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Abstract

Despite that leading theories of consciousness make diverging predictions for where

and how neural activity gives rise to subjective experience, they all seem to partially

agree that the neural correlates of consciousness (NCC) require globally integrated

brain activity across a network of functionally specialized modules. However, it is not

clear yet whether such functional configurations would be able to identify the NCC.

We scanned resting-state fMRI data from 21 subjects during wakefulness, propofol-

induced sedation, and anesthesia. Graph-theoretical analyses were conducted on

awake fMRI data to search for the NCC candidates as brain regions that exhibit both

high rich-clubness and high modular variability, which were found to locate in pre-

frontal and temporoparietal cortices. Another independent data set of 10 highly-

sampled subjects was used to validate the NCC distribution at the individual level.

Brain module-based dynamic analysis revealed two discrete reoccurring brain states,

one of which was dominated by the NCC candidates (state 1), while the other state

was predominately composed of primary sensory/motor regions (state 2). Moreover,

state 1 appeared to be temporally more stable than state 2, suggesting that the

identified NCC members could sustain conscious content as metastable network rep-

resentations. Finally, we showed that the identified NCC was modulated in terms of

functional connectedness and modular variability in response to the loss of con-

sciousness induced by propofol anesthesia. This work offers a framework to search

for neural correlates of consciousness by charting the brain network topology and

provides new insights into understanding the roles of different regions in underpin-

ning human consciousness.
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1 | INTRODUCTION

Consciousness is what we experience subjectively every day when a

salient external stimulus accesses conscious operation, or when our

minds spontaneously wander into episodic memory. While mounting

evidence suggests the existence of the neural correlates of conscious-

ness (NCC), it is not clear yet where especially they are located in the

brain (Hawrylycz et al., 2015). Different theories of consciousness

make diverging predictions for where and how neural activity gives

rise to subjective experience (Boly et al., 2017; Mashour, 2018;

Melloni et al., 2021; Odegaard et al., 2017). For example, the Global

Neuronal Workspace Theory (GNWT) states that the prefrontal cor-

tex plays a crucial role in consciousness (Dehaene et al., 2011;

Dehaene & Changeux, 2011; Mashour et al., 2020), and the integrated

information theory (IIT) postulates that the posterior hot zones of the

temporo-parieto-occipital areas are sufficient to mediate conscious-

ness (Tononi et al., 2016), and the Temporo-spatial Theory of Con-

sciousness (TTC) tends to favor a more globally distributed substrate

for consciousness (Northoff & Huang, 2017; Northoff &

Lamme, 2020; Northoff & Zilio, 2022b).

Despite various distinctions among these influential theories of

consciousness, they seem to partially agree on an account that the

neural correlates of consciousness require to support globally inte-

grated brain activity across a network of functionally specialized mod-

ules (Brown et al., 2019; Dehaene et al., 2011; Dehaene &

Changeux, 2011; Oizumi et al., 2014; Tononi, 2004). Indeed, prior

studies estimating brain integration based on graph-theoretical tools

have confirmed the reduction in brain-wide global synchronization

under diverse general anesthetics and in patients with disorders of

consciousness (Alkire et al., 2008; Boly et al., 2008; Boveroux

et al., 2010; Dehaene et al., 2011; Dehaene & Changeux, 2011;

Laureys et al., 2002; Lee et al., 2013; Lee & Mashour, 2018;

Mhuircheartaigh et al., 2010; Schrouff et al., 2011). In contrast, activi-

ties of functional separated modules, another important aspect

involved in the information integration process during the conscious

experience, have received little attention in previous studies searching

for the neural correlates of consciousness. The brain's modular struc-

ture represents groups of densely connected regions with shared

functionality (Meunier et al., 2010; Power et al., 2011; Sporns &

Betzel, 2016; Yan & He, 2011) and has become the focus of various

investigations. By demonstrating remarkable temporal and individual

variability in the spatial topography of brain modules (Cavanna

et al., 2018; Cui et al., 2020; He et al., 2018; Li et al., 2019; Liao

et al., 2017; Shine & Poldrack, 2018), recent studies have suggested

that variability in modular topography reflects flexible adaptation to

changing environments and underlies individual differences in cogni-

tive and behavioral capacity (Cui et al., 2020; Shine & Poldrack, 2018).

However, the relevance of a region's modular variability to its role in

consciousness remains an open question. Given the evidence that

regions with higher modular variability are more likely to be reas-

signed depending on the mental context (Cohen & D'Esposito, 2016;

Shine & Poldrack, 2018), consciously accessible experiences fluctuat-

ing over time or among individuals would require diversified represen-

tations supported by diverse module patterns. We, therefore,

hypothesize that, apart from the centralized connectivity architecture,

neural correlates of consciousness should also be characterized by

higher variability of modular affiliations in response to various external

stimuli, or to the stream of spontaneous thoughts during wakeful rest-

ing state.

To test our hypothesis, we aimed to locate neural correlates of

consciousness by analyzing two critical organizational aspects, that is,

rich-clubness and modular variability, of spontaneous brain activity

from resting-state fMRI data. We searched for NCC candidates by

identifying brain regions with both high rich-clubness and high modu-

lar variability in a cohort of 21 subjects during awake resting state,

and validated at the individual level in another independent data set

of 10 highly-sampled subjects. We also explored the dynamics of

spontaneous brain networks and hypothesized that the identified

NCC candidates should be more involved in a temporally more stable

state. To further demonstrate the linkage between NCC candidates

and conscious processing, we analyzed fMRI data during propofol

administration with varying concentrations and hypothesized that the

NCC regions would be more sensitive to general anesthetic-induced

loss of consciousness.

