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Abstract. Actins are known to comprise six mamma- 
lian isoforms of which 13- and ~-nonmuscle actins are 
present in all cells, whereas a-smooth muscle (a-sm) ac- 
tin is normally restricted to cells of the smooth muscle 
lineages, a-Sm actin has been found also to be ex- 
pressed transiently in certain nonmuscle cells, in parti- 
cular fibroblasts, which are referred to as myofibro- 
blasts. The  functional significance of a-sm actin in 
fibroblasts is unknown. However,  myofibroblasts ap- 
pear  to play a prominent  role in stromal reaction in 
breast cancer, at the site of wound repair, and in fi- 
brotic reactions. Here,  we show that the presence of 
a-sin actin is a signal for retardation of migratory be- 
havior in fibroblasts. Comparison in a migration assay 
of fibroblast cell strains with and without a-sm actin re- 
vealed migratory restraint in a-sin actin-positive fibro- 
blasts. Electroporat ion of monoclonal antibody (mAb) 
1A4, which recognizes specifically the NH2- terminal 
A c - E E E D  sequence of a-sm actin, significantly in- 

creased the frequency of migrating cells over that ob- 
tained with an unrelated antibody or a mAb against [3- 
actin. Time-lapse video microscopy revealed migratory 
rates of 4.8 and 3.0 i~rn/h, respectively. To knock out 
the a-sin actin protein, several antisense phospho- 
rothioate oligodeoxynucleotide (ODNs) were tested. 
One of these, 3 'UT1, which is complementary to a 
highly evolutionary conserved 3' untranslated (3 'UT) 
sequence of a-sm actin mRNA,  was found to block 
a-sm actin synthesis completely without affecting the 
synthesis of any other proteins as analyzed by two- 
dimensional gel electrophoresis. Targeting by antisense 
3 'UT1 significantly increased motility compared with 
the corresponding sense ODN. a-Sm actin inhibition 
also led to the formation of less prominent  focal adhe- 
sions as revealed by immunofluorescence staining 
against vinculin, talin, and [31-integrin. We propose that 
an important function of filamentous a-sm actin is to 
immobilize the cells. 

TIN has been implicated as the major cytoskeletal ele- 
ment in cellular locomotion. In deciphering the 
role of actin for cellular movement, attention has 

been focused mainly on two different cytoskeletal or- 
ganelles, the strapped-down stress fibers more or less 
spanning the cell body and the fine meshwork of actin in 
protrusive lamellipodia (13, 62). Due to the concurrent ex- 
pression of both structures in fibroblasts, there is a long 
tradition for the use of these cells in studies of cellular mo- 
tility. Fibroblasts have been considered to contain two ac- 
tin isoforms only, i.e., 13- and ~/-nonmuscle actin, as deter- 
mined by biochemical analysis of the NH2-terminal tryptic 
peptide. Whereas these isoforms are ubiquitously ex- 
pressed by all eukaryotic cells, 3,-smooth muscle(sm), I a-car- 
diac, a-skeletal, and a-sm actin have been considered tissue 
specific (22, 68, 69). Recently, however, a new dimension 
has emerged in the field of fibroblast cell biology. It has 
been realized that fibroblasts dramatically turn on one of 
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the muscle-specific isoforms of actin, et-sm actin, in a num- 
ber of pathological settings affecting the interstitial stroma 
(7, 11, 19, 38, 50, 51, 53, 55). Moreover, most fibroblasts 
kept under conventional culture conditions with varying 
amounts of serum in the medium appear to be in a state of 
continuous activation in terms of c~-sm actin expression 
(15, 48, 52, 63). The activity in serum and in interstitial tis- 
sue responsible for this activation of fibroblasts has been 
determined to be that of TGF-[3 (14, 49). 

The functional significance of the ectopic expression of 
a-sm actin in fibroblasts has remained a mystery (9). How- 
ever, a number of observations suggest that it may modu- 
late the motor function of actin in general. First of all, 
based mainly on studies of pericytes, it appears that the ac- 
tin isoforms are differentially compartmentalized in the 
two main organelles of actin. Thus, whereas a-sin actin is 
rapidly and selectively incorporated into stress fibers, 
13-actin readily accumulates in the leading lamellipodia 
(13, 26). Second, in vascular smooth muscle cells normally 

1. Abbreviat ions used in this paper: DME-FI2, DME-Ham's  F12; ODN, 
oligodeoxynucleotide; sm, smooth muscle. 
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expressing all three isoforms, the o~ isoform is downregu-  
lated as the cells t ranslocate during atherosclerosis (6). 
Conversely,  a - sm actin is highly expressed in fibroblasts 
when cel l-substratum tract ion may be more  impor tant  
than motil i ty such as during wound contract ion and in 
chronic fibrotic condit ions (12, 14, 19, 29, 54). 

A n  obvious strategy for analyzing ~-sm actin function 
would seem to be ei ther  complete  or part ia l  gene knock- 
out by antisense transfection, or expression of the full- 
length c D N A  clone for ot-sm actin. The first opt ion would 
require  cell lines with universal and homogenous  expres- 
sion, as is the case, for instance, for vinculin (21). However,  
this has been  an elusive goal  as far as et-sm actin-express- 
ing cells are concerned.  Thus, by cloning at random,  it has 
been exhaustively demons t ra ted  that  no two f ibroblast  
clones are identical  when it comes to the level of et-sm ac- 
tin expression (15). This prevents  the generat ion of control  
clones with stable expression. As  for the second option,  
the expression of actin proteins  in nonmuscle cells has 
been  further hampered  by induction of lethal or  grossly 
aberrant  phenotypes  (71). Even  if a full c D N A  clone were 
available, no a-sm act in-negat ive,  clonable f ibroblast  cell 
lines have so far been available. Therefore ,  expression of 
tx-sm actin in stable, nonexpressing cells would have neces- 
s i ta ted other  cell types to be used, leading to a complete ly  
different  cytoskeletal  structure. In addit ion,  it would be 
preferable  if the function of this pro te in  could be assessed 
in its natural  environment  and not  as an overexpressed 
protein.  

