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Abstract

Background: Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a
single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However,
the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler
technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have
strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch
hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid
pentamers for genomic DNA amplification and multiplex genotyping.

Results: We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked
nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and
the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from
three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated
that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae
genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to
identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 species
used in the assay, 28 species and 50 different genes were clearly identified using this method.

Conclusion: As a novel genomic DNA amplification, the use of locked nucleic acid pentamers as universal primer pairs in
conjunction with suspension array genotyping, allows for the identification of multiple distinct genes or species with a
single amplification procedure. This demonstrates that locked nucleic acid pentamer-based PCR can be utilized extensively
in pathogen identification.
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Introduction

The basic components of nucleic acid detection methodologies

are the assay chemistry and the analysis platform. Well-

characterized genotyping technologies include both solid phase

(gels, DNA chips, glass slide arrays) and homogeneous solution

(mass spectrometry, capillary electrophoresis) assay formats.

Multiplexing technologies, which allow for simultaneous detection

of multiple nucleic acid sequences in a single reaction, can greatly

reduce the time, cost and labor spent compared to single reaction

detection technologies. Recently, Sanchez and Endicott [1]

reported a novel genotyping strategy in which two-stage multiplex

PCR and capillary electrophoresis were used to simultaneously

type all of the target sites. However, their procedure requires

complicated steps. Furthermore, the multiplex PCR amplification

procedure needs strict design and optimization, especially with

regard to the primer sequences and the hybridization locations so

as to prevent biased priming.

Previous research has suggested that oligonucleotides containing

locked nucleic acid (LNA) residues have strong affinities for their

complementary targets [2]. Locked nucleic acid pentamers are

interspersed repetitively throughout the bacterial genome. The

higher thermal stability and Tm of DNA-LNA interactions as

compared to DNA-DNA interactions could differentiate between

matched and mismatched duplexes [3–5]. Therefore, LNA

monomers have been widely accepted to avoid dimer formation

and mismatch hybridization and to enhance efficient priming.

To explore the utility of LNA in multiplex PCR, we used

interspersed locked nucleic acid pentamers (ILP) complementary

to a sequence that appears repetitively in the bacterial genome as

universal PCR primers together with the Taq polymerase Stoffel

fragment for genomic DNA amplification. This new ILP-based
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PCR method (ILP-PCR) has proven to be efficient and stable, and

only has rare priming biases. Our results suggest that combined

with suspension arrays, ILP-PCR has the potential for expanded

use in genotyping.

Results

ILP design and analysis
To explore the utility of LNA in multiplex PCR, we designed

LNA primers against recognition sites of restriction endonucleases

to be used as universal primers in a polymerase chain reaction.

These LNA primers should be able to amplify genomic DNA

starting at different specific sites, thereby ‘‘disassembling’’ the

genomic DNA into short pieces. The PCR products could then be

labeled with fluorescent nucleotides and subsequently used for

suspension array-based genotyping (Figure 1a). When tested on

bacterial genomic DNA, our ILPs primed selected recognition

sequences within the investigated genomes and generated products

of similar lengths to those obtained by digestion with restriction

endonucleases (Figure 1b). The products of 80 to 250 bp are

optimal for minimizing the potential of allelic drop-out [6], and

are therefore suitable for array hybridization [7].

Tracing ILP amplification kinetics
Genomic DNAs from Klebsiella pneumoniae (ATCC700603 and

twelve other isolates), Klebsiella oxytoca (one isolate) and Escherichia

coli (ATCC25922), were digested by two restriction endonucleases

(BsrSI and Fok I), and restriction products were separated on an

agarose gel. We have designed two 5 bp ILPs, 59-ACTGG-39 and

59-GGATG-39 against the restriction sites. The priming efficiency

of these ILPs, as compared to the efficiency of random pentamer

primers (pd(N)5), was tested by a SYBR Green I-based real-time

PCR reaction followed by fluorescent data analysis. Using input

genomic DNAs (a mixture from all bacteria species) at various

concentrations, the amplification plots of the ILP showed a

stationary logarithmic curve (Figure 2a and Table S1) rather than

the lines produced by the random pentamers (Figure 2b and Table

S1). Additionally, final raw fluorescent signals (RFUs) generated by

PCR with ILPs were significantly stronger than those generated

using the random primers (1,200,000 RFUs vs. 320,000 RFUs,

data not shown), and both were much higher than the negative

control (NTC, 37,000 RFUs; data not shown). Unexpectedly, the

highest priming efficiency was seen with 1 ng of input DNA and

not with the 100 ng DNA sample (Figure 2a). The potential reason

for this could be that excess DNA might lower the normal

exposure of priming sites due to inefficient denaturation.

