inferences among

drugs, genes and chemicals based on the number of citations that

report an interaction [4]. However, in our experience, citation

evidence does not always correlate well with the significance of a

biological finding (e.g., new discoveries). The ChemProt database

uses chemical-gene interactions, including those from CTD, to

establish links between chemicals and diseases, but does not make

novel inferences [31]. DiseaseNet integrates networks of protein-

protein interactions with gene-disease relationships, but does not

contain chemical data [32]. None of these resources apply

statistical measures to predict novel data relationships by taking

into account local network topology information.

Development of predictive models benefits from the existence of

a gold standard, or validated data. Although major advances have

been made in environmental health with the increasing use of

computational approaches, high-throughput technologies and

integrative resources, questions about how the environment affects

human health in the context of diverse genetic backgrounds

remain largely unanswered. Consequently, a gold-standard data

set describing the etiologies of environmentally influenced diseases

does not exist. Such models will evolve and improve as data

sources and our understanding of them become richer. Here we

describe a method to rank novel chemical-disease inferences using

a unique combination of statistical approaches that consider the

local topology of chemicals, genes and diseases. We show that this

ranking more strongly reflects the published literature than other

methods tested and that additional data sets in CTD can be used

as lines of evidence for evaluating and prioritizing chemical-disease

inferences for further exploration. We will continue to draw from

other statistical approaches and explore the integration of

additional data sources into our analyses as we seek to enhance

the hypothesis-generating potential of CTD.

Methods

CTD Network Data
CTD (http://ctdbase.org) provides manually curated data from

peer-reviewed scientific literature that describe chemical-gene

interactions from vertebrates and invertebrates, chemical-disease

relationships and gene-disease relationships. We used data from

the July 2011 release of CTD that contained 283,236 curated

interactions between 6,327 chemicals and 19,182 genes and

proteins in 341 organisms. 176,999 of these interactions were

unique chemical-gene pairs. In addition, there were a total of

5,251 curated gene-disease relationships between 3,564 genes and

3,338 diseases, and 6,682 curated chemical-disease relationships

between 6,225 chemicals and 1,041 diseases.

Hypergeometric Mutual Clustering Coefficient
The hypergeometric mutual clustering coefficient, Cxy, for the

inferred relationship between nodes x and y was calculated

according to Roth and Goldberg and shown in equation 1 using

notation that follows Li and Liang [12,13]. In equation 1, nx and ny

are the number of edges for nodes x and y, respectively, m was the

number of mutual neighboring nodes, and N was the total number

of chemicals, genes and diseases with any interaction in CTD.

CXY ~{log
Xmin(nx,ny)

i~m

nx

i

� �
N{nx

ny{i

� �

N

ny

� � ð1Þ

Common Neighbor Statistics
The two common neighbor statistics, p1 and p2, were calculated

for inferred relationships between nodes x and y according to Li

and Liang as shown in equations 2 and 3 [13]. In equation 2, nx

and ny are the number of edges for nodes x and y, respectively, m

was the number of mutual neighboring nodes, and N was the total

number of chemicals, genes and diseases with any interaction in

CTD. In equation 3, A was the set of genes that connect the
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chemical and disease and ni are the number of edges for the

particular connecting gene. All values for p1 and p2 are –log10

transformed. The p1 and p2 probability distributions were

combined into an aggregate statistic using the logarithmic opinion

pool approach shown in equation 4 [33]. As shown in equation 5,

SXYA is a log10-transformed form of p(h) with w1 = w2 = K and

k = 1. WXYA is also a log10-transformed form of p(h) with k = 1, but

w1 and w2 are a function of m as shown in equation 6.

P1(mDN,nx,ny)~

N

m

� �
N{m

nx{m

� �
N{nx

ny{m

� �

N

nx

� �
N

ny

� � ð2Þ

P2(X and Y share ADk,N)~ P
i [A

ni(ni{1)

N(N{1)
ð3Þ

p(h)~k P
n

i~1
pi(h)wi ð4Þ

SXYA~{(w1 log10(p1)zw2 log10(p2)) ð5Þ

WXYA~{(w1 log10(p1)zw2 log10(p2)) ð6Þ

where

w1~ 1{
e

2em

� �

and

w2~ 1{
e

2em

� �

Cxy, SXYA and WXYA were calculated using a Java program that

used the Apache Commons Mathematics library (http://

commons.apache.org/math) to compute large factorials using

the Gamma function.

Cxy, SXYA and WXYA were calculated using a Java program that

used the Apache Commons Mathematics library (http://

commons.apache.org/math) to compute large factorials using

the Gamma function.

Gene Ontology Enrichment Analysis
Enriched Gene Ontology terms annotated to genes used to

make the arsenic and BPA breast neoplasms C–D inferences were

identified using DAVID (http://david.abcc.ncifcrf.gov) [34].

Supporting Information

Figure S1 Degree distribution for the CTD network. The

slope of a line fit to these data was -0.80 (r2 = 0.94).

(TIFF)

Figure S2 Cumulative frequency distributions of ties by
method Cxy, p1, p2, SXYA and WXYA. In all, Cxy had 127,311

ties among 3,866 chemicals; p1 had 127,309 ties among 3,866

chemicals; p2 had 192,923 ties among 5,395 chemicals; SXYA had

41,767 ties among 3,583 chemicals; and WXYA 41,768 ties among

3,583 chemicals.

(TIFF)

Figure S3 Cumulative number of curated inferences
according to rank order among top 100 scoring C-D
inferences by SXYA (blue) and WXYA (red). The plot shows

that curated inferences have a higher rank order when scored by

WXYA than SXYA.

(TIFF)

Table S1 Lists of enriched Gene Ontology Biological Process

FAT terms with a FDR-adjusted p-value,0.05 for two C–D

inferences. A) Enriched terms for 73 genes used to make the

curated inference between BPA and breast neoplasms, and B)

enriched terms for 43 genes used to make the novel inference

between arsenic and breast neoplasms.

(XLSX)
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