W e  have previously approached  the question of obtain-  
ing tx-sm act in-posi t ive  fibroblasts by use of a shor t - term 
culture assay of human breast  f ibroblasts on collagen- 
coated plastic (49, 52). In this assay, we readi ly generate  
cell strains with up to 90% of cells expressing strong ot-sm 
actin. We  are also able to control  the act ivated phenotype  
under  strictly reproducible  serum-free condit ions by use of 
TGF-13 and adhesion-modif ied  plastic substratum (49). In 
this study we take advantage of these recently deve loped  
culture technologies as well as novel f ibroblast  cell strains 
that  essentially fail to express a-sin actin. We  show that  
the a-sm act in-expressing fibroblasts migrate  slower than 
the nonexpressing cells. By tagging the ct-sm actin prote in  
at the isoform-specific NH2-terminal  end (68) with an elec- 
t ropora ted  et-sm act in-specif ic  antibody,  we further nar-  
row the cause-effect  re lat ion be tween ct-sm actin expres- 
sion and migratory behavior.  Finally, we use antisense 
ODNs  against the isoform-specific 3 ' U T  region of the 
m R N A  (32, 47) and show that  ot-sm actin synthesis is com- 
pletely and specifically abolished and migrat ion is in- 
creased accordingly. 

Materials and Methods 

a-Sra Actin-positive and -negative Fibroblasts 
Normal breast tissue was obtained from 77 reduction mammoplasties per- 
formed for cosmetic reasons. The tissue was cut, collagenase-digested in 
DME-Ham's F12 (DME-F12) with 2 mM glutamine (Sigma Chem. Co., 
St. Louis, MO), 50 p.g gentamicin/ml (Garamycin; Schering, Kenilworth, 
N J), and essentially pure cell strains of ct-sm actin-positive fibroblasts 
were generated by induction with FCS as previously described (52). These 
fibroblasts were used in passages 2 and 3. In cultures from a few random 
biopsies (F359, F498, and F514), fibroblasts without ct-sm actin spontane- 

Figure 1. Fibroblast motility correlates with isoactin phenotype. 
(A) Phase contrast micrographs of the a-sm actin-positive (left; +) 
and -negative (right; - )  cell strains in the migration assay photo- 
graphed at time zero (top) and after 24 h (bottom). The cell densi- 
ties were essentially identical behind the starting lines, but the 
c~-sm actin-negative cells migrated in much higher numbers and 
for longer distances compared with the ct-sm actin-positive cells. 
(B) Characterization of isoactin expression in fibroblast cell 
strains after 24 h of migration. The dotted line indicates the start- 
ing line. The cells were double stained by immunofluorescence 
for filamentous actin by FITC-phalloidin (top) and ct-sm actin by 
mAb 1A4 (bottom). The general filamentous actin phenotype is 
almost identical in the two cell strains, but one of them does not 
express c~-sm actin. (C) Diagram showing the percentages of cell 
migration at t = 24 h of five ~-sm actin-positive (left) and three 
et-sm actin-negative (right) cell strains. The use of an unpaired 
Student's t test with two tails indicates that the difference is sig- 
nificant (*P < 0.01). Magnification, 150; Bars: (A and B) 100 I~m. 
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Figure 2. The difference in migratory behavior  be tween  oL-sm act in-  
posi t ive and -nega t ive  cells corre la tes  with ce l l -matr ix  interac-  
tions. (A) He te ro typ ic  cell interact ions were  assayed be t ween  
roughly equal  number s  of  tx-sm act in-posi t ive  and -nega t ive  fi- 
broblas ts  l ined up next  to each o the r  at a s tart ing line. A f t e r  free 
migra t ion  for  48 h, cells were  double  s ta ined for (x-sm actin (a) 
and general  actin (b). et-Sm act in-posi t ive  cells as quant i f ied by 
immunope rox idase  staining travel a much  shor te r  dis tance (mean  
of  relative percen tage)  (c). Closed bars, et-sm act in-posi t ive  cells; 
open bars, et-sm ac t in-nega t ive  cells. Magnificat ion:  60; R, rear; F, 
front.  (B) Cel l -mat r ix  in teract ions  were  expressed  in te rms  of  fo- 
cal contact  fo rmat ion  in the  mixed field of  ct-sm act in-posi t ive  
and -nega t ive  fibroblasts.  Cells were  double  s ta ined for  ct-sm ac- 
tin (a, c, and e) and vinculin (b), talin (d), or  131-integrin (f). The  
focal contact  pheno type  strongly cor robora tes  the  less moti le  be- 

ously predominated at an early stage. Similar to the ct-sm actin-positive 
cell strains mentioned above, these essentially ct-sm actin-negative fibro- 
blasts grew in DME-F12 with 20% FCS. 

A 50-50 mixture cell strain, a subline of F359, was generated by cultiva- 
tion until the third passage in CDM3 (45) supplemented with 20% FCS, 
and then shifted to DME-F12 with 20% FCS to induce ~x-sm actin and 
used in the sixth passage. The subline essentially maintained its actin ex- 
pression pattern irrespective of cell culture density and migratory status. 
All migration experiments were performed in DME-F12 with 20% FCS. 

For depletion of a-sm actin by 3'UT1 antisense (see below), a-sin actin- 
negative fibroblasts were explanted under controlled serum-free condi- 
tions as previously described (49). They were next primed with 20% FCS 
for 48 h, electroporated with ODNs as described below, and then plated in 
DME-F12 with either 20% FCS for 24 h or TGF-131 (100 pg/ml; Sigma 
Chemical Co.) for 72 h in the presence of 1 IxM ODN to induce ct-sm actin 
as previously described (49, 52). 

Migration Assay 
A bar was placed in a collagen-coated (g ixm/cm 2 Vitrogen 100; Collagen 
Corporation, Palo Alto, CA) six-well dish (Nunc, Roskilde, Denmark) on 
overlapping pieces of sterile thermanox coverslips (Miles Laboratories 
Inc., Naperville, IL), and the thermanox was removed, leaving a small 
space between the bar and the well, and allowing placement of a line of 
dots or a thin continuous line made with a glass rod up against each side of 
the bar. The bar was pressed down, and free passage of medium was al- 
lowed through channels in the bar perpendicular to its orientation, coun- 
teracting leak-in of cells under the bar by the capillary effect. 2 x 105 cells 
were plated per well from essentially nondividing, confluent cultures. 
Thus, cell division did not start to any significant degree during the experi- 
ment. The demarcation did not restrain migrating cells. Migration was 
quantified at 37°C with a grid riticule (1,100 x 1,100 Ixm) in the eye piece. 

