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The purpose of the present study is to identify genes that contribute to cell proliferation or differentiation of breast cancers
independent of signalling through the oestrogen receptor (ER) or human epidermal growth factor receptor 2 (HER2). An
oligonucleotide microarray assayed 40 tumour samples from ER(þ )/HER2(�), ER(þ )/HER2(þ ), ER(�)/HER2(þ ), and ER(�)/
HER2(�) breast cancer tissues. Quantitative reverse transcriptase PCR detected overexpression of a cell cycle-related transcription
factor, E2F-5, in ER-negative breast cancers, and fluorescence in situ hybridisation detected gene amplification of E2F-5 in 5 out of 57
(8.8%) breast cancer samples. No point mutations were found in the DNA-binding or DNA-dimerisation domain of E2F-5.
Immunohistochemically, E2F-5-positive cancers correlated with a higher Ki-67 labelling index (59.5%, P¼ 0.001) and higher
histological grades (P¼ 0.049). E2F-5-positive cancers were found more frequently in ER(�)/progesterone receptor (PgR)(�)/
HER2(�) cancer samples (51.9%, P¼ 0.0049) and in breast cancer samples exhibiting a basal phenotype (56.0%, P¼ 0.0012).
Disease-free survival in node-negative patients with E2F-5-positive cancers was shorter than for patients with E2F-5-negative cancers.
In conclusion, we identify, for the first time, a population of breast cancer cells that overexpress the cell cycle-related transcription
factor, E2F-5. This E2F-5-positive breast cancer subtype was associated with an ER(�)/PgR(�)/HER2(�) status, a basal phenotype,
and a worse clinical outcome.
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Oestrogen plays a major role in the mammary gland for duct
elongation and branching, and also accelerates proliferation of
epithelial cells. Responsiveness to oestrogen is retained after
carcinogenesis in approximately 70% of all breast cancers.
Mitogenic effects of oestrogens have been explained by two
different mechanisms (Gaben et al, 2004). Oestrogen can induce
genomic effects through oestrogen-responsive elements located
in the promoter region of c-fos (Weisz and Rosales, 1990) and/or
c-myc (Dubik and Shiu, 1992) to affect mitogenic activity involving
G1 phase progression, and oestrogen can also mediate indirect
effects on cyclin D1 gene transcription (Sabbah et al, 1999).
Regulation of cyclin D1 gene transcription is strictly regulated in a
hormone-dependant manner, and correspondingly, the cAMP
response element in the promoter region of the cyclin D1 gene
requires interaction with the AF-1 and AF-2 domains of oestrogen
receptor (ER)a. Other non-genomic actions of oestrogen through
mitogen-activated protein kinase/extracellular signal-regulated
kinase (ERK) and PI-3K/Akt signalling pathways have been
debated (Gaben et al, 2004). The effects of oestrogen binding to
ERs represent a major target in the development of novel drugs
and therapeutic strategies. Currently, adjuvant endocrine therapies

are primarily based on targeting expression of hormone receptors
(Goldhirsch et al, 2007).

Human epidermal growth factor receptor-2 (HER2) is a tyrosine
kinase receptor, well characterised for its role in breast cancer.
Specific ligands for HER2 have not been identified; however, dimer
formation involving HER2, for example, a homodimer of HER2 or
a HER2-HER3 heterodimer, have been shown to strongly activate
intracellular signalling for cell proliferation, survival, motility, and
adhesion (Ross et al, 2004). Two major signalling pathways used
by HER family receptors are the Raf/MEK/ERK pathway and the
PI3K/PDK1/Akt pathway (Navolanic et al, 2003). Downstream
signalling from these pathways can affect regulation of gene
expression to promote cell-cycle progression through inhibition of
p27 (Medema et al, 2000; Delmas et al, 2001) and activation of
cyclin D1 (Cheng et al, 1998), or by inhibition of apoptosis through
phosphorylation of Bad and caspase 9 (Cardone et al, 1998).
Human epidermal growth factor receptor-2 gene amplification is a
poor prognostic factor in breast cancer (Slamon et al, 1987) and
plays an important role in resistance to hormone therapy and
polychemotherapy experienced by HER2-positive cancer patients.
However, HER2 gene amplification is predictive of a positive
response to doxorubicin (Paik et al, 1998) and trastuzumab (a
humanised anti-HER2 antibody) (Gaskell et al, 1992; Cobleigh
et al, 1999; Slamon et al, 2001; Vogel et al, 2002).

