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Frequency spectrum recurrence 
analysis
Guênia Ladeira1*, Norbert Marwan2,3, João‑Batista Destro‑Filho  4, Camila Davi Ramos4 & 
Gabriela Lima4

In this paper, we present the new frequency spectrum recurrence analysis technique by means of 
electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with 
noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by 
comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were 
characterized and analysed by means of techniques already known to compare with the results of 
the innovative technique that we present here. We verified that, standard recurrence quantification 
analysis by means of EES time series cannot statistically distinguish the two states. However, the 
new frequency spectrum recurrence quantification exhibit quantitatively whether the participants 
have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence 
concentration on frequency bands. These analyses show that EES with similar frequency spectrum 
have different recurrence levels revealing different behaviours of the nervous system. The technique 
can be used to deepen the study on depression, stress, concentration level and other neurological 
issues and also can be used in any complex system.

The sensory organs of the nervous system capture external information, the brain then processes this information 
and generates stimuli in the body. Knowledge of brain functions aids in improving control of activities body, as 
well as the treatment of disease.

The first collection and observation of electrical signals from the human encephalon was performed by 
Hans Berger1. These signals were later classified into frequency bands resulting of different neurological states2. 
Assessing the relationship between brain function and EES the functional connectivity of the brain was verified 
between functional magnetic resonance imaging (fMRI) and electroencephalogram EEG3.

The nervous system has been analysed under different aspects. With the focus being on health we have jobs 
like, the amplitude of the alpha wave can be used as a biological marker for identifying states of depression4. 
Upon analysing type alpha-1 (8 to 10 Hz) and type alpha-2 (10 to 12 Hz), in experiments with the eyes closed 
and open, it was found that individuals suffering from depression have lower amplitude waves than those without 
depression4.

Preliminary results confirm that the analysis of signals from a single EEG channel using a combination of 
measures can identify the level of depression5. The quality of life during cognitive aging was analysed by means 
of reactivity to eyes opening6.

Many studies using the alpha waves from the EEG, as their amplitude are highlighted in one or more fre-
quency bands, as well as the fact that the magnitude from these oscillations varies under different circumstances7. 
Alpha waves are extremely coherent over short intervals of time; however, the Lyapunov exponents demonstrate 
that the variability of the brain increases sharply over long periods of activity8, which justifies the analysis by the 
frequency spectrum over long time series.

Through observation of the functional part of the brain a number of different studies have been developed. 
Biofeedback training, used to alter the heart rate, resulted in changes to the EEG with increases in alpha waves 
and decreases in the theta waves mainly in the right hemisphere, the prefrontal region9.

Research by Klimesch analysed the evidence for alpha and theta waves acting upon the reasoning of memory10. 
In a decompression chamber, the EEG was applied to the investigation of plasticity in the nervous system in 
the absence of weight, by means of visuo-attentional conditions imposed upon the volunteer before a visuomo-
tor task11. The increase in power from the alpha wave associated with sleep deprivation decreased the ability 
to respond to stimuli12. A study was performed on the involvement of the alpha band in maintaining auditory 
working memory (AWM)13.
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The electrical signals in the nervous system reveal that it holds a nonlinear and variable behaviour in time, 
as presented in some studies that go on to reveal such features. Nonlinear approaches are more adequate for 
measuring intrinsic dynamics during sleep, by means of EEG14. The filtered alpha rhythm does not have the same 
dynamics as white noise filtered on the same spectrum band. And, the moment that daily learning influences the 
connections between neurons the brain can be considered as a variable system, over the period that memories 
can be altered15. The neurological system possesses long-range temporal correlations (LRTC) in fluctuations of 
thousands of cycles. During rest, high levels of LRTC on the alpha band in the sensorimotor region predict a 
well-executed attention activity16.

It is acknowledged that alpha waves of the occipital lobe possess greater amplitude in the waking state with 
the eyes closed than when open, which results from the sensory perception of the eyes, as well as the propagation 
of information through the nervous system to the memory in the cerebral cortex.

Methods used for analysing the recurrence of behaviour in dynamic systems have been improved over recent 
years. As for example, an emotion recognition system based on the geometric analysis of the autonomous nerv-
ous system was generated using lagged Poincaré plots17.

The recurrence quantification analysis (RQA) offers the quantitative analysis of recurrence properties of 
dynamical systems in time and is widely used for biological systems. In a previous study, we have evaluated the 
level of quantifiers of cross-recurrence between frequency and amplitude variation of the electrical stimulus of 
the heart with respiratory control18. The EEG recurrence percentage markers reliably quantified two aspects 
related to sleep quality, sleep depth and sleep fragmentation8. A scoring system of the spectral sleep component 
was investigated in a simple and objective test19. The study examined heart rate synchronization during psycho-
logical counselling, demonstrating the applicability of recurrence analysis to complex data20. Recurrences can 
also be used to study the coupling mechanisms in physiological systems; such in the cardiorespiratory system21.