2 | MATERIAL AND METHODS

2.1 | Anesthesia dataset

Twenty-one patients (male/female: 9/12; age: 32–64 years) who

were selected for elective resection of pituitary microadenoma via a

transsphenoidal approach (<10 mm in diameter without sella expan-

sion by radiological and plasma endocrine indicators) attended the

experiments. The participants had American Society of Anesthesiolo-

gists physical status I-II grade and no history of craniotomy, cerebral

neuropathy, vital organ dysfunction, or administration of neuropsychi-

atric drugs within three months. In addition, these patients had no

neuropsychiatric and cognitive abnormality in preoperative evalua-

tion. Moreover, the pituitary microadenomas were diagnosed by their

size (<10 mm in diameter without sella expansion) based on radiologi-

cal examinations and plasma endocrinal indicators. The procedure was

approved by the institutional review board of Huashan Hospital,

Fudan University (ethics review number: KY2015-273). All participat-

ing subjects provided written informed consent before enrollment.

For more details, please refer to our previous work (Huang

et al., 2018; Huang et al., 2020; Tanabe et al., 2020).

2.2 | Anesthesia protocol

The participants received propofol sedation and deep anesthesia, dur-

ing which intravenous anesthetic propofol was infused through an

intravenous catheter placed into a vein of the right hand or forearm.

Propofol was administered using a target-controlled infusion (TCI)

pump to obtain constant effect-site concentration, as estimated by

the pharmacokinetic model (Marsh et al., 1991). Remifentanil (1.0 μg/

kg) and succinylcholine (1.5 mg/kg) were administered to facilitate
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endotracheal intubation at deep anesthesia. The TCI propofol was

maintained at a stable effect-site concentration of 1.3 μg/ml for seda-

tion, and 4.0 μg/ml for deep anesthesia, which could reliably induce

an unconscious state (Xu et al., 2009). A 5-min equilibration period

was allowed to insure equilibration of propofol repartition between

compartments. The level of consciousness was evaluated clinically by

asking the subject to strongly squeeze the hand of the investigator

with the Ramsay sedation scale (Ramsay et al., 1974). The correspond-

ing Ramsay scores (median with 1st, 3rd quartile) for 1.3 μg/ml of pro-

pofol effect-site concentration was 4.0 (2.0, 5.0), which was

considered as moderate sedation state; and for 4.0 μg/ml was 6.0

(6.0, 6.0), considered as anesthesia state (loss of consciousness). In the

postoperative follow-up, no subject reported intraoperative aware-

ness during the fMRI scanning and surgical procedure. Detailed anes-

thesia protocol has been described in our previous work (Huang

et al., 2018).

2.3 | Image acquisition

Participants were scanned on a Siemens 3 T scanner (Siemens MAG-

NETOM, Germany) to acquire high-resolution T1-weighted anatomi-

cal images (echo time (TE) = 5 ms, repetition time (TR) = 1000 ms,

slice thickness = 1.0. mm, 176 slices, image size = 448 � 512,

FOV = 219 � 250 mm2, flip angle = 90�) and resting-state fMRI

images using gradient-echo echo-planar imaging (EPI) sequence

(TE = 30ms, TR = 2000ms, slice thickness = 5.0mm, number of

slices = 33, repetition = 240, image size = 64�64,

FOV = 210�210mm2, flip angle = 90�). Resting-state fMRI images

were scanned eyes-closed for 8 min during wakefulness, sedation,

and general anesthesia, respectively. Before sedation scanning, the

subjects were administered 500ml intravenous hydroxyethyl starch

to prevent hypotension caused by propofol-induced vasodilation.

A secondary, independent data set including fMRI images from

ten subjects was downloaded from the Midnight Scan Club website

(MSC, https://legacy.openfmri.org/dataset/ds000224/) for validation.

Briefly, the participants were scanned on a Siemens 3.0 T Tim Trio

(software version syngo MR B17) to acquire high-resolution

T1-weighted anatomical images (TE = 3.7 ms, TR = 2400 ms, slice

thickness = 0.801 mm, 256 slices, image size = 224 � 256,

FOV = 179 � 205 mm2, flip angle = 8�) and resting-state fMRI images

using gradient-echo echo-planar imaging (EPI) sequence (TE = 27ms,

TR = 2200ms, slice thickness = 4.0mm, number of slices = 36, repe-

tition = 818, image size = 64�64, FOV = 256�256mm2, flip

angle = 90�). Resting-state fMRI images were scanned eyes-open for

30min per session, totaling 300min per subject. Details of the MSC

data set are published elsewhere (Gordon et al., 2017).

2.4 | fMRI image processing

Resting-state fMRI images from the anesthesia data set were prepro-

cessed using AFNI (Analysis of Functional Neuroimages) (Cox, 1996).