In contrast to ER-positive or HER2-positive breast cancers,
mechanisms of cell proliferation and differentiation in breast
cancers lacking ER and HER2 (ER(�)/HER2(�)) have not beenRevised 24 November 2008; accepted 4 January 2009
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well characterised. A hierarchical clustering study of gene
expression by Sorlie et al (2001, 2003) showed that breast cancers
can be clustered into four subtypes: luminal, HER2-positive, basal-
like, and normal breast-like, based on their expression patterns of
ER, HER2, cytokeratin (CK)5/6, and other markers. The basal-like
subtype is characterised by an absence of detectable ER and
HER2 expression combined with positive expression of vimentin,
epidermal growth factor receptor (EGFR), CK8/18, and CK5/6
(Livasy et al, 2006). Tough ‘basal-like subtype’ was an originally
genotypic concept; increasing studies have refined the ‘basal-like
subtype’ as breast cancers with immunophenotype of ER/
progesterone receptor (PgR)/HER2-negative breast cancers (triple-
negative breast cancer; TNBC) and also positive for EGFR and/or
CK5/6 expression (Carey et al, 2006). On the other hand, TNBC
expresses a basal phenotype in 56.0% of cases compared with non-
TNBC (11.5%) (Rakha et al, 2007). Thus, the relationship between
breast cancers with a basal phenotype and TNBC has been
identified. However, it is not fully understood how carcinoma cells
can proliferate independent from ER or HER2 signalling pathways.
This study focused on identifying molecules associated with cell
proliferation or differentiation in ER-negative and HER2-negative
breast cancers using oligonucleotide microarrays, quantitative
reverse transcriptase –PCR (qRT –PCR), and genetic alteration
studies including mutation analysis and fluorescence in situ
hybridisation (FISH).

MATERIALS AND METHODS

Patients and tumour samples

A total of 40 samples, including 39 invasive ductal carcinomas and
one ductal carcinoma in situ, were derived from immunohisto-
chemically determined ER(þ )/HER2(�), ER(þ )/HER2(þ ),
ER(�)/HER2(þ ), and ER(�)/HER2(�) tissue types. None of the
patients providing the samples had received any pre-operative
adjuvant hormone therapy or chemotherapy, and the patients were
informed of the privacy policy of the study. The study design was
approved by an institutional ethics committee. The incidence
of the four immunohistochemistry (IHC) phenotypes were
6.9% ER(þ )/HER2(þ ), 8.6% ER(�)/HER2(�), 14.8% ER(�)/
HER2(þ ), and 69.7% ER(þ )/HER2(�). Ten samples from each
category were serially collected, snap frozen in liquid nitrogen, and
stored at �801C for microarray analysis. The remaining breast
cancer samples were fixed in 10% formalin incubated within 48 h,
embedded in paraffin, and subjected to immunohistochemical
analysis as described below.

For analysis of E2F-5 expression, tumour samples of ER(�)/
HER2(�) cancers were collected serially. In addition to 15 samples
submitted for microarray analysis, which included 4 ER(þ )/
HER2(�), 4 ER(þ )/HER2(þ ), 3 ER(�)/HER2(þ ), and 4 ER(�)/
HER2(�) tissue samples, 15 ER(�)/HER2(�) cancers and 13
control samples (2 non-neoplastic mammary gland and 11 blood
samples) were submitted for mutation analysis (43 total samples).
For clinical and pathological analysis of E2F-5 expression, FISH
and IHC assays were performed on 17 ER(�)/HER2(�) breast
cancer samples in addition to 10 samples from each of the 4 breast
cancer subtypes analysed by oligonucleotide microarray (57 total
samples).