Recurrence is usually considered as repeating states in the time domain. However, recurrences can also 
appear in domains different than time. For example, several approaches of spatial recurrence analysis have been 
suggested22–25 and applied to physiological, ecological, and engineering data. Recurrence patterns are also appar-
ent in the frequency domain, but have not yet been considered so far.

In this work, we will present the Frequency Spectrum Recurrence Analysis technique using electro-enceph-
alon signals (EES) collected in the occipital region in two states, one with open eyes and the other with closed 
eyes from a group of seven people.

The aim is to characterize the alpha band filtered EES of the two states using standard recurrence analysis and 
frequency recurrence analysis and compare both techniques. Moreover, we created the quantifiers Recurrence 
Concentrations on Frequency Rcf  and Recurrence Concentrations on Frequencies Bands Rc(i) generating new 
ways of analysing recurrence in frequency.

First, we analyse the signals by statistical analysis, i.e., mean amplitude and standard deviation, inter-states 
correlations, and by calculating the largest Lyapunov exponents. By this study, we demonstrate the new idea of 
analysing signals by recurrence features in the frequency domain and evaluate this method by comparing with 
standard data analysis techniques.

Methods
Data collection.  Electro-encephalon signals (EES) were collected by Camila Davi Ramos26. Our study 
was present to participants and informed consent of participation were signed by them. All participants were 
adults aged over 18 years. All experimental protocols were approved by the Research Ethics Committee of the 
Federal University of Uberlândia, which officially accepted the development of our research (Protocol No. 
54781615.6.0000.5152). All collection methods were carried out in accordance with relevant guidelines and 
regulations.

Participants were selected using the criteria: (a) no illness at the time of data collection and (b) not ingested 
substances that could affect the nervous system, such as coffee, tea, alcohol or drugs, within the last 48 h prior 
to testing.

Data collection was performed at the Neurology Department of the Clinical Hospital of the Federal Uni-
versity of Uberlândia using BrainNet BNT-EEG equipment. Data for each state were collected for 180 s. The 
electroencephalogram protocol used was 10/20. A neurologist validated the tests and checked the data quality.

In this work, EES samples from the cortex occipital region of seven participants will be analysed. The EES 
data collection was carried out with each participant in the two states (a) open eyes and (b) closed eyes in alert 
state. The electrodes used are identified by O1, Oz and O2.

Pre‑processing.  The EES collected were prepared for numerical analyses. The signals from the open eyes 
and closed eyes were separated in epochs of 120 s each. These epochs were organised in different files and identi-
fied by participant code, state and electrode.

The signals were digitally filtered using a band pass filter from 7.5 to 12.5 Hz of the type finite impulse 
response and with order 1780 filter. The signals after filtering showed no change in amplitude in the passage 
band but were attenuated by – 60 to – 70 dB outside the passage band.

Signal analysis with known techniques.  A first analysis of the data was conducted using basic descrip-
tive statistics, such as mean and standard deviation.

Pearson correlations were also calculated. This provides the level of association or similarity of behaviours 
between two signals by means of their covariance and standard deviations. The correlations were calculated 
between the signals with open and closed eyes. The correlations between the electrodes at the occipital regions 
O1, Oz and O2 were also verified.
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After characterising the signals using linear techniques, we used nonlinear techniques. The largest Lypunov 
exponent λ was calculated according to Parlitz27 to compare the variability of the time-series signals in the 
reconstructed phase space. The parameters used for this analysis included the time delay τ and the embedding 
dimension D. According to Fraser and Swinney28, the optimal delay τ corresponds to the first local minimum of 
the mutual information. Embedding dimensionn D was selected by using the Cao method29. λ was then calculated 
for all participants and for all states using the same parameters of τ = 6 and D = 4.

Next, recurrence quantification analysis RQA was carried out. Basic measurements based on the diagonal 
lines of the recurrence matrix, namely, DET, L and ENT, were calculated. The determinism quantifier (DET) is 
the fraction of points in the recurrence matrix that form diagonal lines. DET can be interpreted as the predict-
ability of a system and is, for example, higher for periodic dynamics than for chaotic processes; for stochastic 
dynamics it has low values.

The diagonal lines lengths quantifier (L) is the mean length of the diagonal lines in the recurrence matrix and 
corresponds to the average time of stability of the system.

The Shannon entropy30 (ENT) of the diagonal line lengths distribution reflects the complexity of the line 
length structure of the recurrence matrix. The value of ENT is small for noise, indicating their low complexity31. 
Persistence or chaotic dynamics increases the variation of line lengths in the recurrence plot (RP), thus, increasing 
the ENT values. A special case is periodic dynamics. Due to the boundary effect of the finite-size RP, diagonal 
lines of periodic dynamics have different length and the corresponding ENT values are higher than that for noise, 
requesting a border correction schema32. However, as we do not expect here periodic dynamics and continuous 
diagonal lines crossing the RP’s border, such correction schema is not necessary in our application.