The percentage of migrating cells in each experiment was obtained as 
follows. The mean number of cells in 36 fields of 110 x 1300 ~m 2 perpen- 
dicular to and immediately in front of the starting line was calculated (mi- 
grating cells) and divided by the mean number of cells in six consecutive 
fields of 110 x 3,300 p,m 2 counted at a predeflned distance behind the 
starting line (cell density). Both the number of migrating cells and the cell 
density behind the line were determined for each time point. The cell density 
behind the line remained essentially unchanged during the experiment, 
and the mean cell densities within each category of experiments (n = 8) 
showed little variation and was not significantly different. Unless other- 
wise stated, the values are given as mean -+ SEM. Statistics were per- 
formed using an unpaired Student's t test with two tails. 

Time Lapse Video Microscopy 
To study migration at the individual cell level, GIPS Locomotory Area 
Recording (GIPSLAR; Image House, Copenhagen, Denmark) software 
was used. Cultures were placed on an inverted phase-contrast microscope 
equipped with a heating device equilibrated to maintain 37°C. In the pe- 
riod of 24-35 h after electroporation, 12 video images were recorded at 1-h 
intervals to an optical disc recorder. Migration tracks were generated by 
marking the position of the nucleus of individual cells on each image. The 
net migratory speed ("velocity straight line") was calculated by GIPS Track 
Area Analysis (GIPSTRK; Image House) software based on the straight 
line distance between the starting and ending points divided by hours of 
observation. Values are given as mean _+ SEM. 

Electroporation 
For electroporation, a gene pulser apparatus (Bio-Rad Laboratories, 
Richmond, CA; purchased from Bie & Bemtsen, R~dovre, Denmark) was 
used. The optimal conditions for electroporation were determined by 
comparing the prevailing settings published by Wilson et al. (73), Lukas et 
al. (36), and Glogauer and McCulloch (25), including an additional setting 
of 25 p~F and up to 1.7 kV. Fibroblasts were electroporated at 0-4°C at an 
electrode distance of 0.4 cm and 0.25 kV (field strength 625 V/cm) at 500 
wF, or for some experiments, 960 ixF (25). The cells were trypsinized, 

havior,  i.e., p rominen t  focal contacts  are  sca t tered  th roughout  the  
ent i re  contact  area  of  the a - sm act in-posi t ive  cells. Magnifica- 
tion: 250; Bars: (A) 100 ~m; (B) 50 Ixm. 
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Figure 3. Tagging filamentous a-sm actin with an electroporated m A b  in c~-sm actin-positive fibroblasts overcomes the migratory re- 
straint. (A) Isoelectric focusing and immunoblot t ing shows the specificity of the 13-actin (A5441), and a-sm actin (1A4)-specific antibo- 
dies used for electroporation. (B) Double- immunofluorescence of a-sm actin-positive fibroblasts with mAbs  against 13-actin (a and c) 
and a-sm actin (b and d). Whereas  [3-actin is present in both  stress fibers and lamellipodia (L), a-sm actin predominates in stress fibers, 
in particular retraction fibers (RF). (C) Immunofluorescence tracing of antibodies electroporated into a-sin actin-positive fibroblasts. 
Cells were electroporated with m A b  against [3-actin (a), m A b  against c~-sm actin (b), or no antibody (c) and stained 16 h after plating by 
Texas red-conjugated secondary antibodies. Whereas ceils electroporated with anti-13-actin exhibited staining of stress fibers, cells elec- 
t roporated with an t i -a -sm actin exhibited predominantly cytoplasmic staining. (D) Time course of the mean  cell migration comprising 
eight different experiments with cells electroporated with m A b  1A4 against a-sm actin (O), an unrelated antibody, Z259 (Q), or 13-ac- 
tin-specific m A b  (11) at the same concentration. The use of an unpaired Student 's  t test with two tails indicates that  the difference is sig- 
nificant (mean - SEM, n = 8; *P < 0.05). (E) Time lapse video microscopy showing the difference in mean  migration in microns per  
hour based on six experiments, each including ~75 cells electroporated with either an unrelated antibody (control) or an m A b  against c~-sm 
actin (1A4). An unpaired Student 's t test with two tails indicates that the difference is significant (*P < 0.05). Magnifications: (B) 430; (C) 
400. Bars: (B) 50 I~m; (C) 20 ixm. 

counted, centrifuged, and resuspended in 400 izl electroporation buffer 
(73) with antibody (1 mg/ml) or ODN (10 IxM), electroporated by a single 
discharge, resuspended in DME-F12 with 5% FCS and plated, and al- 
lowed to migrate in DME-F12 with 20% FCS. All antibodies used for 
electroporation were dialyzed against electroporation buffer to remove 
azide before experimentation. Antibodies were 1A4 (A2547; Sigma 
Chemical Co.); an mAb specifically recognizing cx-sm actin (60), and rab- 
bit anti-mouse immunoglobulins, Z259 (Dako, Glostrup, Denmark), or 
an mAb recognizing [3-nonmuscle actin (A5441; Sigma Chemical Co. [23] 
as controls. Both 1A4 and A5441 are monospecific for their respective iso- 
forms. 1A4 binds to the first four amino acids Ac-EEED in a-sm actin, 
and A5441 binds to the first five amino acids Ac-DDDIA in 13-actin (9, 23). 