Microarray analysis

Total RNA was isolated by phenol–chloroform extraction
(Sepazol-I, Wako, Japan) from 100– 200 mg of fresh frozen tissue.
The extracted RNA was reverse transcribed to cDNA using T7-
oligo-dT primer (synthesised by Qiagen Inc., Valencia, CA, USA)
and converted to double-stranded DNA, which was used for
synthesis of biotin-labelled cRNA using the MEGAscript In Vitro

Transcript Kit (Ambion, Austin, TX, USA). The cRNA was
fragmented and hybridised to oligonucleotide microarray chips
(GeneChips U95Av2, Affymetrix, Santa Clara, CA, USA), which
contained 12 558 genes. Probe arrays were stained with streptavi-
din–phycoerythrin (Molecular Probes Inc., Eugene, OR, USA) and
scanned. The intensity of each signal was captured with Affymetrix
GeneChip Expression Analysis Software (LIMS5.0) according to
Affymetrix’s standard procedures, and was analysed with Excel
(Microsoft Corp., Mountain View, CA, USA).

Gene expression data were log-transformed for further analysis.
From the 7559 genes that were expressed at detectable levels in at
least 3 samples, 831 genes with a coefficient of variation (standard
deviation/mean) 40.1 were identified as genes with significant
variation in expression between different tumour types. The 831
genes were analysed by hierarchical cluster analysis using the
software, Cluster (http://rana.lbl.gov/EisenSoftware.htm). Signifi-
cant differential expression was defined as having a two-fold
higher or lower change in expression level detected by IHC in
ER(�)/HER2(�) tissue samples compared with other tumour
subtypes, and IHC data were analysed using Welch’s t-test and
multistep two-way analysis of variance.

Quantative reverse transcriptase PCR (qRT –PCR)

Total RNA was isolated from frozen samples using Trizol reagent
(Invitrogen, Carlsbad, CA, USA). The integrity of the RNA was
verified by electrophoresis. The first-strand cDNA was synthesised
using SuperScript III First-Strand Synthesis System (Invitrogen).
cDNA was subjected to real-time PCR analysis in an ABI PRISM
7700 Sequence Detector (Applied Biosystems Inc., Foster City, CA,
USA) using the TaqMan approach. Sets of primers and fluorogenic
probes specific for E2F5 were purchased from Applied Biosystems
Inc. (Assay on Demand, Hs00231092_m1). The relative amount of
target gene present was calculated based on the expression of
human beta-actin representing an endogenous control (Applied
Biosystems Inc.). Fluorescence was quantified by sequence
detection system software (SDS, version 2.0, Applied Biosystems
Inc.). Mean cycle threshold values (Ct) and standard deviation
(s.d.) were calculated for E2F-5. The amount of target gene was
normalised relative to the amount of the beta-actin [DCt¼
DCt(E2F�5)�DCt(beta�actin)] and the s.d. calculated [s.d.(DCt)¼
O(SDE2F�5)2þ (s.d. beta�actin)2]. The factor difference was also
calculated (2�DCt). To calibrate the analysis, the value obtained
from a non-neoplastic mammary gland was used as a control.

Direct sequencing

The cDNA for direct sequencing was synthesised from isolated
total RNA as described above. Sequencing was performed on both
strands. Specific primers were designed to amplify a full length
E2F5 cDNA (primer 1 for exon 2 –6, forward 50-AGTGGAAA
GGTGTAGGTGC-30, reverse 50-CTGGATTTCTGTGGAGTCAC-30;
primer 2 for exon 3– 8, forward 50-AATGGTGATACACTTTTGG
C-30, reverse 50-GAAGAACACTTCAGAATCAGTG-30). Polymerase
chain reactions were performed with 1 U HotStar Taq DNA
polymerase (QIAGEN K.K., Tokyo, Japan) per 20 ml. Polymerase
chain reactions products were separated on an agarose gel,
extracted, then run on an ABI 3100 Genetic Analyzer (Applied
Biosystems Inc.). The results were analysed using DNASISs

Pro (Hitachi Software Engineering Co. Ltd, Tokyo, Japan).

Fluorescence in situ hybridisation

An E2F-5 FISH probe was designed to hybridise to chromosome 8
(Supplementary Figure 1) and bacterial artificial chromosome
clone PR11-219B4 was obtained from BACPAC Resources
(Children’s Hospital Oakland Research Institute, Oakland, CA,
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USA). Bacterial artificial chromosome DNA was isolated using a
Large-Construct kit (Qiagen Inc.) and labelled using a Nick
Translation kit and Spectrum Orange dUTPs (Abbott Molecular
Inc., Des Plaines, IL, USA). Fluorescence in situ hybridisation was
performed using a centromere 8 (CEP8) DNA probe kit (Abbott
Molecular Inc.) in combination with an E2F-5 probe according to
the manufacturer’s protocol. Signal numbers for the E2F-5 gene
(labelled with SpectrumOrange) and CEP8 gene (labelled with
SpectrumGreen) were counted in 60 carcinoma cells and plotted.
An E2F-5/CEP8 signal ratio 42.0 was interpreted as positive.