The adopted configuration for the recurrence analyses calculation were D = 4, τ = 6, a recurrence threshold ε 
that fixes the recurrence rate to 0.5, lmin = 5, vmin = 3, number of points n = 2000, sampling interval dt = 1/40 s, 
being RR recurrence rate, n number points, and dt time interval.

Analysis of results.  The confidence intervals (CI) of the mean of the results were calculated to generate 
ranges of values expressing the characteristics of a system state. The CI of 90% of the mean is given in Eq. (1). 
Because of the small sample size used in this work, analysis was carried out using Student’s t-distribution, where −
X is the sample mean, σ is the standard deviation and n is the size of the sample space. In the results section, the 
upper limit of CI is designated (up) and the lower limit (low). The CI depends on the sample size. For future 
work, we recommend performing a larger number of analyses to improve the CIs and state identification.

Frequency spectrum recurrence analysis.  The time series were transformed into the frequency domain 
by the Fast Fourier transform algorithm. Next, recurrence matrices were calculated from these frequency sig-
nals, according Eq. (2), where ε is the recurrence threshold, � · � is the Euclidean norm, and θ is the Heaviside 
function:

The recurrence matrix now is formed pairs of frequency values that are close in amplitude. In contrast to the 
regular recurrence matrix, where the axes represent time points, here the axes of the recurrence matrix represent 
frequency values. Two recurrence matrices were generated, one with threshold ε = 0.4, and the other with thresh-
old ε = 0.95. The matrices points are subtracted, generating a new matrix with the points between thresholds. In 
this resulting matrix are the significant points of the signal, excluding noise with the elimination of points of very 
low amplitude, with ε = 0.4, and eliminating the very high amplitudes referring to the disturbance, with ε = 0.95.

The recurrence matrices were calculated using the following parameters: D = 3, τ = 1, fixes the recurrence rate, 
data length n = 902 and a sampling interval of df = 0.0056 Hz. D was selected because it provides a good resolution 
of the recurrence areas. τ was selected to encompass all points of the frequency’s series. The frequency spectra 
condense information of long time series, so can be considered to contain all details relevant to characterize a 
signal that are within the frequency thresholds defined for the analyses. The recurrence matrices have finally 
900 × 900 points, and the recurrence interactions were performed at frequencies with intervals of df.

First, recurrence quantifiers relative to the diagonal lines DET, L and ENTR were calculated showing char-
acteristics the recurrence matrices of the frequency series.

The recurrence matrices of the frequency signals present greater differences in recurrence on vertical/hori-
zontal lines than on diagonal lines; thus, we developed a novel measure to analyse regions of recurrence in 
vertical direction.

Recurrence concentrations on frequency Rcf.  The numbers of recurrence points were checked for 
each frequency in the matrix columns, being Npf  number of points recurrence per frequency. The lengths of the 
sequences of recurrence points were verified for each frequency of the matrix, being Lsf (k,j) matrix with lengths 
of the series of recurrences in each frequency. The recurrence concentrations on frequency were verified for each 
recurrence frequency Rcf  by calculating the lengths of the sequences Lsf  divided by the number of sequences in 
each frequency Nsf .

(1)CI =
(

−
X −1.943 ∗

σ
√
n− 1

;
−
X +1.943 ∗

σ
√
n− 1

)

(2)R(fi ,fj) = θ
(

ε − �fi − fj�
)

, i, j1, . . . , n.
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Recurrence concentrations on frequencies bands Rc(i).  We further introduced a measure that quan-
tifies the recurrences by regions of the matrix. The quantifier Recurrence Concentrations on Frequencies Bands 
Rc(i) was created that calculates recurrences in a band, in this case of 0.25 Hz (corresponding to 45 sampling 
points) (Eq. 3).

Results
EES were analysed using several established techniques, and the results obtained were compared with those of 
the proposed technique.

Statistical analysis of the time series.  We compared statistically the signals that were collected whilst 
the eyes of the seven participants were closed and open. Alpha waves present greater amplitudes when the par-
ticipants closed their eyes, with dimensionless mean of 38.963, whilst open eyes show a dimensionless mean of 
26.628. The standard deviation calculated for closed eyes (10.317) is also higher than that calculated for open 
eyes (4.868).

Correlation analysis of closed and open eyes.  We analysed the correlations of the signals acquired 
by the O1 electrode between closed eyes and open eyes. The results show no substantial linear correlation. The 
highest correlation is 0.049 (participant P04), and the lowest is 0.002 (participant P01). The overall mean is 
0.029. The correlations between electrodes O1, Oz and O2 located in the occipital region were high for all the 
participants, with a mean of 0.8.