After discarding the first five frames, fMRI images were corrected for

different slice timing, realigned, coregistered with the high-resolution

anatomical images, and spatially normalized to the standard template

brain (Talaraich stereotactic space). Head motion and signals from the

white matter and cerebrospinal fluid were regressed out to control for

physiological and non-neural noise. Band-pass filtering (0.01–0.1 Hz)

and spatial smoothing (6 mm FWHM) were then applied. Since the

human subjects underwent fMRI scans from wakefulness to anesthe-

sia, the head motions tend to be larger while awake; to mitigate

motion-related confounding, subjects with extra head motions under

any of three conditions were discarded from further analyses (remain-

ing 17 subjects) (Power et al., 2012; Yan et al., 2013). The exclusion

criteria included: (1) averaged head translation/rotation >3 mm/3�;

(2) 4-min longer time points with frame-wise displacement

(FD) >0.7mm.

For the MSC validation data set, preprocessed fMRI images were

downloaded directly from the MSC website. Note that one subject is

reported repeatedly falling asleep and exhibited several non-negligible

eye closures, along with increasing head motion (Gordon et al., 2017),

thus was excluded, remaining nine subjects for further analyses.

2.5 | Static functional network construction

To construct functional brain networks, we first parcellated the brain

according to a predefined brain atlas, which yielded 246 regions of

interest (ROI) (Fan et al., 2016). For each subject, we averaged the

voxel-wise time course within each region and computed the Pearson

correlation to obtain functional connectivity (FC) matrix. A density

threshold of S = 15% was applied to remove as many spurious corre-

lations as possible while maintaining fully connected brain networks.

2.6 | Dynamic functional network construction

Dynamic FC was estimated using a sliding window approach. We used

a window length of 25 TRs slides in steps of 1 TR individually, result-

ing in 211 time windows (TWs) at each of the three conscious levels

for the propofol anesthesia data set and 8156 TWs for the validation

data set. We then calculated the Pearson's correlation coefficients for

each pair of regions from the windowed time course segments. The

resulting windowed correlation matrices were thresholded using con-

nectivity densities of 15% to generate dynamic functional networks.

2.7 | Rich club analysis

The rich-club organization represents a core set of highly-connected

regions that are more densely interconnected in a network. To detect

rich-club organization in a weighted network, we first computed the

FC strength of each brain region as the average of FC with all the

other regions, and calculated the rich-club coefficient as follows

(Colizza et al., 2006; Opsahl et al., 2008):

LI ET AL. 843

https://legacy.openfmri.org/dataset/ds000224/


;ω sð Þ¼ ω> s
PE > s

l¼1W
rank
l

,

where ω> s is the sum of connectivity strength between nodes with

nodal strength higher than s, E > s is the number of these connections,

and Wrank
l is the sum of the top E > s strongest connectivity across the

network. By dividing ;ω sð Þ by ;ωrand sð Þ, a normalized ;ωnorm sð Þ is gener-

ated, where ;ωrand sð Þ is the averaged rich-club coefficient of 1000 ran-

dom networks with the same nodal degree and strength distribution.

A network appears to have the rich-club organization if ;ωnorm sð Þ >1

for a continuous range of s. The permutation test was performed to

assign a P value at each s by comparing the observed ;ω sð Þ with the

null distribution of ;ωrand sð Þ obtained from random networks. Bonfer-

roni method was used to correct multiple comparisons.

2.8 | Modular structure detection

We assessed the modular structure by applying modularity analysis on

static or dynamic brain networks (Blondel et al., 2008; Newman &

Girvan, 2004; Sporns & Betzel, 2016). To achieve an optimal module

partition, we applied a two-step procedure similar to that described

by Rubinov and Sporns (2011). Briefly, the modular partition was first

estimated using the Louvain algorithm 100 times, followed by a fine-

tuning algorithm that was performed repeatedly until the modularity

of the partition no longer increased; a consensus partition was then

identified with the highest modularity. To choose an appropriate value

for the resolution γ parameter in the modularity analysis, we repeated

the above two-step procedure across a range of γ values (1–2 in steps

of 0.1); for the modular partition obtained for each γ value, we com-

puted the variation of information (VI) with those identified at the

neighboring γ values, and γ parameter with the lowest VI was selected

as it provides the most robust estimates of topology across these iter-

ations (He et al., 2018; Sporns & Betzel, 2016).

2.9 | Modular variability

To estimate the variability of spatial affiliations between different

modular partitions, for a given brain region k, we calculated the modu-

lar variability (MV) between modular affiliation i and j obtained in dif-

ferent subjects or time windows as follows (Liao et al., 2017; Steen

et al., 2011):

MVk i, jð Þ¼1�jMi\Mj j
jMi j � jMi\Mj j

jMj j ,

where Mi and Mj denote the module label to which region k belongs

in modular partitions i and j, respectively. Mi\Mj represents the

mutual region set between modules Mi and Mj , and jMi\Mj j denotes
the number of regions in the common region set. jMi j and

jMj jdenote the number of regions in modules Mi and Mj, respectively.

The average modular variability for node k across all n modular parti-

tions can then be calculated as:

MVk ¼1
n
�
Xi¼n

i¼1

MVk,i,

where MVk,i ¼ 1
n�1�

P
j≠ iMVk i, jð Þ denotes the modular variability for

region k between modular partition i and all other partitions.