Immunohistochemistry and pathological evaluation

Oestrogen receptor expression was stained using an automated
machine (Benchmark, Ventana Japan, Yokohama, Japan), and
HER2 expression was detected using a kit for HER2 (DAKO
HercepTest, DakoCytomation, Carpinteria, CA, USA) in accor-
dance with the manufacturer’s instructions and the use of positive
and negative controls. Antibodies used included anti-Ki-67 (clone
MIB-1, DakoCytomation), anti-E2F-5 (polyclonal, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-EGFR (clone 2-18C9,
EGFR pharmDxKit, DakoCytomation), and anti-CK5/6 (Clone D5/
16B4, DakoCytomation). Specificity of the anti-E2F-5 antibody was
confirmed using an E2F-5 blocking peptide (SC-999 P, Santa Cruz
Biotechnology) and by a single band at 59 kDa detected by
immunoblotting. Immunohistochemical evaluation for HER2 was
according to the manufacturer’s recommendation. Oestrogen
receptor and PgR were evaluated as positive with positive cells
more than 10%, and EGFR and E2F-5 were evaluated as positive
with any positive cells. Non-neoplastic tissues examined for E2F-5
expression included gastrointestinal organs, lung, kidney, ovary,
uterus, prostate, testes, and brain. All of the samples were
pathologically examined according to World Health Organization
classification standards (Tavassoli and Devilee, 2003) and the
Scarff–Bloom –Richardson grading system (Elston and Ellis,
1991). Breast cancers that were negative for expression of ER,
PgR, and HER2 were determined to be ‘TNBC’. Alternatively,
breast cancer samples lacking expression of ER, PgR, and HER2,
while expressing EGFR and/or CK5/6, were considered to have a
‘basal phenotype’ (Carey et al, 2006).

Statistical analysis

The w2-test was used to evaluate the significance of clinicopatho-
logical characteristics compared between E2F-5-positive and
-negative breast cancers with lymph node metastasis. The w2-test
was also used to analyse the immunohistochemical profiles of ER
and HER2 expression. The Kruskal– Wallis test was used for data
from tumour size and histological grade, and the Mann– Whitney
test was used for data from Ki-67 labelling. Kaplan– Meier curves
were used in survival analysis and the log-rank test was used for
assessment of differences among multiple survival curves.

RESULTS

Genes differentially expressed in ER-negative/HER2-
negative breast cancer samples

In all, 17 genes differed in expression between the ER(�)/HER2(�)
samples and the other breast cancer subtypes analysed (i.e.
ER(þ )/HER2(�), ER(þ )/HER2(þ ), and ER(�)/HER2(þ )).
Eight genes were overexpressed (FABP7, GABRP, GAL, CXCL13,
CDC42EP4, C2F, FOXM1, and CSDA), whereas nine genes showed
decreased expression (ITGB5, KIAA0310, MAGED2, PRSS11,
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SORL1, TGFB3, KRT18, CPE, and BCAS1). None of the genes
identified were directly related to cell proliferation proteins, such
as cyclins, cyclin-dependant kinases, p53, p16, and the pRb and
p21 families. When the candidate genes and their expression
profiles for the ER(�)/HER2(�) samples and the ER-positive
breast cancer samples, including ER(þ )/HER2(�) and ER(þ )/
HER2(þ ) were compared, a subset of proteins were found to be
overexpressed (CDKN2A (p16), E2F5, and CDC20), while CCND1
and GATA3 exhibited decreased expression in ER(�)/HER2(�)
breast cancers (Supplementary Table 1). One of the genes
overexpressed in ER(�)/HER2(�) breast cancer tissues was a cell
cycle-related transcription factor, E2F-5. Overexpression of E2F-5
was confirmed at the mRNA level by qRT–PCR (Figure 1). In
addition, the expression level of E2F-5 significantly correlated with
the level of Ki-67 expression only in ER(�)/HER2(�) samples
(data not shown). The biological and clinicopathological signifi-
cance of the role of E2F-5 in breast cancer has not been addressed
earlier; therefore, we further investigated the role of E2F-5 in
breast cancer.