AntisenselSense ODNs 
To target ct-sm actin mRNA, we designed several HPLC-purified phos- 
phorothioate ODNs based on the known nucleotide sequence of human 
ct-sm actin cDNAs (EMBL accession No. x13839 [32, 32a]). Phosphorthio- 
ate-modified ODNs were used as they have been shown by others to be 
more stable and effective than unmodified ODNs (74). To ensure optimal 
effect of ODNs and to be able to directly compare the experiments with an- 
tibody experiments, ODNs were electroporated as described above. 

mRNA coding for the NH2-terminal decapeptide of et-sm actin was tar- 
geted by 5' AGTGCTGTCCTCTTCTI~CACACATA 3' (4, 14; here 
termed 5'CO antisense). Controls were 5' TATGTGTGAAGAAGAG- 
GACAGCACT 3' (5'CO sense) or 5' AATGGTGTGCITITGTTCCCA- 
GATA 3' (noncomplementary [74]). To target sequences of the 3' un- 
translated region of ct-sm actin mRNA (32), six antisense phosphorothioate 
ODNs were tested: 5' CACAGTTGTGTGCTAGAGAC 3' (3'UT1); 5' 

TAACGAGTCAGAGCTITGGC 3' (YUT2); 5' TCAACCTAACAA- 
ATGGTATC 3' (YUT3); 5' AGGTAATGTGATFCTACCCT 3' (YUT4); 
and 5' GAAGTGCAGCTCCCCACTFC 3' (YUT5); and 5' AGAGAG- 
GAGCAGGAAAGTGT 3' (YUT6). Control was 5' GTC'FCTAGCA- 
CACAACTGTG 3' (3'UT1 sense). ODNs were synthesized by DNA 
technology (Aarhus, Denmark) and kept at -20°C until use. 

Immunocytochemistry 
The actin status was investigated by immunofiuorescence after two differ- 
ent fixation protocols. In double-labeling experiments comprising decora- 
tion of F-actin with the general actin probe FITC-phalloidin (P-5282; 
Sigma Chemical Co.), combined with staining for ct-sm actin, cultures 
were fixed for 2 min at room temperature in glutaraldehyde/Triton X-100 
(0.25/0.3%) and incubated as described (49). In other double-labeling ex- 
periments with a-sm actin, cultures were fixed in methanol for 5 min at 
-20°C. Subsequently, cultures were incubated with 1A4 (IgG2a) against 
c~-sm actin and one of the following IgG1 antibodies in the first sequence: 
13-actin-specific mAb A5441 (IgG1), antivinculin (kindly provided by Drs. 
Victor E. Koteliansky and Marina A. Glukhova, Laboratoire du Physio- 
pathologie du Developpement, CNRS and l~cole Normale Superieure, 
France), anti-lM-integrin (clone DF5; BIOHIT, Helsinki, Finland) or an- 
titalin (clone 8d4; Sigma Chemical Co.), and goat anti-mouse IgG2a- 
Texas red (1080-07; Southern Biotechnology Associates, Birmingham, 
AL) and goat anti-mouse IgG1-FITC (1070-02; Southern Biotechnology 
Associates) in the second sequence. For tracing of electroporated anti- 
bodies, ceils were stained at 16, 24, 48, and 72 h after electroporation with 
goat anti-mouse IgG1-Texas red (1070-07; Southern Biotechnology Asso- 
ciates) for A5441 or 1080-07 for 1A4. As negative controls served the op- 
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posite combinations of staining and cells electroporated with no antibody. 
Cultures were mounted in Fluoromount-G (100, Southern Biotechnology 
Associates) containing 2.5 mg/ml n-propyl gallate (Sigma Chemical Co.) 
used between day i and 1 mo of preparation. The experimental procedure 
for immunoperoxidase staining and quantitation of a-sm actin-positive fi- 
broblasts was performed as previously described (49). 

lsoelectric Focusing, SDS-PAGE, Immunoblotting, and 
Two-dimensional Gel Electrophoresis 
Ceils were rinsed twice in PBS at room temperature and lysed in Laemmli 
buffer for SDS gels or 8 M urea buffer for IEF and two-dimensional gels 
to obtain whole cell lysates (51). IEF gels were loaded with equal amounts 
of lysate (~15 I~g protein/lane as determined by the Bio-Rad protein as- 
say [51]). Gel plates were 16 x 16 cm with 0.5 mm spacers; 8.24 g urea, 
1.95 m128.38% wt/vol acrylamide (Bio-Rad Laboratories), 1.62% bisacryl- 
amide (Bio-Rad Laboratories, 3.0 ml NP-40, 2.4 ml H20, 0.93 ml carrier 

ampholytes, pH 5-7 (Serva Feinbiochemica, Heidelberg, Germany, pur- 
chased from Bie & Berntsen), 0.31 ml carrier ampholytes, pH 4~5 (Bio- 
Rad Laboratories), 15 ~1 10% ammonium persulfate, and 10 I~1 
N,N,N',N'-Tetramethyl-ethylenediamine (8, 24). SDS-polyacrylamide 
gels (12% running gel, 5% stacking gel) were loaded with equal amounts 
of lysed cells (~5 × 105/lane) and run as previously described (51). Immu- 
noblotting of IEF and SDS-polyacrylamide gels was carried out by trans- 
fer to Immobilon transfer membrane (Millipore; T~istrup, Denmark) (51) 
followed by incubation with A5441 against 13-actin and 1A4 against a-sm 
actin. Corresponding blots of gels loaded with the same amount of protein 
were stained with Coomassie blue for demonstration of total protein level 
(48). For two-dimensional gel electrophoresis, cells were incubated with 
[35S]methionine, and samples were prepared and run as previously de- 
scribed (51). The exact position of actins was verified by comigration with 
purified bovine actin (A3653; Sigma Chemical Co.). Films were scanned 
by use of a film scanner (model JX330; Sharp Electronics, Hamburg, Ger- 
many) and processed in a 133 mHz, 1 Gb, computer using the DOS edition 
of PDQUEST TM, version 5.1 (Pharmacia, Birkercd, Denmark). 
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Results 

Motility of Fibroblasts with a-sm Actin Expression 

A bar was placed in the middle of a culture dish, and a thin 
continuous line or a line of dots was drawn with a glass rod 
up against the bar. Cells were then plated and the bar was 
removed, allowing the cells to migrate into the cell-free 
area. To compare the migration potential of fibroblasts 
with and without ot-sm actin in this assay, two types of cell 
strains were used (Fig. 1 A). Both contained distinct stress 
fibers of F-actin independently of their migratory status, 
but only one of them expressed a-sm actin (Fig. 1 B). Un- 
der identical, essentially nongrowing conditions, the two 
types of cell strains showed a significant difference in mi- 
gration potential (Fig. 1 C). 