2.10 | Dynamic state detection

Recent evidence suggested that fluctuations of neuronal activity could

be characterized by highly structured connectivity patterns that reoc-

cur over time, which have been described as “brain states” (Allen

et al., 2014; Cribben et al., 2012; Yang et al., 2014; Yu et al., 2015).

Since the present study focused on the spatial variability of modular

organization, we developed a new method to detect brain states at

individual and group levels based on the temporal variability of modu-

lar structure in functional brain networks.

To identify dynamic states in each individual during different

levels of responsiveness, we first detected the modular structures of

each time-varying brain network using the Louvain modularity algo-

rithm in GRETNA toolbox (Wang et al., 2015). To estimate the similar-

ity of modular structures between different TWs, for each brain

region k, we generated a similarity matrix, iMV w�wð Þ, by inversing

the across-time MVk i, jð Þ values (w: number of time windows). Modu-

larity analysis was then applied to this similarity matrix, iMV w�wð Þ,
to identify modules that might correspond to sets of TWs with similar

brain modular organization. The first-level analysis identified a range

of 2 to 4 states for each region in more than 90% of subjects.

To reveal brain states that reoccurred across subjects and differ-

ent levels of responsiveness, a second-level analysis was performed

based on the individual-level brain states. First, for each subject and

each condition, we averaged the inversed across-time MVk of each

region across TWs within each first-level brain state. The TWs of the

largest averaged inversed across-time MVk were labeled as 1, while

the remaining TWs were labeled as 0. We then concatenated the

TWs across all subjects and all conditions to generate a matrix,

iMVth n� rð Þ, where n is the number of TWs multiplied by the number

of subjects and conditions and r is the number of brain regions. Each

column in the iMVth n� rð Þ matrix represented whether a given brain

region was temporally stable in its module in current TW. Finally, a

similarity matrix, S n�nð Þ, was computed as the inversed Euclidean

distance between each pair of rows of iMVth n� rð Þ. We then per-

formed a modularity analysis on S n�nð Þ to detect group-level brain

states. Within each state, temporal stability was estimated as the pro-

portion of 1 s in the matrix iMVth n� rð Þ.

2.11 | Statistical analysis

To detect differences in temporal stability between the two dominant

states, a paired t test was performed (p < .05). To evaluate the spatial

overlap between stable regions of each state and NCC areas, a non-

parametric permutation test was used, whereby the ratio of NCC
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members overlapping with stable regions (> mean) within each state

was calculated. A total of 1000 random permutations were generated

independently; for each permutation, stability values were randomly

permuted across brain regions within each state, and the test statistic

of interest was recalculated, generating a distribution of 1000 values

from the permuted data. The p value was determined by comparing

the observed value with the permutation-generated distribution.

p values of less than .05 were considered statistically significant. To

test which state involves more NCC members, we calculated the

between-states difference in NCC overlapping ratio and performed the

non-parametric permutation test using the same procedure as above.

To evaluate the effect of propofol-induced anesthesia, a one-

way, repeated-measures ANOVA, with conscious condition (awake,

sedation, and anesthesia) as the within-subject factor, was applied to

measures of connectivity strength (NCC, feeder, and local connec-

tions) and modular variability (NCC and non-NCC members), respec-

tively, followed by independent, post-hoc, paired t tests between

every pair of conditions. Significance was considered at p < .05 and

corrected for multiple comparisons using Bonferroni correction. Fur-

thermore, network-based statistics (NBS) analysis was implemented

using GRETNA MATLAB Toolbox (Wang et al., 2015) between pairs

of conscious conditions, to reveal whole-brain network-based fea-

tures of loss of consciousness with significance set at p < .005.

Regional-wise comparisons of across-time MV between every pair of

conditions were performed by paired t tests with significance set at

p < .05 and corrected using False Discovery Rate (FDR) correction.

The NBS and regional-wise results were presented using BrainNet

Viewer (Xia et al., 2013).

2.12 | Validation analysis

To validate the reliability of anesthesia effects on FCS and MV of

NCC, we randomly selected 10 subjects from the whole sample for

1000 times, and for each selected sub-samples, we performed one-

way ANOVA to evaluate the effect of conscious level in static and

dynamic FCS and MV of NCC. The ratio of significant ANOVA tests

(p < .05) in FCS or MV was calculated as a measure of the reliability of

anesthesia effects on NCC.

3 | RESULTS

3.1 | Rich-club structure of the functional brain
network

Consistent with previous studies, we demonstrated that the func-

tional brain network exhibited a significant rich-club structure com-

pared to randomly reorganized networks for a range of connectivity

strength s = 1 to s = 30 (p < .001, Figure S1). By displaying the ana-

tomical distribution of rich-club members at different levels (top 10%

to 50% connectivity strength, Figure 2a), we observed a tendency of a

hierarchical layout for rich-club areas. While the primary sensorimo-

tor, and auditory regions are among the lower level of connectivity

strength (top 40%–50%), followed by association cortices of dorsolat-

eral frontoparietal regions (top 20%–40%), the most highly-connected

rich-club core (≥top 20%) is occupied by the anterior and posterior

midline, bilateral temporoparietal junction areas, forming the default

mode network (DMN). Note that regions in the occipital visual corti-

ces also showed a high level of rich-clubness.