Priming bias test
Six genes (23S rRNA, infB, gyrB, mdh, parC and tonB) in different

loci of the K. pneumoniae genome were chosen (Table S2) to check

for any biased priming when using ILPs. Bias was measured using

real-time PCR followed by a SYBR Green I assay. Different

amounts of bacterial genomic DNA (100 ng, 10 ng and 1 ng) and

their corresponding ILP-PCR products were used for the bias test.

As demonstrated in Figure 3, no false positive result was obtained

by the dissociation test for any of the tested genes (Melting Curve

Analysis, Figure S1). Separation by agarose electrophoresis yielded

the same patterns as the expected size of the PCR products

Figure 1. Whole genome amplification by interspersed LNA pentamers (ILPs). (a) Scheme of whole genomic DNA amplification by ILP-PCR
in conjunction with the fluorescence embedding for suspension array genotyping. (b) Agarose gel electrophoresis of ILP-PCR products (1) and
endonuclease (BsrSI+FokI) digestion products (2). The 100bp DNA ladder marker (M) was shown.
doi:10.1371/journal.pone.0003701.g001
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predicted by software (Figure S2). For each tested gene, the Ct

values of the genomic DNAs at each concentration were similar to

those for the ILP-PCR products (Figure 3).

ILP-based suspension array genotyping and sensitivity
testing

A specific hybridization test was performed between the

individual bacteria species and the probe sets (a total of fifteen

tests). The genomic DNA mixture was amplified using ILPs. Alexa

FluorH 532-labeled dUTP was also included in the fragmentation

procedure. After twenty cycles of amplification, the PCR products

were fluorescent labeled, then they were incubated with the gene-

and species-specific probe coupled to microspheres (Table S3).

The signals were captured and read out with a suspension array

flow analyzer. Of the tested bacterial species, including K.

pneumoniae (13 identified/13 tested), K. oxytoca (1 identified/1

tested) and E. coli (1 identified/1 tested), all the samples were

correctly identified. As shown in Figure 4, among the six genes

tested, five genes were recognized specifically, where their mean

fluorescence intensity was more than double the standard

deviation (SD). Only parC was not recognized specifically. The

Figure 2. ILP amplification kinetics. Different concentrations of
genomic DNA from 15 strains of 3 bacterial species were used for ILP-
PCR (a) and random pentamer-PCR (b). The amplification signals at each
cycle point and their average value (AVG) are shown.
doi:10.1371/journal.pone.0003701.g002

Figure 3. Test for biased priming during ILP-PCR. Six different
genes from K. pneumoniae genomic DNA and the corresponding ILP-
PCR products were selected for SYBR Green I real-time PCR analysis at
different DNA concentrations. For all of the tested genes, the Ct value
from the ILP-PCR product correlated well with that from the genomic
DNA. The number above the bars showed the difference of each gene
between the ILP-PCR product and the genomic DNA.
doi:10.1371/journal.pone.0003701.g003
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results show that there was no cross hybridization or species

mismatch (Figure 4).

ILP-based high-throughput genotyping for multi–gene
and -species identification

In order to determine the maximum potential of the ILP-based

multiplex genotyping assay in gene and species identification, we

tested 57 different genes from 32 distinct species of pathogenic

microbes. We have previously reported some of the probes and

positive controls for these 32 pathogens [8–10]. In this study, these

probes were modified to include LNA monomers, using human

genomic DNA as a negative control. As shown in Figure 5, after

‘‘disassembling’’ the mixed genomes with ILP, 28 of 32 tested

pathogens were simultaneously detected. The four samples that

were not detected were all RNA viruses (7 genes) whose ILP-PCR

products were extremely unstable. The fluorescence signals of the

28 pathogenic samples, including 50 of 57 test genes, were much

stronger than those of the negative controls (Figure 5). These

results suggest that ILP-PCR-based amplification, in conjugation

with suspension array genotyping, can identify at least 28 species

or 50 genes with a single experiment.

Discussion

Accurate and rapid identification of pathogens is crucial to

clinical diagnosis and therapy, where this is also a critical part of

epidemiological studies. Today, multiplexing is being used in the

detection of bacterial [10–13], viral [8,14] and fungal [15]

pathogens. Probes or antibodies specific for environmental, food-

borne and clinically relevant organisms could be easily added to

this system, thus maximizing its efficiency [12–14,16–19].

However, the use of degenerate primers as universal primers for

amplification of a single gene from different genotypes or species

might lower the PCR efficiency and increase non-specific

amplifications [8,10,13]. Thus, for a multi-gene PCR assay, more

steps using different primer pairs are needed to generate an ideal

product for genotyping.

In this study, we designed ILPs to serve as universal primers for

amplification of genomic DNA. The site-fixed ILPs have higher Tm

values and stronger affinities compared to normal DNA pentamers.