E2F-5 gene amplification in breast cancers

Gene amplification of E2F-5 was examined by FISH. The mean
signal numbers of CEP8 and E2F-5 were calculated and their ratio

plotted (Figure 2A). Aneusomy of chromosome 8 was more
frequent in ER(�)/HER2(�) breast cancers, and CEP8 had an
increased signal number in ER(�)/HER2(�) breast cancers (2.0)
compared with ER(þ ) breast cancers (1.51). E2F-5 gene
amplification (E2F-5/CEP8 42.0) was detected in five breast
cancer samples: two ER(�)/HER2(�), one ER(þ )/HER2(�), one
ER(þ )/HER2(þ ), and one ER(�)/HER2(þ ). An example of
E2F-5 gene amplification in a ER(�)/HER2(�) breast cancer
sample is shown in Figure 2B.

Intracytoplasmic localisation of E2F-5 in normal tissues
and breast cancers

Immunohistochemical studies detected E2F-5 in the cytoplasm
of various epithelial and non-epithelial cells. E2F-5 was expressed
in the smooth muscle cells of blood vessels and the intestinal wall,
as well as in chondrocytes of the bronchial wall, in epithelial cells
of the mucosal epithelium (stomach, colon, pancreatic duct, and
gallbladder), in the squamous epithelium (skin and esophagus)
(Figure 3A), and in hepatocyte and tubular epithelial cells.
Intranuclear localisation of E2F-5 was less frequently detected in
cardiomyocyte and smooth muscle cells of the gastrointestinal wall
(Figure 3B). In the non-neoplastic mammary gland, a few ductal
epithelial cells were positive for cytoplasmic E2F-5 expression

A B

C D

E F

Figure 3 Immunohistochemical study of E2F-5 expression in non-neoplastic and breast cancer tissues. Detection of E2F-5 in (A) squamous epithelium
and (B) non-epithelial smooth muscle cells. In non-neoplastic mammary gland tissue, positive cells are detected in a resting state in the cytoplasm (C) as well
as in the lactating phases (D) indicated by arrows. An arrow head (D) and inset indicate positive cells in nucleus. E2F-5 is also shown expressed in the
cytoplasm of carcinoma cells (E). All of the metaplastic cancers tested were positive for E2F-5 (F). Scale bar indicates a length of 50mm (A–F) and 10 mm
(inset).
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(Figure 3C), whereas in the lactating mammary gland cells with
nuclear expression of E2F-5 were detected in addition to
cytoplasmic-positive cells (Figure 3D).

In the 19 breast cancer tissues positive for E2F-5, E2F-5 protein
was only detected in the cytoplasm (Figure 3E), and the number of
positive cells varied from tumour to tumour. Two ER(�)/HER2(�)
tumour samples with E2F-5 gene amplification were positive for
E2F-5, whereas three other tumour types (ER(þ )/HER2(�),
ER(þ )/HER2(þ ), and ER(�)/HER2(þ )) with E2F-5 gene ampli-
fication were negative for E2F-5.

Mutation analysis of E2F-5

E2F-5 is a transcription factor lacking a nuclear localisation signal
(Dyson, 1998); therefore, transportation of E2F-5 into the nucleus
is supported by binding interactions with dimerisation protein
(DP)3 or p130 proteins. We conducted a mutation analysis to
determine whether a genetic mutation was present in the region of
E2F-5 associated with the binding of transport proteins to affect
the intracytoplasmic localisation of E2F-5 protein observed in the
breast cancer subtypes. Only a synonymous mutation at codon 44
(GCG to GCC, Ala/Ala) was found in the DNA-binding domain of
E2F-5. A polymorphism at this site was detected in 12 out of 13
control samples and in 28 out of 30 breast cancer tissues. Splicing
variants with 3-bp deletions between exon 6 and exon 7 were also
detected in all of the 13 control samples and the 30 breast cancer
samples examined (Supplementary Figure 2).