3.2 | Modular variability of the functional brain
network

Modular analysis on the group-averaged functional brain networks

revealed seven modules during the awake resting state (Figure S2),

including the frontoparietal network (FPN), default mode network

F IGURE 1 Schematic of the identification of neural correlates of consciousness (NCC). (a) Rich-club consists of high-degree hub regions that
are more densely interconnected among themselves. (b) Brain regions that tend to sway between different modules across different subjects or
different time windows are characterized by high across-individual or across-time modular variability. (c) Regions with high rich-club level, high
across-individual MV as well as high across-time MV were overlapped to give rise to a putative NCC template
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(DMN), auditory network (AUD), sensorimotor network (SMN), visual

network (VIS), medial temporal lobe (MTL), and subcortical network.

Figure 2b,c show the anatomical layout of brain regions with different

levels of across-time and across-individual MV (top 10% to 50%).

Regions in the frontal, temporoparietal, and insular cortices exhibit

high variability in modular affiliation (≥top 20%), especially the medial

and lateral prefrontal areas, which are among the highest in across-

individual and across-time MV (top 10%).

3.3 | Identification of neural correlates of
consciousness

By overlapping the above three maps (as shown in Figure 1) of regions

with high rich-club connectedness (top 40%), high across-individual

MV (top 40%), and high across-time MV (top 40%), we identified a

putative NCC template of 20 brain areas (8% of all brain regions) dis-

tributing primarily in the anterior and posterior midline, lateral

F IGURE 2 Neural correlates of consciousness (NCC) identification and functional decoding. (a–c) anatomical distribution of rich-club, across-
individual MV, and across-time MV members at different levels (top 10% to 50%). (d) a putative NCC template by overlapping the three maps of
regions with high rich-club connectedness (top 40%), high across-individual MV (top 40%), and high across-time MV (top 40%), 78% of which was
in DMN and 18% was in FPN. (E) Individual-level GNW map for an example subject (MSC03) (upper) and the conjunction map of NCC map across
individuals (lower) from the MSC data set
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prefrontal, and temporoparietal junction areas (Figure 2d). Remark-

ably, a large percent of these identified regions resided within the

DMN (78%) and FPN (18%). We also generated overlapping maps of

the three topological metrics using different percentiles (top 30% and

top 50%) of regions with top rich-clubness and MV (Figure S3) and

validated the robustness of the putative NCC candidates, especially

the prefrontal regions that were consistently detected as potential

NCC with both high interconnectivity and high modular variability. In

addition, the identified NCC was found to mainly attributed to higher-

order cognitive functions, and associated with genes enriched in syn-

aptic transmission (see supplemental materials and Figure S4).

To further validate our findings, we replicated the NCC identifica-

tion procedure above at the individual level using the MSC data set.

Although there were variations across the individual-level NCC map

(Figure S5), their conjunction map showed that the candidate NCC

regions in more than 30% of subjects were predominately distributed

in anterior, middle, and posterior cingulate cortices, middle frontal and

temporoparietal cortices, and medial occipital gyrus (Figure 2E), which

largely resembles the NCC distribution observed in our main data set.

3.4 | NCC candidates are more involved in a
dynamically metastable state

The dynamical analysis identified five brain states at the group level.

When projecting each brain state back to individuals, three states

were presented in very few subjects and were thus discarded, result-

ing in two dominant brain states retained for further analysis. One of

these two dominant brain states (state 1) exhibited higher stability

than the other (state 2; Figure 3a left; t = 12.05, p < 10�5), suggesting

that brain state 1 may represent a temporally more stable state.

Figure 3b showed the brain regions with high stability (> mean) in

each state. In state 1, we found that the most stable brain regions are

preferentially distributed in the DMN and FPN modules, taking about

48% of all the stable regions (Figure 3c). In contrast, in state 2, the

most stable regions were dominated by primary sensory and limbic

networks (Figure 3b), with the DMN and FPN modules taking a less

proportion (34% in total; Figure 3c right). By overlapping our identi-

fied NCC candidates with the stable regions in each state (Figure 3d),

we observed that while both states exhibit significant overlaps with

the NCC in regions of the prefrontal cortex, anterior and posterior cin-

gulate cortices (ps <.001, permutation test), the stable regions in state

1 shared 13.64% with the NCC, which was significantly more

(p < .001, permutation test) than that in state 2 (6.09%). We also eval-

uated the overlap between stable regions in each state with NCC can-

didates, identified at other rich-club and MV levels, and validated that

the NCC overlapped more with stable regions in state 1 than in state

2 (Figure S6). Taking together, our results demonstrated that the

spontaneous brain activities could be decomposed into a more stable

brain state, steered predominately by the NCC members, and another

less stable state dominated by primary sensorimotor regions which

may be associated with subliminal processing.

3.5 | NCC signatures track loss of consciousness
during propofol administration

Having identified the NCC and linked it with the metastable dynamic

brain state, we next sought to investigate the role of the NCC in sup-

porting human consciousness by comparing fMRI data in the same

cohort of subjects from awake to sedation and unconscious state

induced by different concentrations of the intravenous anesthetic

F IGURE 3 Neural correlates of consciousness (NCC) dynamics. (a) Two different iterating activity states with state 1 having higher stability
than state 2. (b) Brain regions with high stability (>mean) and (c) their percentile distribution across brain modules in state 1 (left) and state
2 (right). (d) Overlaps between identified NCC space with the stable regions in state 1 (left) and state 2 (right)
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propofol. The identification of NCC allowed for the classification of

brain regions as NCC and non-NCC members, and connections into

three categories, including NCC connections linking NCC members,

feeder connections linking NCC and non-NCC regions, and local con-

nections linking non-NCC regions. We, therefore, calculated MV for

NCC and non-NCC regions, and FC strength (FCS) for the three cate-

gories of connections, respectively, and expected to observe alter-

ations, especially within the NCC, during the anesthesia-induced loss

of consciousness.