To distinguish whether the observed difference in mi- 
gratory behavior was dependent on homotypic cell-cell in- 
teractions (66) or cell-matrix interactions, a cell line (sub- 
line of F359) constantly generating a 50-50 mixture of 
a-sm actin-positive and -negative fibroblasts was deve- 
loped. Thus, these cells had an entirely identical passage 
and culture history, and no fluctuation in actin isoform ex- 
pression was observed during the experimental period. As 
seen in Fig. 2 A, et-sm actin-positive fibroblasts were 
found to migrate a shorter distance even in a mixed popu- 
lation. Moreover, these cells had higher numbers of prom- 
inent focal contacts (often >200/cell as shown by staining 
for vinculin, talin, and 131-integrin) as opposed to a-sm ac- 
tin-negative cells (Fig. 2 B), providing a possible explana- 
tion for why these cells were less motile (21, 37). 

Fibroblasts Electroporated with an a-sm Actin-specific 
mAb Exhibit Increased Motility 

If the expression of ct-actin filaments were indeed caus- 
ative rather than correlative for migration potential, inhi- 
bition of incorporation of a-actin into filaments should 
stimulate migration. To address this question, an elec- 
troporation procedure (25) was optimized in our system. 
A field strength of 625 V/cm with a capacitance of 960 ~F 
has been shown to give the highest loading (1.25 x 10 -15 
M/cell of up to 150-kD molecules) at the lowest expense of 
viability (80%) of human fibroblasts (25). 

Two antibodies specific to 13-actin, A5441 and a-sm actin, 
1A4, respectively, were used (Fig. 3 A). Whereas 13-actin was 
present in both stress fibers, including retraction fibers and 
lamellipodia, ot-sm actin was expressed predominantly in 
stress fibers, and in particular in retraction fibers (Fig. 3 B). 
Upon electroporation of A5441, some stress fibers were 
decorated as if they remained intact, and some staining 
was seen in the cytoplasm (Fig. 3 C). In contrast, electro- 
poration of 1A4 resulted in depletion of a-sm actin from fil- 
aments in cells with thin filaments only (not shown). In cells 
with initially more prominent a-sm actin filaments, some fila- 
ments remained almost intact, while yet displacing the ma- 
jority of c~-sm actin to the cytoplasm in the form of small 
aggregates (Fig. 3 Cb) (9, 59). These observations may be 
analogous to studies in smooth muscle cells showing im- 
mediate disappearance of et-sm actin in thin actin filaments 
only (59). Accordingly, the retraction fibers of myodiffer- 
entiated fibroblasts are less easily depleted (compare Fig. 

3, B and C). Thus, in contrast to what has been described 
in vitro, lA4 in vivo counteracts incorporation of a-sm ac- 
tin into filaments, suggesting that specific actin-binding pro- 
teins may exist (9). That nonmuscle actin filaments in fact 
persisted in spite of such a-sm actin depletion was re- 
vealed by FITC-phalloidin and 13-actin staining (not 
shown). We assayed the electroporated cells for up to 3 d. 
During this period, the introduced antibodies were not de- 
graded intracellularly as revealed by preserved antigeni- 
city in the cytoplasm (not shown). Moreover, it has been 
shown by others that within this period, electroporated 
1A4 almost completely blocks the contractile potential of 
oL-sm actin-positive fibroblasts (2). 

In a time course study, significant increase in migration 
was obtained at both 24 and 48 h after poration of 1A4 vs 
an unrelated antibody, Z259 (Fig. 3 D). Similar results 
were obtained by time lapse video microscopy (Fig. 3 E). 
Accordingly, in cells electroporated with 1A4, thin fila- 
ments were depleted of ct-sm actin during this period (not 
shown). No significant difference was found in migration 
of cells electroporated with 13-actin mAb vs Z259. This 
may reflect that anti-13-actin tags both stress fibers and 
lamellipodia such that the balance between the two com- 
partments is maintained. Alternatively, the antibody is ab- 
sorbed in the large globular pool of 13-actin; in comparison, 
a-actin is preferentially confined to filaments (44). In a 
control experiment, electroporation of 1A4 failed to in- 
crease motility of fibroblasts without ct-sm actin (not 
shown). 

The Use of ~-sm Actin Antisense ODNs 

Seven 20-25-mer phosphorothioate modified antisense 
ODNs were designed. A number of previous studies have 
suggested that antisense ODNs against sequences adjacent 
to the ATG translation initiation codons are most effective 
in inhibiting translation (39, 67). Others have found the 
most significant reduction with ODNs that targeted spe- 
cific sequences in the 3' UT region of the mRNA (10, 65). 
For actin genes, the 3 'UT region is isoform specific and is 
believed to play a central role in compartmentalization of 
actins (33, 47). We designed one of our ODNs to span the 
ATG translation initiation codon (codons -2 -6 )  unique to 
the human smooth muscle ot-actin gene (Fig. 4 A; 4). The 
others encompassed six different a-sm actin-specific posi- 
tions of the 3'-downstream segment of the human c~-sm ac- 
tin-encoding gene (Fig. 4 A; 32). 

The seven ODNs were initially screened for their ability 
to inhibit ct-sm actin synthesis as revealed by [35S]methio- 
nine incorporation and fluorography of two-dimensional 
gels. A variable inhibition was recorded with the four of 
the antisense 3'UTs (3'UT2, 3, 4, 6), and one of them, the 
3'UT5 antisense, elicited a general, nonspecific inhibitory 
effect (not shown). Only two of the antisense ODNs, 
5'CO-antisense and 3'UT1, elicited a significant inhibition 
of c~-sm actin synthesis. Administration of the 5'CO-sense 
ODN had no effect on a-sm actin synthesis. A similar re- 
sult was obtained with a noncomplementary 5'CO (not 
shown). Therefore, a match set including a computerized 
standard of 5'CO sense, 5'CO antisense, and 3'UT1 anti- 
sense was generated in the PDQUEST software (Fig. 4 B). 
Quantification of autodetected spots showed an OD of 
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Figure 4. Antisense repression of a-sm actin protein synthesis. (A) Schematic representation of the cDNA regions complementary to 
mRNA targeted by ODNs. (B) Screen image of match set and computerized standard of two-dimensional gel fluorographies of ODN- 
electroporated, [35S]methionine labeled a-sm actin--expressing fibroblasts. The computerized standard (std) shows spot detection by cross 
hairs and circles. The ~/-, [3- and a-actin spots are indicated, and histograms of OD of actin spot in a, b, and c (left, middle, and right bar, 
respectively) are projected in the upper left corner for [3-actin and in the upper right corner for c~-sm actin. (a) Note the strong a-sm ac- 
tin synthesis in cells electroporated with the 5'CO sense ODN. (b) The 5'CO antisense elicited an incomplete repression of et-sm actin 
synthesis. (c) The 3'UT1 antisense ODN directed against a downstream segment of the 3'-untranslated et-sm actin mRNA--a  segment 
with extensive interspecies homology---clearly elicited a complete repression of all et-sm actin synthesis without any interference with 
other translational events. 