Clinicopathological characteristics of
immunohistochemically E2F-5-positive breast cancers

We compared clinicopathological characteristics between immu-
nohistochemically determined E2F-5-positive and -negative breast
cancer samples (Table 1). There were no significant differences in
tumour size, lymph node metastasis, or HER2 expression between
these two groups. E2F-5-positive breast cancers exhibited a higher
histological grade (P¼ 0.049), were highly ER and PgR negative
(P¼ 0.039, P¼ 0.010, respectively), and maintained a higher Ki-67
labelling index (P¼ 0.001). Furthermore, we defined samples with
negative expression of ER, PgR, and HER2 as ‘TNBC’ samples,
while TNBC samples expressing EGFR and/or CK5/6 were defined
as ‘basal phenotype’ samples. Our analysis showed that E2F-5-
positive cancers were more frequent in TNBC (51.9%) samples
than in non-TNBC (16.7%) samples (P¼ 0.0049), were more
frequent in breast cancer samples exhibiting a basal phenotype
(56.0%) than in those exhibiting a non-basal phenotype (15.6%)
(P¼ 0.0012), and were more frequent in metaplastic carcinomas
(P¼ 0.0034) (Table 1).

Disease-free survival was extended in patients with node-
negative/E2F-5-negative cancers (n¼ 23) compared with node-
negative/E2F-5-positive samples (n¼ 15), node-positive/E2F-5-
negative samples (n¼ 13), and node-positive/E2F-5-positive
samples (n¼ 6) (Figure 4, P¼ 0.014). In addition, in the lymph
node-negative group, the E2F-5-positive subset exhibited a shorter
disease-free survival period (n¼ 13, P¼ 0.013) than the E2F-5-
negative group (n¼ 23). There were no significant differences
between ER-positive (n¼ 12) and -negative groups (n¼ 24,
P¼ 0.14), or between HER2-positive (n¼ 10) and -negative groups
(n¼ 26, P¼ 0.22).

DISCUSSION

This study has identified a subpopulation of breast cancer cells
that overexpress the transcription factor E2F-5. We found E2F-5-
positive breast cancers were more frequent in TNBC samples and
also in samples exhibiting a basal phenotype with higher Ki-67
labelling indexes. Patients with node-negative/E2F-5-positive

cancers also showed worse clinical outcomes with shorter
disease-free survival periods. The biological and clinicopathologi-
cal significance of E2F-5 expression in breast cancer has not been
well documented, but we show here that overexpression of E2F-5
correlated with aggressive histological pathologies and a worse
clinical outcome.

E2F-5 belongs to the E2F transcription factor family, which
consists of eight members, E2F-1– 8 (La Thangue and Rigby, 1987;
Dyson, 1998). On the basis of sequence homology and function,
E2F family members have been divided into three distinct groups:
E2F-1–3 (Helin et al, 1992; Kaelin et al, 1992; Shan et al, 1992;
Ivey-Hoyle et al, 1993; Lees et al, 1993), E2F-4 and 5 (Ginsberg
et al, 1994; Hijmans et al, 1995; Sardet et al, 1995), and E2F-6
(Morkel et al, 1997; Cartwright et al, 1998; Trimarchi et al, 1998).
Heterodimers formed between E2F-1 –3 and DPs have been shown
to be strong transcriptional activators that can drive quiescent cells
into S phase (Kowalik et al, 1995; DeGregori et al, 1997; Lukas
et al, 1997; Verona et al, 1997). In addition, these heterodimers
can stimulate the transcription of genes involved in cell-cycle
control (cyclin A, cyclin E, pRb, p107, E2F-1), initiation of
replication (Orc1, cdc6, MCM3), DNA synthesis (DNA polymerase,
thymidylate synthesis, thymidine kinase, dihydrofolate reductase),
and can also drive expression of proto-oncogenes (c-myb, B-myb,