One-way ANOVA revealed marginally significant effects of anes-

thesia in static FC strength (Figure 4A) of local connections

(F [2,26] = 3.59, puncorrected = .04, puncorrected = .12), and marginally

significant effect of anesthesia in NCC connections (F [2,26] = 3.57,

puncorrected = .04, puncorrected = .12), both of which decreased with loss

of consciousness. Post-hoc tests found no significant changes in NCC

or local connections between each pair of the three conscious levels.

To further explore which specific connections are impacted during

propofol administration, we performed network-based statistics (NBS)

between different conscious levels for NCC and local connections

respectively. Our results for NCC connections revealed significant

decreases in the strength of FC among the midline key regions of the

DMN, including the medial prefrontal cortex (mPFC), anterior cingu-

late cortex (ACC), and posterior cingulate cortex (PCC), between

wakefulness and anesthesia (p < .005), and among the midline DMN

areas and lateral middle frontal gyrus (MFG) between sedation and

anesthesia (p < .005, Figure 4c). As for the local connections

(Figure S7), reductions in FC were mainly distributed among SMN,

VIS, and MTL networks (p < .005).

We also observed marginally significant effects of loss of con-

sciousness in across-time MV only within the NCC (F [2,26] = 3.76,

puncorrected = .037, pcorrected = .074), with the across-time MV

decreased as the dose of anesthesia deepened (Figure 4b). Post-hoc

tests found no significant changes between pairs of the three con-

scious levels. Further regional-wise paired t comparisons revealed sig-

nificant reductions of across-time MV located primarily in the medial

and lateral prefrontal areas from sedation to anesthesia

(pcorrected <.05, Figure 4c), indicating the evident degeneration of the

ability for these regions to dynamically vary their modular affiliation

across time. No significant effect of consciousness was found in

across-individual MV.

Dynamic analysis of brain states revealed that significant

anesthesia-related changes in FC strength were observed only during

the stable state (state 1) within the NCC (F [2,23] = 7.59, puncor-

rected = .003, pcorrected = .009, Figure 5a). Marginally significant effect

of anesthesia was also observed for feeder (F [2,23] = 3.84, puncor-

rected = .038, pcorrected = .11) and local connections (F [2,23] = 3.77,

puncorrected = .040, pcorrected = .12) during the stable state. Post-hoc

tests revealed significant decreases in NCC connectivity from seda-

tion to anesthesia (t = 4.37, puncorrected = .001, pcorrected = .003) dur-

ing the stable state, while no significant between-condition

differences were observed for feeder or local connections. Further

NBS analysis of NCC connections in state 1 revealed significant

decreases among regions of mPFC, ACC, PCC, and MFG (p < .005,

Figure 5b). As for the feeder connections, significant reductions were

mostly between NCC regions with non-NCC regions in DMN from

awake to anesthesia, and with non-NCC regions in FPN from sedation

F IGURE 4 Static NCC signatures track loss of consciousness during Propofol anesthesia. (a) Differences in static FC of NCC, feeder, and local
connections from awake to sedation and unconsciousness. (b) Differences in across-time MV of NCC and non-NCC regions from awake to
sedation and unconsciousness. (c) NCC connections show significant reductions in NBS between awake and unconsciousness, and NCC regions
with significant decreases in across-time MV from sedation to anesthesia condition (highlighted in larger circles). The color of nodes indicates
modular affiliation. *puncorrected < .05
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to anesthesia (p < .005, Figure 5b). Local connections among a cluster

of regions across the posterior part of the brain were shown to reduce

from awake and sedation to anesthesia (p < .005, Figure S7). No sig-

nificant effect of anesthesia was observed in across-time MV in either

of the two dynamic states. Similar anesthesia effects were also

observed using the NCC identified at different rich-club and MV

levels (Figure S8).

Validation analyses further showed that NCC regions were signifi-

cantly modulated by loss of consciousness. For static analysis, there is

a consistent effect of conscious level in NCC connectivity in 57% of

sub-samples, and in MV in 31% of sub-samples. During dynamic state

1, in which NCC candidates have been demonstrated to be more

involved, the significant effect of the conscious level was reliably

observed in NCC connectivity in 83% of sub-samples. In contrast, dur-

ing state 2, a significant effect in NCC connectivity was only observed

in about 18% of sub-samples.

4 | DISCUSSION

The present study proposes to locate the neural correlates of con-

sciousness by taking advantage of recent developments in network

neuroscience. We identified a cluster of regions distributed in pre-

frontal and temporoparietal cortices that are characterized by both

high functional interconnectivity and high modular variability to con-

stitute the putative NCC. Dynamic analysis revealed two discrete

reoccurring brain states, which are characterized by their differences

in temporal stability—the state dominated by the identified NCC

appears to be temporally more stable than the other state

predominately composed of primary regions, demonstrating that the

identified neural correlates of consciousness are able to sustain con-

scious contents as metastable network representations. Finally, we

showed that the identified NCC candidates were significantly modu-

lated in terms of functional connectedness and modular variability in

response to the loss of consciousness during propofol anesthesia.