~745 arbi t rary  units (a.u.) in the 13-actin spots. Thus, 13-ac- 
tin synthesis was not decreased  by antisense t rea tment  to 
any significant degree  (Fig. 4 B, std, upper left). The OD of 
the et-sm actin spot  of the sense- t reated cells was 144 a.u., 
corresponding to ~ 2 0 %  of the [3-actin spot, and in con- 

trast  to 13-actin, this level was significantly reduced by anti- 
sense t rea tment  (Fig. 4 B, std, upper right). Only the 
3 'UT1 antisense was able to comple te ly  inhibit  et-sm actin 
synthesis. This O D N  tags a sequence in the middle  of a 31- 
bp region, which is highly conserved among different  spe- 
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cies. The sequence homology has led to speculations that 
this particular region has a regulatory function for tissue- 
specific expression during development (32). The 3 'UT1 
was selected for further analysis. First, we tested whether 
antisense blockage by 3'UT1 was entirely specific for et-sm 
actin compared with the corresponding sense ODN. By 
two-dimensional gel electrophoresis of synthesized pro- 
teins, only one single spot, that of et-sm actin, was affected 
to any significant degree (not shown). A similar entirely 
specific, although partial, inhibition was recorded for the 
5 'CO antisense/sense match (not shown). A dose-response 
analysis revealed that the optimal blockage of et-sm actin 
was obtained at 10 IxM ODN. A higher concentration (20 
~M) was not toxic, but did not add any further to the ef- 
fect (not shown). A time course study demonstrated that 
introduction of the or-sin actin-suppressing antisense re- 
sulted in an immediate total inhibition of o~-sm actin syn- 
thesis that lasted for >48 h compared with the sense ODN. 
The effect of the antisense ODN was reversible since com- 
pensatory synthesis of a-sm actin was resumed between 
48 and 72 h after administration. The time course of syn- 
thesis in sense-treated cells corresponded to that of cells 
that were neither exposed to ODN nor electroporated 
(not shown). 

Depletion o f  ~-sm Actin by Administration 
of  Antisense 3' UTI 

We next used the 3'UT1 antisense/sense ODNs to generate 
paired samples of a-sm actin-negative and -positive fibro- 
blasts, To circumvent the problem with residual protein 
due to long turnover rates as often seen with cytoskeletal 
proteins, and in particular with c~-sm actin (3, 42, 67), fresh 
fibroblasts, which are initially devoid of ct-sm actin expres- 
sion, were used (49, 52). After exposure to ODNs, the cells 
were further stimulated for 72 h by TGF-131 (49) in the 
presence of ODN. The fibroblasts treated with the sense 
ODN had readily appreciable levels of ct-sm actin induced, 
whereas those treated with the antisense remained essen- 
tially negative as revealed by both immunoblotting and 
immunocytochemistry (Fig. 5). In the presence of sense 
ODN, up to 60% of the cells had a-sm actin induced, 
whereas in the presence of antisense ODN, <25% had 
ct-sm actin induced (Fig. 5 C). Densitometric analysis of 
immunoblottings revealed equal reflection density (RD) 
of 13-actin bands with sense and antisense, i.e., 1.57 versus 
1.62 RD. In comparison, the density of the c~-sm actin bands 
were 0.35 RD (corresponding to ~22% of the 13-actin 
level) with sense vs 0 RD with antisense. Similar results 
were obtained with fibroblasts stimulated for 24 h with 
20% FCS after electroporation. 

3' UT1 Antisense Lifts the Migratory Restraint o f  a-sm 
Actin-expressing Fibroblasts 

To finally investigate whether inhibition of a-sin actin syn- 
thesis by antisense ODNs had any effect on fibroblast mo- 
tility, migration was measured by time lapse video micros- 
copy in the 24--35-h period after exposure to ODNs. In 
comparison with cells exposed to 3'UT1 sense, 3'UT1 an- 
tisense induced a morphological change corresponding to 
a more motile, i.e., more elongated, phenotype. This dif- 
ference was somewhat more distinct than in cells elec- 
troporated with 1A4 and Z259, respectively, but morpho- 
logy in itself may not consistently predict motile behavior 
(27, 56). However, migration track analysis revealed that 
3'UT1 antisense significantly enhanced fibroblast motility 
by 27% (Fig. 5 D). Similar results were obtained with the 
partially suppressive 5 'CO antisense ODN; motility was 
significantly enhanced by 12.5% with 5 'CO antisense rela- 
tive to 5 'CO sense (data not shown). Thus, these data sup- 
port a stoichiometric correlation between the potential of 
antisense ODNs to suppress o~-sm actin synthesis and their 
ability to promote fibroblast motility. Migration of fibro- 
blasts devoid of et-sm actin was not influenced by antisense 
ODNs (data not shown). It is noteworthy that knowledge 
of the mechanism of action of 3 'UT  ODNs in general is 
limited. One possibility is that the mRNA is destabilized 
either by RNase H-dependent  mechanisms or by modula- 
tion of the natural processes that help to stabilize the 
mRNA, as has been shown for an ODN binding to the 
3 'UT region of ICAM-1 (10). Alternatively, 3 'UT ODNs 
may delocalize the complementary mRNA, which in the 
case of 13-actin has been shown to lead to changes in actin 
stress fiber organization (34). However, in contrast to the 
3 'UT ODN used in the present study, [3-actin mRNA or 
protein levels were not affected (34). Whether delocaliza- 
tion of c~-sm actin mRNA in itself leads to inhibition of 
synthesis remains to be established. 