Table 1 Clinicopathological features of E2F-5-positive breast cancers

E2F-5

Positive Negative

n¼ 19 n¼38 P-value

Tumour size NS
T1 9 17
T2 7 14
T3 3 6

Lymph node metastasis NS
Absent 6 15
Present 13 23

Histological grade 0.049
I 0 6
II 6 21
III 13 11

Oestrogen receptor 0.039
Positive 3 16
Negative 16 22

Progesterone receptor 0.010
Positive 2 17
Negative 17 21

HER2 NS
Positive 5 14
Negative 14 24

Pathological characteristics
TNBC 14 13 0.0049
Non-TNBC 5 25

Basal phenotype 14 11 0.0012
Non-basal phenotype 5 27

Apocrine carcinoma 1 3 NS
Metaplastic carcinoma 4 0 0.0034

Ki-67 labelling index (%) 59.5±20.4 36.3±26.3 0.001

NS¼ not significant; TNBC¼ triple-negative breast cancer (ER/PgR/HER2 negative).
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c-myc, N-myc) (Campanero et al, 1999; Trimarchi and Lees, 2002).
In contrast, the functional roles of E2F-4 and 5 remain to be fully
characterised. In studies of homozygous E2F-5 knockout embryos,
despite an initial normal phenotype, the newborn mice go on to
develop non-obstructive hydrocephalus from excessive production
of cerebrospinal fluid. This phenotype supports a role for E2F-5 in
differentiation of neural tissue rather than in cell proliferation
(Lindeman et al, 1998). In a separate study, murine embryonic
fibroblasts derived from E2F-5 knockout mice were shown to
proliferate normally and reenter the cell cycle from the G0 phase,
but failed to arrest at the G1 phase in response to overexpression
of p16 (Lindeman et al, 1998; Gaubatz et al, 2000). When the E2F-5
gene was cotransfected with DP-1 and Ras into baby rat kidney
cells, an increased number of transformed foci were induced;
thereby, suggesting an oncogenic role for human E2F-5 (Pola-
nowska et al, 2000). The results of our study further indicate that
overexpression of E2F-5 correlates with an aggressive pathology of
certain breast cancer subtypes.

Gene amplification of E2F-5 was detected in 5 out of 57 (8.8%)
breast cancer samples examined in this study. It was intriguing
that gene amplification of E2F-5 was accompanied by E2F-5
protein in ER(�)/HER2(�) breast cancer samples, whereas E2F-5
expression was not detected in other types of cancers that had
undergone gene amplification. Although regulatory mechanisms
of E2F-5 gene transcription have not been characterised beyond
studies of E2F-5 overexpression at the mRNA and protein levels in
ER(�)/HER2(�) breast cancers, we hypothesise that additional
unknown factors are contributing to the transcription, translation,
and gene amplification of E2F-5. Macaluso et al (2003) reported
that protein complexes, including pRb2/p130 and E2F-4/5, can
regulate ERa gene transcription in breast cancer cell lines. Both the
relationship between ER expression and the biological role of E2F-

5, as well as the regulatory mechanisms of E2F-5 gene transcription
require further investigation.

Although E2F-4 and -5 lack a nuclear localisation signal, they are
still able to translocate from the cytoplasm into the nuclei by
binding to pocket proteins (p107, p130) and/or DP-1, 2, 3 (Dyson,
1998). E2F-5 has been shown to localise to the cytoplasm in
asynchronous cultures of exponentially growing cells, and is
recruited into the nucleus of serum-starved cells in a quiescent
state (Allen et al, 1997). We also observed localisation of E2F-5 to
the nucleus in the G0 phase, whereas E2F-5 localised to the
cytoplasm in the other cell-cycle phases (data not shown). If
E2F-5 has a functional role in the G0 phase, how then can we
explain the detection of a higher Ki-67 index in cells over-
expressing E2F-5 in ER(�)/HER2(�) breast cancer samples? We
originally hypothesised that intracytoplasmic localisation of
E2F-5 in cancer cells was the result of genetic alterations, such
as point mutations in the binding site of DP or other pocket
proteins, and that dysfunction of E2F-5 could cause increased cell
proliferation. However, mutation analysis failed to detect any
alteration in amino-acid coding that would affect protein–protein
interactions with E2F-5. There are several possible explanations
for the accumulation of E2F-5 in the cytoplasm including (1) a
failure of the nuclear transporting process or dysfunction of
binding interactions between E2F-5 and pocket proteins, and DPs;
(2) the inability of cells for G1 arrest of transition into G0 phase; or
(3) a failure of E2F-5 to be metabolised through a pathway
involving ubiquitination. To determine the role of these possibi-
lities and their associated mechanisms would require further
study.

In conclusion, we have shown that a subgroup of breast cancers
overexpress a transcriptional factor, E2F-5, and that E2F-5-positive
breast cancers were more common in TNBC and in breast cancers
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with a basal phenotype. In addition, these breast cancer subtypes
were associated with a worse clinical outcome.
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