Analysis of the largest Lyapunov exponent.  The variability of the time-series signals were quantified 
by the largest Lyapunov exponent (λ). The values with closed eyes are slightly higher owing to greater variability 
in the time-series signals. The results gathered from the statistical analyses are found on Table 1. The signifi-
cance index in the comparison between the two states, demonstrates the difference in variability, ANOVA test-p 
(α = 0.1) single-factor resulted λ (p = 0.0071).

Recurrence quantification analysis of the EES time series.  The EES have different characteristics in 
the two states. We calculated the recurrence quantifiers based on diagonal lines, including determinism (DET), 
mean length of diagonal lines (L), and entropy (ENTR). The lower limit (low) and upper limit (up) values of the 
mean 90% confidence intervals (CI) calculated from the EES of the seven participants are shown in Table 2. The 
CI ranges for the two events are different but partly overlap. ANOVA test-p (α = 0.1) single-factor resulted DET 
(p = 0.0962); L (p = 0.1332); and ENTR (p = 0.7099).

Frequency spectrum recurrence.  After knowing characteristics of the signals analysed, we can observe 
on the frequency spectra the electro-encephalon signals of the participant P01 (Fig. 1A) and P02 (Fig. 1B). The 
red signals are from the participant with eyes open and the blue signals from the participants with eyes closed. 
The signals have higher power for closed eyes than for open eyes.

(3)Rc(0.25) =
∑

j=[1,45]
Rcf (j)

Table 1.   Largest Lyapunov Exponent λ of occipital region electro-encephalon signals.

Variability of the time-series λ

Group Score Sum Mean Variance

Closed eyes 7 29.162 4.166 0.0203

Open eyes 7 27.292 3.899 0.0274

Table 2.   Mean 90% confidence interval of the recurrence quantifiers calculated for the EES for closed and 
open eyes. (up) upper limit CI, (low) lower limit CI. (DET) determinism, (L) mean length of the diagonal lines 
in the recurrence matrix, (ENTR) entropy.

CI mean—time EES

Closed eyes Open eyes

Low Up Low Up

DET 0.54 0.63 0.51 0.56

L 18.12 24.21 15.39 20.41

ENTR 2.63 6.34 2.59 5.46
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The next step is to calculate the recurrence matrices of the frequency spectra of the EES (Fig. 2). In general, we 
find that the recurrence matrix consists of more dispersed recurrence points (the yellow dots in Fig. 2) for open 
eyes (Fig. 2A,C) than for closed eyes (Fig. 2B,D). For closed eyes, the recurrence points aremore concentrated 

A                              B

Figure 1.   Frequency spectra of electro-encephalon signals of occipital region, (A) participant P01 and (B) 
participant P02; red corresponds to closed eyes, blue to open eyes.

Figure 2.   Recurrence matrices of the electro-encephalon signals from the Oz electrode of participants P01 and 
P02; (A) participant P01 with eyes open and (B) eyes closed; (C) participant P02 with eyes open and (D) eyes 
closed.
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in the center of the plots. We also find differences in the appearance of recurrence plots between different par-
ticipants (e.g., Fig. 2A,C), but the tendency to have more dispersed recurrence points for the state of open eyes 
than for closed eyes remains valid.

The recurrence matrices of the EES frequency spectra were further analysed using the recurrence quantifiers. 
For the results of the DET, L and ENTR we calculated the mean and standard deviations for the seven participants 
in both states (closed and open eyes), and finally the confidence intervals (CI) for the mean of these measures 
(Table 3). We find that all measures are higher for closed eyes than for open eyes. The confidence intervals of 
the mean for two groups do not overlap, indicating a significant difference of these measures for the two states. 
This was confirmed by an ANOVA single-factor test (with α = 0.1) with p-values for DET as p = 0.0079; for L as 
p = 0.0168; and for ENTR as p = 0.0131.

Next, we analysed the frequency spectra. As examples, we used the signals of P01 and P02 and also the aver-
age of the entire group of seven people. The mean amplitudes of the frequencies spectra in the band between 
7.5 to 12.5 Hz of the three examples P01, P02 and the entire group are close with larger values for closed eyes 
than for open eyes, as we can see in line 1 of Table 4. Moreover, for the entire group the standard deviation of 
the mentioned frequency band is 0.05 for open eyes and 0.08 for closed eyes.

Looking at the similarities of the results, we deepened the analysis with the Recurrence Concentrations on 
Frequency, Rcf . We calculated the mean, line 2 of Table 4 and the standard deviation, line 3 of Table 4 of the Rcf .

For participant P01, the mean frequency amplitude is 133.3% larger for closed eyes than for open eyes; mean 
Rcf  is 101.4% larger and, the standard deviation of Rcf  is 258.8% larger for closed eyes than for open eyes. We 
find for participant P02 mean frequency amplitude 100.0% larger for closed eyes than for open eyes; mean Rcf  
24.0% larger and standard deviation of Rcf  33.5% larger for closed eyes.