Our ILPs displayed consistent logarithmic amplification plots,

demonstrating a sustained amplification efficiency, while the random

pentamers with more hybridization sites led to inconsistent plots. We

used the Taq DNA polymerase Stoffel fragment instead of the DNA

polymerase typically used for PCR amplification, because the former

has a higher thermo-stability and lacks 59 to 39 exonuclease activity.

In ILP-PCR, the use of the Stoffel fragment would facilitate the

generation of smaller PCR products with enhanced reproducibility

[20,21]. In addition, the enhanced thermo-stability of the Stoffel

fragment results in better efficiency when used with G+C rich

templates or templates having complex secondary structure [22].

For any new whole-genome amplification method, it is

important to test the possibility of biased priming. In order to

evaluate the degree of bias in priming with ILP-PCR, we checked

Figure 4. Cross-hybridization of gene- and species-specific probes and ILP-PCR products. Alexa FluorH 532-labeled ILP-PCR products
from 3 bacterial species were incubated with gene-specific probes from different bacterial origins for 20 minutes. The fluorescence signals were then
scored using a suspension array flow analyzer. Results for six of the tested genes are shown. In some experiments, data from only 3 genes are
presented due to the unavailability of the gene sequences.
doi:10.1371/journal.pone.0003701.g004
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six genes in different loci of the K. pneumoniae genome by using

SYBR Green I-based real-time PCR. Our results indicated clearly

that the data from the ILP-PCR products were very similar to the

values obtained from genomic template (GT) for of all the genes

tested, suggesting that ILPs can be used efficiently and precisely for

genomic DNA analysis.

In suspension arrays, it is important that the reporter should be

selected carefully to avoid signal cross-contamination with

classification fluorescence (635 nm). Generally, reporter fluores-

cence is excited by a 532 nm green laser, and the emission signal is

recorded at 565–585 nm [23]. In this study, we chose Alexa

FluorH 532-labeled dUTP as a reporter, which has a 525 nm

absorption peak and a 550 nm emission peak [24]. Our results

demonstrated that, compared to other fluorophores, the small

Alexa FluorH 532 has much higher brightness, photo-stability and

water solubility and can therefore be used directly in suspension

arrays after ILP-PCR.

Generally, housekeeping genes give high signals when analyzed

by suspension arrays. In our study, the parC-associated probes

showed lower fluorescent signals and lower signal/noise ratios

compared to the other genes analyzed. We think this might be the

consequence of the low representation of the parC gene after the

fragmentation procedure. After sequencing, we found that the

tested parC gene sequences were commonly mutated in different

species and even in different isolates of the same species (data not

shown). This makes it difficult to design a universal capture probe

to provide a high positive signal. Further, the sequence of the parC

gene is very C/G rich, which causes more probe/template dimers

or hairpins. Interestingly, the gyrB gene displayed a stronger signal

than both the 23s-rRNA gene and the mdh gene even though the

gyrB gene is present at a lower copy number in the genome.

Sequence analysis demonstrated that the gyrB ILP-PCR product

was more conserved, implying that multiple factors might be

involved in the signal generation. Although highly conserved genes

produce higher signals, this has disadvantages in classification. We

therefore chose probes containing LNA residues in suspension

arrays to elevate discrimination and maintain high gene signals.

Our new approach for amplifying and identifying multiple

genes from different species is simpler and more efficient than

other previously published methods [19,25] It allows genotyping

reactions to be carried out in one tube at the same time without

any incubation or purification of specific reporter constructs. The

assay comprises only three steps: genome amplification, probe

hybridization and broad target identification. Carefully selected

ILP sequences for diverse species would achieve high amplifica-

tion, while a test for biased priming would assist in the design of

genotyping probes. An easy way to design ILPs is to refer to the

recognition sequences of restriction endonucleases.

In summary, we reported a novel ILP-based PCR method for

genomic DNA amplification with unprecedented high efficiency.

Figure 5. Multi-gene/species identification using ILP-based high throughput genotyping. A mixture of ILP-PCR products from 32 species
(Y axis) were incubated with 57 specific capture probes (X axis) for 20 minutes, after which the fluorescence signals were scored using a suspension
array flow analyzer. In the figure, each color indicates one species. For in detail knowledge about the probes and species, see supporting information
Table S4. MFI: mean fluorescent intensity.
doi:10.1371/journal.pone.0003701.g005
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This technique holds great promise for routine microbial

diagnostics in laboratories.