Combing two well-defined graph-theoretical network measures,

we located the putative NCC members in a distributed set of regions

residing predominately in the default-mode and frontoparietal net-

works. While the identified regions included the posterior cingulate

and temporoparietal cortices, which are the main candidates for the

“posterior hot zones” advocated by the IIT, the inclusion of anterior

areas in the putative NCC provides support for the GNW theory.

Notably, regions in the anterior cortex were observed to show both

the densest connectivity and the highest modular variability, situating

at the core of the putative NCC. This is in well concordance with ini-

tial theoretical and simulation studies of GNW predicting the dorsolat-

eral prefrontal and anterior cingulate cortices to be the major

contributors to the workspace (Dehaene et al., 1998), and is also con-

sistent with recent efforts in quantifying the global workspace (Deco

et al., 2021; Luppi et al., 2020) by considering the brain as an informa-

tion processing system. The posterior cortical regions, on the other

hand, were of high connectivity but relatively low temporal variability

in modular structures. This is in line with a recent study(Luppi

et al., 2020) demonstrating that the default mode system, especially

its posterior regions, exhibited a higher prevalence of synergistic over

redundant information, which suggests an integrating rather than

broadcasting role of these regions in processing information accessi-

ble to consciousness. Thus, the PCC may act as an integrator with rich

F IGURE 5 Dynamic NCC signatures track loss of consciousness during Propofol anesthesia. (a) Differences in dynamic FC of NCC, feeder,
and local connections from awake to sedation and unconsciousness during each state. (b) NCC connections show significant reductions in NBS
between different conscious levels during state 1. (c) Feeder connections show significant reductions in NBS between different conscious levels
during state 1. The color of nodes indicates modular affiliation. *puncorrected < .05; **pcorrected <.05
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connections, gathering information from distributed brain networks as

the GNW theory has postulated, but may be less responsible for infor-

mation differentiation in terms of spatiotemporal variability in the

brain modules, failing to provide strong support for the IIT. We note

that GNWT and IIT are only two examples of the many theories of

consciousness, there are other theories, such as the Higher-order

Thought Theory (HOT), Recurrent Processing Theory (RPT), and Syn-

chrony Theory (ST), also make predictions for the neural locus of con-

sciousness. Similar to the divide between GNWT and IIT, these

theories also diverge in considering either the sensory regions (RPT

and ST) or the prefrontal cortex (HOT) to be sufficient for conscious-

ness. Our findings of the widespread distribution of NCC candidates

point to a more global, integrated substrate of consciousness that

may contribute to the ongoing discussion(Ihalainen et al., 2021; Koch

et al., 2016).

Notably, our proposed analytic framework, leveraging graph-

theoretical tools to locate the NCC architecture, highlights the impor-

tance of characterizing the spatio-temporal features of the brain in

understanding consciousness, which seems to fit well with the TTC

theory. The TTC proposes that the key to consciousness lies in the

topography and temporal dynamics of brain activity (Northoff &

Huang, 2017; Northoff & Lamme, 2020; Northoff & Zilio, 2022a,

2022b). Especially, the TTC postulates four different neuronal mecha-

nisms accounting for the different dimensions of consciousness, of

which the “temporo-spatial nestedness” of the spontaneous activity

accounting for the level/state of consciousness may be particularly

relevant to our results obtained using resting-state data. The level/

state of consciousness is considered a global signature that integrates

intrinsic neural activities across different temporal and spatial scales

(Northoff & Zilio, 2022b). As such, the spatial organization and tempo-

ral dynamics that balance between integration and segregation of

spontaneous brain activity are proposed to be central to understand-

ing the neural correlates of consciousness (Northoff & Zilio, 2022b).

Previous studies have reported non-trivial properties, including cen-

trality and modularity (Barttfeld et al., 2015; Betzel et al., 2016; He

et al., 2009; Meunier et al., 2010), as well as a rich dynamic repertoire

of spontaneous brain activity (Barttfeld et al., 2015; Betzel

et al., 2016; Cavanna et al., 2018; Li et al., 2020; Liu et al., 2018; Raut

et al., 2020; Shine & Poldrack, 2018), demonstrating the “temporo-

spatial nestedness” of the intrinsic brain organization. In consistent

with these theoretical and empirical evidence, our analyses comple-

ment the understanding of the anatomical footprints underlying con-

sciousness by demonstrating their superior ability not only in

functional integration but also in dynamic functional diversification

with specialized modular processors.