The mean Rcf  of all participants is 85.5% larger and the standard deviation is 206.3% larger for closed eyes 
(Table 4). Whereas the mean amplitude of the frequency spectra has close values, the recurrence concentrations 
Rcf  vary widely between the participants.

Finally, the Recurrence Concentrations on Frequency Rcf  , are grouped with the sum in 0.25 Hz bands, 
which is called Recurrence Concentrations on Frequencies Bands,Rc(0.25) . Rc(0.25) for participant P01 reveals a 
high recurrence concentration in the frequency band between 9 and 11 Hz (Fig. 3A), whereas participant P02 
has a high recurrence concentration in a slightly lower frequency band, i.e., between 8.5 and 10.5 Hz (Fig. 3B).

The amplitude Rc(0.25) with open eyes for participant P01 peaks at 10 Hz and measures 258 (blue line—
Fig. 3A). By comparison, the amplitude of Rc(0.25) with open eyes for participant P02 peaks at 9.25 Hz and 
measures 378.1 (blue line—Fig. 3B); hence, the frequency bands with the largest recurrence concentrations are 
different for these two participants. With the eyes closed, the difference of Rc(0.25) between P01 and P02 is greater, 
as can be seen in the graphs of Fig. 3 in the red lines.

Table 5 shows the percentage of increase in the recurrence concentrations of the alpha wave signals of the 
seven participants from eyes open to eyes closed. The results show a general increase in recurrence concentration 
for all participants but with different percentages.

Table 3.   Confidence interval (CI) of the mean of the recurrence quantifiers calculated from the EES spectra 
frequency for closed and open eyes; (up) upper limit CI, (low) lower limit CI. (DET) determinism, (L) mean 
length of the diagonal lines in the recurrence matrix, (ENTR) entropy.

CI mean—frequency EES

Closed eyes Open eyes

Low Up Low Up

DET 0.67 0.78 0.58 0.65

L 5.02 6.62 4.28 4.91

ENTR 0.61 0.88 0.46 0.59

Table 4.   Mean and standard deviation of the recurrence points concentration of the participants P01 and P02 
and the group of seven people. The signals were collected from participants in two states, i.e., eyes open and 
eyes closed.

Recurrence concentrations on frequency—Rcf

P01 P02 Group mean

Open Closed Open Closed Open Closed

1—mean of the signals on the frequency 0.12 0.28 0.15 0.30 0.17 0.35

2—mean of the recurrence points concentration Rcf 2.92 5.88 3.83 4.75 3.45 6.40

3—standard deviation of the recurrence points concentration Rcf 1.87 6.71 3.40 4.54 2.55 7.81
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Discussion
In this study, the authors herein present the novel Frequency Spectrum Recurrence Analysis by illustrating its 
application and potential for investigating neuronal effects in the nervous system. Here, the electro-encephalon 
signals (EES) from the occipital region of the brain of seven participants were analysed with their eyes open 
and closed.

The samples collected from the seven participants showed that the alpha waves of the occipital region com-
monly feature greater amplitude and standard deviation when the eyes are closed than eyes opened. However, 
the proportion of the amplitude by the standard deviation is lower for closed eyes (3.794) than for opened eyes 
(5.602), showing that closed eyes generate more organised signals and less variation.

The linear correlation between open and closed eyes was extremely low, confirming independence of the 
states. The correlation index indicates a relevant change in the nervous system with alteration of the alpha wave 
characteristics. The electric stimulus spreads throughout the occipital region, leading to a potential overlap of the 
EES signals with slight phase difference at these electrodes. This would be reflected by differences in the correla-
tion for more distant electrodes. The frequency spectra of EES have high power in a certain band and low power 
with scattering in the remaining bands, which are characteristic of nonlinearities in the system.

To expand the analysis, the largest Lyapunov exponent was calculated for all participants. The embedding 
dimensions for the EES were calculated to be between four and eight, demonstrating the high variability of their 
orbits in the phase space29. EES from closed eyes presented larger amplitude cycles, which resulted in a shorter 
time delay (τ = 2) compared to open eyes (τ = 9). The largest Lyapunov exponent is higher for signals with eyes 
closed, thus possessing greater amplitude and greater variability of cycles when compared to those with eyes open.

Recurrence Quantification Analysis of the EES Time Series were performed for all participants in both states, 
resulting in only slightly larger values of the recurrence quantifiers for closed eyes. Greater entropy30 could be 
interpreted as a larger complexity in the operation of the occipital region of the brain, whereas longer diagonal 
line sizes might indicate a more stable behaviour. In this analysis, the confidence intervals of these measures 
overlap for the two states, and as such do not obtain a clear separation of the states.