The State of  a-sm Actin Assembly in Stress Fibers 
Regulates Focal Contact Formation 

We next sought a mechanistic explanation for how, at the 
molecular level, filamentous ot-sm actin may retard motil- 
ity. With our previous findings in mind that expression of 
a-sm actin correlated with focal contact formation (Fig. 2), 
we analyzed whether antisense ODN depletion of et-sm 
actin influenced the organization of focal contacts. Similar 
to the considerations regarding residual protein due to 
long turnover rates as mentioned above, in these experi- 
ments, fibroblasts initially devoid of ct-sm actin expression 
were used. Stress fibers were present in both 3'UT1 anti- 

Figure 5. 3'UT1 antisense ODN significantly reduces the level of a-sm actin protein in fibroblasts. Fibroblasts were stimulated for 48 h 
with 20% FCS before electroporation of 10 I.LM ODN, followed by another 72 h in serum-free medium with 100 pg/ml TGF-131 and 
ODN. (A) Immunoblotting of lysed fibroblasts electroporated with 3'UT1 sense or antisense ODNs and stained for 13-actin (A5441) and 
c~-sm actin (1A4). Whereas the 13-actin staining stays essentially unaffected, the a-sm actin is significantly reduced. COO, Coomassie 
blue staining to indicate loading. (B) Immunoperoxidase staining of fibroblasts electroporated with 3'UT1 sense (a) and antisense (b) 
ODNs. Note the difference in staining intensity. (C) Histogram showing the suppressive effect of 3'UT1 antisense ODN on a-sin actin 
expression. Fibroblasts were stained by immunoperoxidase cytochemistry with mAb 1A4, and 3 x 100 cells were counted in randomly 
selected fields and distributed into three categories: strong staining (+ +, black bar), intermediate staining (+, shaded bar), and no stain- 
ing ( - ,  open bar) (mean + SD of percentages; n = 3 experiments). (D) Mean migration in microns per hour based on video time lapse 
recording of three different experiments, each including ~75 initially c~-sm actin-positive cells electroporated with either 3'UT1 sense 
or antisense. The difference is shown to be significant (*P < 0.05) using an unpaired Student's t test with two tails. 
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sense- and sense-exposed fibroblasts as revealed by dou- 
ble-staining for a- and 13-actin (not shown). However, only 
3'UT1 sense-exposed fibroblasts expressed a-sm actin in 
prominent stress fibers (Fig. 6 a). In spite of the presence 
of vinculin, talin, and 131-integrin in both conditions at ap- 
parently equal amounts, they failed to organize in focal 
contacts in fibroblasts exposed to 3'UT1 antisense (Fig. 6). 

Discussion 

Resting, nonactivated fibroblasts of all tissues only express 
the two nonmuscle actin isoforms, 13- and "y-actin. Any ac- 
tivation of fibroblasts under reactive conditions leads to in- 
duction of a-sm actin (12, 14, 15, 49, 51, 52; for review see 
reference 50). Importantly, however, in myodifferentiated 
fibroblasts, a-sin actin comprises only ~14% of the total 
actin content compared with up to 60-70% in vascular 
smooth muscle cells (2, 41, 61). The most obvious and 
anticipated function of a-sm actin, apart from that of con- 
traction (2), has been that it has something to do with in- 
creased cellular migration (72). Thus, a-sm actin expression 
has repeatedly been spatially and temporally correlated 
with cells participating in tissue remodeling such as embry- 
onic mesenchymal cell migration, wound healing, and pla- 
naria regeneration (12, 14, 17, 43). Since actin in general is 
known to be a motor protein in cell motility, it is logical to 
assume that increased expression of any of its isoforms 
would likely lead to increased motile behavior. Here, we 
demonstrate the opposite: that expression of one of the 
isoforms, that is, filamentous a-sm actin in fibroblasts, 
leads to decreased motility. We show that a-sm actin-neg- 
ative cell strains migrate at a higher speed than corre- 
sponding a-sm actin-positive strains. Moreover, depletion 
of a-sm actin by specific antibody electroporation or anti- 
sense ODN repression leads to a significantly enhanced 
motility. The fact that focal contacts form and organize in 
a coordinate manner relative to a-sm actin expression in 
prominent stress fibers offers a logical explanation for the 
observed differences in motile behavior. 

Nevertheless, there are a number of studies that appear 
to lend credence to these results: It has been shown that 
whereas 13-actin predominates in the highly motile lamelli- 
podia, c~-sm actin is restricted to the less motile stress fi- 
bers (13, 26). This has been interpreted in favor of the idea 
of a functional sorting of actin isoforms and is in direct 
support of our data. This becomes even more plausible if 
one considers the widely held view that fibroblasts are 
among the least motile cells, precisely because of their 
elaborate stress fiber phenotype (62). The mean speed of 
fibroblast movement has been determined to be 4--7 ixm/h, 
not very different from our data, but fibroblasts are gener- 
ally considered as almost immobile compared with most 
other cell types moving at >10 ixm/h (16). A drastically 
different understanding of this issue can be obtained when 

the classical data on fibroblast motiiity are viewed against 
more recent data concerning the phenotype of fibroblasts 
used in such studies. In retrospect, it is reasonable to as- 
sume that all fibroblasts previously used in traditional cul- 
ture conditions have expressed a more or less elaborate 
a-sm actin phenotype, and as such, in reality have been 
myofibroblasts. In other words, all fibroblast cultures 
tested so far (with the exception of a few strains, e.g., F359, 
F498, and F514 used here) express o~-sm actin in the pres- 
ence of serum (15, 52, 57, 63). Therefore, the well estab- 
lished association between stress fiber formation and im- 
motile behavior may very well be due to incorporation of 
~-sm actin. 

Once appreciated, this hypothesis fits nicely into a num- 
ber of other observations peripheral to a-sm actin but re- 
lated to the central issue of motility and stress fibers. Ori- 
ginally, compelling evidence was provided for the notion 
that whereas stationary cells expressed most of the actin in 
stress fibers, rapidly translocating cells showed only dif- 
fuse actin staining (27). More recently, it has been shown 
that transfection of a variant 13-actin isoform with prefer- 
ence for stress fibers over motile areas of cytoplasm into 
highly metastatic melanoma cells leads to a reduction in 
both metastatic and motile behavior (58). Another exam- 
ple is rat embryo fibroblasts (REF 52-2), which show very 
prominent stress fibers and only little motility (23). Also, it 
has been shown that sarcoma cells may be divided into at 
least three phenotypes based on the organization of the 
actin cytoskeleton: those showing mostly cortical actin, 
those showing a network of short actin fibers, and finally 
those with well-developed stress fibers. The latter turned 
out to be the least motile (1 txm/h) and the least metastatic 
(46). A similar array of data has been generated with pri- 
mary cultures of human fibroblasts in which stress fiber 
formation was repressed by addition of newborn rat 
heart--conditioned medium (18). Among the cells with 
prominent stress fibers, ~40% migrated, whereas among 
the stress fiber-depleted cells, this frequency increased to 
,-~60% (18). 