Our observations from dynamic analysis provide further evidence

supporting the functional implications of the NCC architecture in the

temporal domain. Despite the disagreement among the GNWT, IIT,

TTC, and other theories of consciousness, they all seem to either

explicitly or implicitly agree that consciousness is closely related to

the transition from segregated to integrated neural activity, which is

supposed to lead to stable, synchronous states embedded in the

temporo-spatial dynamics of consciousness (Northoff &

Lamme, 2020). Specially, based on theoretical and simulation evi-

dence, the GNW theory predicts two dynamic states or stages for a

stimulus to access consciousness (Dehaene & Changeux, 2011): an

“ignited” conscious state when the input signal is strong enough to

ignite a sustained, metastable distributed neural representation of the

current conscious contents; and a subliminal processing state during

which the incoming activity is propagated through primary sensory

areas, inducing only a progressively decaying activity in higher-order

regions. Intriguingly, this fits well with the roles that our findings

assigned to the two brain states identified herein. Specifically, we

demonstrated that within the brain state of higher temporal stability

of modular organization, a significant percentage of the most stable

regions coincide with the identified NCC. In contrast, the other brain

state showing significantly lower stability is mainly steered by primary

sensory areas. Furthermore, our results pinpoint the default midline

areas to be the temporally most stable sites during the temporally

more stable state, which refines our understanding of the critical value

of DMN areas in maintaining neural representations that access con-

sciousness. This observation is also consistent with recent studies

showing that the default mode regions that are distant from sensory

input have the longest timescale to accumulate and process informa-

tion, which may facilitate functional integration over a slow timescale

(Baldassano et al., 2017; Chien & Honey, 2020; Raut et al., 2020).

In supportive of NCC's roles in human consciousness, we demon-

strated their selective vulnerability during anesthesia-induced loss of

consciousness. During the loss of consciousness, although static FC

strength of both NCC and local connections decreased, the dynamic

analysis revealed that connectivity within the NCC was particularly

impacted during the temporally more stable state, which is consistent

with previous dynamic connectivity studies in patients under pharma-

cological or pathological unconsciousness, showing more extensively

disruptions in states that potentially relevant for conscious processing

(Barttfeld et al., 2015; Demertzi et al., 2019; Luppi et al., 2019). Fur-

thermore, we also found that the identified NCC members exhibited

different anesthesia-related changing patterns in terms of the two

network measures, FCS and MV. Specifically, FCS reductions were

specific to the DMN midline areas, while decreases in MV were

observed predominately in prefrontal cortices, suggesting that these

two sets of regions within the NCC may play complementary roles in

supporting consciousness. This observation is in line with the previous

hypothesis proposing that the areas constituting the neural substrates

supporting consciousness are “neither identical nor redundant”
(Mashour et al., 2020), and offers novel insight into the understanding

of functional specificity of NCC members. The FCS indicates a

region's ability in integrating or amplifying segregated information,

while the temporal modular variability reflects its temporal flexibility

in selecting or broadcasting information with a wide range of local

processors. Thus, the DMN midline regions may be well-suited for

functional integration rather than functional diversification, while the

prefrontal areas may function distinctly in support of conscious pro-

cessing. Indeed, recent insights from connectivity decomposition anal-

ysis found that the DMN is situated at the top of the topographical

hierarchy in brain connectivity space, supporting its essential role in
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acting as cortical hubs with a maximal distance from primary systems

to integrate and represent multi-dimensional information (Margulies

et al., 2016). In contrast, the fronto-parietal system was found to

occupy a position sitting between the unimodal and default mode net-

works, suggesting it may function as a connector to collect bottom-up

information and distribute top-down information (Margulies

et al., 2016). Notably, the medial prefrontal region exhibited reduction

in both FCS and temporal MV associated with propofol anesthesia,

indicating a crucial role of this anterior cluster in contributing to con-

scious experience. Taking together, these observations provide evi-

dence for the pivotal contribution of the identified putative NCC,

which covered most key structures predicted by both GNW and IIT,

in supporting human consciousness, and more importantly, highlight

the potential differential roles between prefrontal GNW regions and

posterior IIT regions during propofol-induced loss of consciousness

(Ihalainen et al., 2021).

5 | LIMITATION

There are a few limitations to note in our study. First, given the rela-

tively limited scan duration of our primary data set (8 mins), NCC iden-

tification was only performed at group-level, which would

underestimate potential individual differences in the topography and

topology of the NCC architecture. To mitigate this concern, we con-

ducted an individualized analysis on the MSC data set and validated

that the individual-level NCC distribution was similar to that on the

group level. Nevertheless, future research would benefit to consider

constructing individualized NCC to predict between-subject variability

in conscious access and related cognitive abilities. Second, we used a

single type of anesthetic (a GABAA receptor agonist) to induce loss of

consciousness. It is unknown whether our observation of the disrup-

tions during propofol-induced anesthesia could generalize to other

types of anesthetics or other forms of unconsciousness. Previous stud-

ies have consistently related changes in the prefrontal and default

mode regions, which are key members of the NCC identified herein, to

unconsciousness induced by various types of anesthetic or disorders

of consciousness (Alkire et al., 2008; Chuang & Nasrallah, 2017; Huang

et al., 2020; Lee et al., 2013), attesting to the generality of NCC's

selective vulnerability. However, NCC members could still exhibit dif-

ferent spatiotemporal changing patterns during different forms of

unconsciousness, which warrants future investigations. Third, NCC

was only probed based on resting-state fMRI data, it would be inter-

esting to extend the current analytic framework to task data in future

studies, which may help to understand how the putative NCC would

be modulated by varied conscious contents during task stimulus.

6 | CONCLUSION

The present findings testify to the NCC's abilities in information inte-

gration and differentiation and provide novel insights into reconciling

the ongoing discussion of the contribution of anterior versus posterior

regions in supporting human consciousness.
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