The authors notice that the EES in the frequency have very approximate mean and standard deviations in each 
state. Furthermore, visually speaking, the frequency spectra are very similar. Thus, simple analyses on frequency 
do not show substantial differences between the EES.

The novel Frequency Spectrum Recurrence Analysis enables the acquired signals taken over long periods to 
be analysed in a single step, within the frequency spectrum.

This technical analysis identifies predominant patterns in amplitude and frequency variability. Each point in 
the recurrence matrix refers to a frequency within the range of 7.5 Hz to 12.5 Hz with a resolution of 0.006 Hz. 
The recurrence analyses were performed between threshold 0.4 that remove small amplitude recurrences consid-
ered as noise; and threshold 0.95 that remove signals high amplitude, related of disturbances that contaminated 
the data acquisition.

A B

Figure 3.   Recurrence concentrations on frequencies bands Rc(0.25) of electro-encephalon signals of the 
participants with eyes open and closed, (A) participant P01 and (B) participant P02. The points of the graphs are 
from bands of 0.25 Hz.

Table 5.   Percentage of increase in the concentration of recurrence on alpha waves when the participant 
changes eyes open to eyes closed.

P01 P02 P03 P04 P05 P06 P07

Percentage of increase of recurrence concentration on the frequency 100.94 23.88 7.02 98.04 62.83 180.13 108.28
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The diagonal lines of the recurrence matrices are formed by the correlation between the frequencies with 
amplitudes inside these thresholds. These show greater dispersion on the signals with eyes open than eyes closed. 
The level and the region of concentration reoccurrence are different for the individuals analysed.

Recurrence analyses are performed through quantifiers. The determinism quantifier (DET) is the fraction 
between the sequences of recurrence points greater than lmin and sequences of any size. It shows how a frequency 
correlates with other frequencies within the thresholds. The DET quantifier is interpreted as the predictability 
index of the signal frequency composition.

The diagonal lines lengths quantifier L, i.e., the mean length of the recurrence sequences inside the thresholds 
provides information on the frequency amplitude stability when small frequency variations occur on the signal. 
The entropy (ENTR)30 of the recurrence on frequency is higher for more regular structures.

On Frequency Spectrum Recurrence Analysis the confidence interval of the mean (CI) of the quantifiers 
results does not result in overlap and create two range of different for each state. The ANOVA test-p demonstrated 
greater possibility of an equal mean for the recurrence results of the in time series than in frequency band.

New forms of recurrence analysis were created by quantifying the content of the vertical lines of the recur-
rence matrices in the frequency. The analysis of the recurrence concentration generates information concerning 
which part of the frequency band has more or less recurrence. The amplitude of recurrence can also be checked 
for each frequency or for a set of frequencies. The mean of the recurrence points concentration Rcf  is different 
for each participant.

The quantifier Recurrence Concentrations on Frequencies Bands Rc(0.25) analyse the recurrence concentration 
on small frequency band intervals. These reduce the effect on the results of specific frequencies that had been 
removed from the analyses, due to contamination with disturbances. The results of Rc(0.25) showed differences 
in the level of concentration amplitude and the frequency range for the EES of the analysed participants.

The novel frequency spectrum recurrence analysis can create a breakthrough in research with use of the 
EES to detect depression4; or cognitive aging6; or even access to memory10,13, among other diverse experiments 
already being undertaken. Details of the characteristics of the functioning of the brain can be revealed through 
the analysis of the EES with its already known quantifiers DET, L and ENTR, and also with the new quantifiers 
created Rcf  and Rc(0.25).

Data availability
The experimental data collected will be made available by request to the corresponding author by email.

Received: 4 March 2020; Accepted: 2 November 2020

References
	 1.	 Bazanova, O. M. & Vernon, D. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 94–110 (2014).
	 2.	 Allen, E. A., Damaraju, E., Eichele, T., Wu, L. & Calhoun, V. D. EEG signatures of dynamic functional network connectivity states. 

Brain Topogr. 31, 101–116. https​://doi.org/10.1007/s1054​8-017-0546-2 (2018).
	 3.	 Budzynski, T. H. (ed) Introduction to Quantitative EEG and Neurofeedback. (Elsevier, ISBN: 978-0-12-374534-7, 2009).
	 4.	 Kan, D. P. X. & Lee, P. F. Decrease alpha waves in depression: An electroencephalogram (EEG) study. in International Conference 

on BioSignal Analysis, Processing and Systems (ICBAPS) 156–161, https​://doi.org/10.1109/ICBAP​S.2015.72922​37 (2015).
	 5.	 Bachmann, M. et al. Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. 