If indeed a reduction in a-sin actin leads to retardation 
of motility, then it could be argued that just any reduction 
in the pool of filamentous actin would increase the rate of 
motility. This argument is particularly pertinent because 
an inverse correlation between cell migration speed in 
D i c t y o s t e l i u m  and levels of filamentous actin has been 
demonstrated very recently by Hug et al. (30). In experi- 
ments to be reported elsewhere, we have attempted to 
narrow the cause-effect relationship between F-actin ex- 
pression and motility in human fibroblasts by administra- 
ting a required amount of the nonmuscle actin-severing 
toxin C2-toxin (1) to our migrating cells. Although a more 
thorough study including a wider range of toxin is desir- 
able, our data (not shown) pointed to the fact that a reduc- 
tion in the levels of nonmuscle 13-/-/-actin did not result in 

Figure 6. Fibroblasts exhibit reciprocal relationship between c~-sm actin expression and focal contact formation. Double-labeling immu- 
nofluorescence cytochemistry of fibroblasts stained for c~-sm actin (a and b), vinculin (a' and b'), talin (c and d) and [31-integrin (e and f), 
the latter two shown without the corresponding oL-sm actin stainings. Fibroblasts were electroporated with either 3'UT1 sense (a, a', c, 
and e) or antisense (b, b', d, and f) ODNs. The state of a-sm actin assembly influences focal contact organization; thus inhibition of a-sin 
actin by 3'UT1 antisense leads to reduction in the number and size of focal contacts as assessed 24 h after electroporation. Magnification: 
440. Bar, 25 Ixm. 
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an increase in cellular motility. This was true for a reduc- 
tion both corresponding to the level of reduction in a-sin 
actin and also for even a larger reduction in nonmuscle ac- 
tin. This finding is compatible with the fact that a-actin has 
a preference for F-actin compared with the nonmuscle iso- 
forms (44 and Fig. 3 B), and that a-sm actin is more com- 
petent for polymerization than the other isoforms (9). 
Therefore, any reduction in c~-sm actin would decrease 
F-actin relatively more than the same reduction in 13-/~/-ac- 
tin. As such, a reduction in et-sm actin in fibroblasts may 
lead to the same end result observed in Dictyostelium, i.e., 
an increase in cell migration by overexpression of capping 
protein (30). 

How the organization of the cytoskeleton is translated 
into motile behavior remains an open question. The pre- 
vailing concept operates with three general characteristics 
of the cell phenotype. First, the actin cytoskeleton gener- 
ates the intracellular mechanical stresses. Second, cell-sub- 
stratum traction created by dynamic adhesion processes 
transforms these stresses into a displacement of the cell 
body. Third, morphological polarization channels this force 
unidirectionally as required for cell body translocation 
(16). For this entire concept to be operational, it has to 
rely on a biphasic relation between cell adhesion and mo- 
tility. In other words, migration is only optimal at a certain 
level of attachment (1.5-3.8 i~dynes/l~m 2) beyond or below 
which motility decreases (16). Accordingly, both overex- 
pression and repression of vinculin leads to the same end 
result, i.e., decreased motility (20, 21, 70). We show here 
that e~-sm actin expression in less motile fibroblasts corre- 
lates strongly with the deposition of vinculin as well as 
talin and 131-integrin at prominent focal contacts. Interest- 
ingly, it has been shown that there is a feedback loop be- 
tween the state of actin assembly and vinculin synthesis, so 
that when there is more assembled actin, there is higher 
vinculin synthesis and larger focal contacts (5). Indeed, 
there seems to be a regular inverse relationship between 
the size of stress fibers and the area occupied by focal con- 
tacts (0.4 p~m2-1.3 i~m 2) on the one hand and motile be- 
havior on the other (46). 

The fact that focal contacts are downregulated coordi- 
nately with et-sm actin in our antisense ODN repression 
experiments is not entirely incompatible with previous ex- 
periments with injected proteins capping the distal ends of 
actin (31). This is further supported by another study com- 
paring normal human fibroblasts with those from individu- 
als with inherited colon adenomatosis. The fibroblasts 
from adenomatosis individuals failed to develop well- 
defined vinculin containing focal contacts. However, this 
was not due to a difference in the cellular content of vincu- 
lin, but rather to a perturbed stress fiber formation in the 
adenomatosis fibroblasts (28). 

Although it may be reasonable to assume from these 
considerations that many previous data on stress fibers in 
fibroblasts may in fact be taken to represent data on et-sm 
actin, only a few studies have focused directly on this iso- 
form. Time course studies in vivo clearly reveal that et-sm 
actin expression and focal contact formation occur con- 
comitantly around days 4-7 during wound healing (29). In 
terms of motility, this temporal expression coincides with 
the time when fibroblasts reach their prefinal destination 
(after the main cell translocation) in the newly formed 

granulation tissue completely covered with regenerating 
epithelium. This corresponds to the time when cells are 
needed so that contraction can occur, et-sm actin may play 
a similar role in the stromal reaction in cancer, such as 
breast carcinoma (for review see reference 50). 

Finally, if our argument that tx-sm actin serves as a brake 
in activated fibroblasts is valid for all tissues, this would 
imply that activated fibroblasts that for some reason 
lacked e~-sm actin would behave in an uncontrolled man- 
ner. Although circumstantial, it is worth noting that the 
most prominent single molecular event among malig- 
nantly transformed rat and mouse fibroblasts is a total 
shutdown of ot-sm actin (35, 40). The transformed cells 
with residual et-sm actin expression apparently do not me- 
tastasize. In the light of current knowledge on the link be- 
tween tumor cell motility and metastasis (64), and the re- 
suits presented here, it is tempting to speculate that the 
permanent lack of et-sm actin in transformed cells will in 
fact result in constitutive enhanced motility. 
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