Materials and Methods

ILPs were designed according to the recognition sites of the

restriction endonuclease tested previously on the target genomic

DNA (Each ILP should have a Tm value between 40uC and 50uC,

and its secondary structure and self-hybridization score should

below 50. For LNA Tm and spiked oligo hybridization tests, see

http://lnatools.com for protocols). Usually, two or more ILPs could

be used to generate products with different lengths. Probes for the

suspension array typing assay were designed using a web-based

software (http://lnatools.com). The ILPs and probes were synthe-

sized and HPLC purified by IBA BioTAGnology (IBA GmbH,

Göttingen, Germany). All probes were synthesized with an amino-

and a carbon-linker modification at the 59 terminus. Each probe

was covalently coupled to carboxylated microspheres (QIAGEN)

according to the manufacture’s protocol. All primers used for testing

the biased priming of ILPs were designed with Lasergene v6.1

software (DNAStar, Inc., Madison, WI, USA). They were designed

against the conserved regions of bacterial genomes where no

sequences of the applied ILPs could be found. The primers were

synthesized by TaKaRa (TaKaRa, Dalian, China).

Sample DNAs from bacterial cultures (E. coli, K. oxytoca, and K.

pneumoniae) were extracted and purified using DNeasy Blood &

Tissue kit (QIAGEN). DNA concentrations quantified at

OD260nm/280nm on a BioPhotometer Plus (Hamburg, Germany)

(1ng, 10ng and 100ng) to circumvent any source of error.

Genomic DNA mixtures were amplified using a 7500 Real-time

PCR system (Applied Biosystems) followed by suspension array-

based typing. Each 25 mL reaction contained 16AmpliTaq Stoffel

fragment polymerase and buffer (Applied Biosystems), 3 mM of

MgCl2, 200 nM (each) of dATP, dCTP, dGTP (TaKaRa), 150 nM

of Alexa Fluor 532-labeled dUTP (Molecular Probes), and 2.5 mM

of each ILP . For monitoring of the ILP amplification kinetics,

16SYBR Green I dye (Molecular Probes) and 16ROX (Molecular

Probes) were added, and 150 nM of dUTP purchased from

TaKaRa was used. The cycling conditions were as follows: 5 min at

95uC; 20 cycles of 1 min at 95uC, 1 min at 40uC, 1 min at 50uC,

and 1 min at 72uC; in 9600 emulation model, then, hold at 4uC.

The 20 mL reaction for the real-time PCR for the ILP priming

bias test contained 16SYBR-Taq mixture (Applied Biosystems),

0.2 mM of each primer, and 1 mL of each DNA template (genomic

DNA or ILP products). The thermal cycling conditions were as

follows: 95uC for 3min; 40 cycles of 95uC for 15 sec, 58uC for

10 sec, and 72uC for 40 sec; the fluorescence signals were read at

the end of each cycle at 72uC . Dissociation test (Melting Curve)

and agarose electrophoresis analysis were carried out after the 40

cycles were complete.

After a total of 20 cycles of ILP-PCR with the labeled dUTP,

the products were mixed with 3,000 beads of each probe in a final

volume of 50 mL. The mixture was incubated at 95uC for 5 min,

followed by incubation at 50uC for 20 min. The mixture was then

transferred to a 96-well filter plate. The beads were washed once

and resuspended in SSC-Tween buffer. The fluorescent signals

were detected according to the suspension array manufacturer’s

protocol.

Supporting Information

Figure S1 The Melting Curve validation was performed to test

the products from SYBR Green assays of six different gene loci.

The three tested samples in this assay were randomly picked from

the amplified real-time PCR products (A: 23S rRNA products, B:

gyrB, C: infB, D: mdh, E: parC and F: tonB). As the tonB-related

product showed an unexpected sub-peak during this testing,

agarose electrophoresis was carried out for further testing.

Found at: doi:10.1371/journal.pone.0003701.s001 (0.17 MB

DOC)

Figure S2 The products of the tonB gene-related SYBR Green I

real-time PCR were separated on agarose gel. (M): 100bp DNA

ladder. (Lanes 1-12): Real-time PCR products, which were

amplified by using a series of diluted ILP-based PCR products

(Dilution: 5-fold).

Found at: doi:10.1371/journal.pone.0003701.s002 (0.07 MB

DOC)

Table S1 The equations and R2 values of the trend lines from

the plots of the ILP-PCR and random pentamer-based PCR.

Found at: doi:10.1371/journal.pone.0003701.s003 (0.03 MB

DOC)

Table S2 Primers used in the SYBR Green I-based real-time

PCR with ILP-PCR products for the priming bias test.

Found at: doi:10.1371/journal.pone.0003701.s004 (0.04 MB

DOC)

Table S3 Probes used in the suspension array genotyping assay

for the cross-hybridization/sensitivity test.

Found at: doi:10.1371/journal.pone.0003701.s005 (0.05 MB

DOC)

Table S4 Capture probes and sequences used for the multigene

and -species identification assay.

Found at: doi:10.1371/journal.pone.0003701.s006 (0.03 MB

XLS)
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