Methods Programs Biomed. 155, 11–17. https​://doi.org/10.1016/j.cmpb.2017.11.023 (2018).
	 6.	 Barry, R. J. & De Blasio, F. M. EEG differences between eyes-closed and eyes-open resting remain in healthy ageing. Biol. Psychol. 

https​://doi.org/10.1016/j.biops​ycho.2017.09.010 (2017).
	 7.	 Saeid, S. & Chambers, J. A. EEG Signal Processing (Centre of Digital Signal Processing Cardiff University/Wiley, New York, 2007).
	 8.	 Gallez, D. & Babloyantz, A. Predictability of human EEG: A dynamical approach. Biol. Cybern. 64, 381–390. https​://doi.org/10.1007/

BF002​24705​ (1991).
	 9.	 Demin, D. B. & Poskotinova, L. V. EEG spectral characteristics during heart rate variability biofeedback in healthy people. https​

://doi.org/10.17116​/jnevr​o2017​11731​65-68 (2017).
	10.	 Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 

29, 169–195. https​://doi.org/10.1016/s0165​-0173(98)00056​-3 (1999).
	11.	 Cebolla, M. et al. Cerebellar contribution to visuo-attentional alpha rhythm: insights from weightlessness. Sci. Rep. 6, 37824. https​

://doi.org/10.1038/srep3​7824 (2016).
	12.	 Piantoni, G., Romeijn, N., Gomez-Herrero, G., Van Der Werf, Y. D. & Van Someren, E. J. W. Alpha power predicts persistence of 

bistable perception. Sci. Rep. 7, 5208. https​://doi.org/10.1038/s4159​8-017-05610​-8 (2017).
	13.	 Yu, X., Chen, Y., Qiu, J., Li, X. & Huang, X. Neural oscillations associated with auditory duration maintenance in working memory. 

Sci. Rep. 7, 5695. https​://doi.org/10.1038/s4159​8-017-06078​-2 (2017).
	14.	 Ma, Y., Shi, W., Peng, C. & Yang, A. C. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy 

approaches. Sleep Med. Rev. 37, 85–93. https​://doi.org/10.1016/j.smrv.2017.01.003 (2018).
	15.	 Soong, A. C. K. & Stuart, C. I. J. M. Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. 

Biol. Cybern. 62, 55–62. https​://doi.org/10.1007/bf002​17660​ (1989).
	16.	 Irrmischer, M., Poil, S. S., Mansvelder, H. D., Intra, F. S. & Linkenkaer-Hansen, K. Strong long-range temporal correlations of 

beta/gamma oscillations are associated with poor sustained visual attention performance. Eur. J. Neurosci. https​://doi.org/10.1111/
ejn.13672​ (2017).

	17.	 Goshvarpour, A., Abbasi, A. & Goshvarpour, A. Indices from lagged poincare plots of heart rate variability. Aust. Phys. Eng. Sci. 
Med. 40, 277–287 (2017).

	18.	 Ladeira, G. M. V., Oliveira-Lopes, L. C. & Lima, G. V. Using RQA for evaluating heart rate patterns under controlled breathing. 
Discontin. Nonlinear. Complex. 7(2), 151–163. https​://doi.org/10.5890/DNC.2018.06.004 (2018).

	19.	 Putilov, A. A., Donskaya, O. G. & Verevkin, E. G. Generalizability of frequency weighting curve for extraction of spectral drowsy 
component from the EEG signals recorded in eyes-closed condition. Clin. EEG Neurosci. 48(4), 259–269 (2017).

	20.	 Kodama, K., Tanaka, S., Shimizu, D., Hori K. & Matsui, H. Heart rate synchrony in psychological counseling: A case study. Psychol-
ogy 9, 1858–1874, http://www.scirp​.org/journ​al/psych​ , https​://doi.org/10.4236/psych​.2018.97108​ (2018).

https://doi.org/10.1007/s10548-017-0546-2
https://doi.org/10.1109/ICBAPS.2015.7292237
https://doi.org/10.1016/j.cmpb.2017.11.023
https://doi.org/10.1016/j.biopsycho.2017.09.010
https://doi.org/10.1007/BF00224705
https://doi.org/10.1007/BF00224705
https://doi.org/10.17116/jnevro20171173165-68
https://doi.org/10.17116/jnevro20171173165-68
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1038/srep37824
https://doi.org/10.1038/srep37824
https://doi.org/10.1038/s41598-017-05610-8
https://doi.org/10.1038/s41598-017-06078-2
https://doi.org/10.1016/j.smrv.2017.01.003
https://doi.org/10.1007/bf00217660
https://doi.org/10.1111/ejn.13672
https://doi.org/10.1111/ejn.13672
https://doi.org/10.5890/DNC.2018.06.004
http://www.scirp.org/journal/psych
https://doi.org/10.4236/psych.2018.97108


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21241  | https://doi.org/10.1038/s41598-020-77903-4

www.nature.com/scientificreports/

	21.	 Marwan, N., Zou, Y., Wessel, N., Riedl, M. & Kurths, J. Estimating coupling directions in the cardio-respiratory system using 
recurrence properties. Philos. Trans. R. Soc. A 371, 20110624p. https​://doi.org/10.1098/rsta.2011.0624 (2013).

	22.	 Marwan, N., Kurths, J. & Saparin, P. Generalised recurrence plot analysis for spatial data. Phys. Lett. A 360(4–5), 545–551p. https​
://doi.org/10.1016/j.physl​eta.2006.08.058 (2007).

	23.	 Silva, F. A. S., Viana, R. L., Prado, T. L. & Lopes, S. R. Characterization of spatial patterns produced by a Turing instability in cou-
pled dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1055–1071p. https​://doi.org/10.1016/j.cnsns​.2013.08.030 
(2014).

	24.	 Riedl, M., Marwan, N. & Kurths, J. Multiscale recurrence analysis of spatio-temporal data. Chaos 25, 123111p. https​://doi.
org/10.1063/1.49371​64 (2015).

	25.	 Chen, C. B., Yang, H. & Kumara, S. Recurrence network modelling and analysis of spatial data. Chaos 28(8), 085714p. https​://doi.
org/10.1063/1.50249​17 (2018).

	26.	 Davi Ramos, C. Characterization of the Normal Electroencephalogram in Waking Situation: Elaboration of the Database and Quan-
titative Analysis. https​://repos​itori​o.ufu.br/bitst​ream/12345​6789/19571​/1/Carac​teriz​acaoE​letro​encef​alogr​amaNo​rmal.pdf (2017).

	27.	 Parlitz, U. Nonlinear Time-Series Analysis, in Nonlinear Modeling Advanced Black-Box. Techniques 209–239 (eds. J. A. K. Suykens, 
J. Vandewalle) (Kluwer Academic Publishers, 1998).

	28.	 Fraser, A. M. & Swinney, H. L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1134–1140, 
https​://doi.org/10.1103/PhysR​evA.33.1134 (1986).

	29.	 Cao, L. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D. https​://doi.
org/10.1016/S0167​-2789(97)00118​-8 (1997).

	30.	 Shannon, C. E. A Mathematical Theory of Communication. Reprinted with Corrections from the Bell System Technical (1948).
	31.	 Webber Jr., C. L. & Marwan, N. Recurrence Quantification Analysis – Theory and Best Practices. https​://doi.org/10.1007/978-3-319-

07155​-8 (Springer Complexity, ISSN 1860-0832, 2015).
	32.	 Kraemer, K. H. & Marwan, N. Border effect corrections for diagonal line based recurrence quantification analysis measures. Phys. 

Lett. A 383(34), 125977. https​://doi.org/10.1016/j.physl​eta.2019.12597​7 (2019).

Acknowledgements
The authors would like to thank Coordination for the Improvement of Higher Education Personnel of Brazil, 
Ministry of Education of Brazil and National Council for Scientific and Technological Development of Brazil for 
their financial support. We would like to thank Marcos Campos neurologist at Clinical Hospital of the Federal 
University of Uberlândia, and UFU students who participated in signal collection.

Author contributions
G.M.V.L. pre-processing and analysing the data, created the variation presented for the recurrence technique, 
wrote the manuscript; N.M. guided and corrected the technical details of the analysis work, and too corrected 
some versions of the manuscript; J.B.D.F coordinated the collection of electro-encephalon data, corrected some 
versions of the manuscript; C.D.R. collected the electro encephalon signals with the collaboration of neurology 
professionals at the Clinical Hospital of the Federal University of Uberlândia; G.V.L. participated in the construc-
tion of the methodology and analysis of the work, correction and editing of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1098/rsta.2011.0624
https://doi.org/10.1016/j.physleta.2006.08.058
https://doi.org/10.1016/j.physleta.2006.08.058
https://doi.org/10.1016/j.cnsns.2013.08.030
https://doi.org/10.1063/1.4937164
https://doi.org/10.1063/1.4937164
https://doi.org/10.1063/1.5024917
https://doi.org/10.1063/1.5024917
https://repositorio.ufu.br/bitstream/123456789/19571/1/CaracterizacaoEletroencefalogramaNormal.pdf
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1007/978-3-319-07155-8
https://doi.org/10.1007/978-3-319-07155-8
https://doi.org/10.1016/j.physleta.2019.125977
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Frequency spectrum recurrence analysis
	Methods
	Data collection. 
	Pre-processing. 
	Signal analysis with known techniques. 
	Analysis of results. 
	Frequency spectrum recurrence analysis. 
	Recurrence concentrations on frequency . 
	Recurrence concentrations on frequencies bands . 

	Results
	Statistical analysis of the time series. 
	Correlation analysis of closed and open eyes. 
	Analysis of the largest Lyapunov exponent. 
	Recurrence quantification analysis of the EES time series. 
	Frequency spectrum recurrence. 

	Discussion
	References
	Acknowledgements


