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BACKGROUND: The durability of the immune response following the 3-dose BNT162b2 vaccination is

unknown. The complexity of the situation is enhanced by the threat that highly transmissible variants

may further accelerate the decline in the protection afforded by mRNA vaccines.

METHODS: One hundred and three 3-dose-vaccinated heart transplant recipients were longitudinally

assessed for the kinetics of variant-specific neutralization (Cohort 1, n = 60) and SARS-CoV-2-spe-

cific-T-cell response (Cohort 2, n = 54) over 6 months. Neutralization and T-cell responses were com-

pared between paired samples at 2 time points, using the Kruskal-Wallis test followed by Dunn’s

multiple comparison test for continuous variables and McNemar's test for dichotomous variables. The

Bonferroni method of p values adjustment for multiple comparison was applied.

RESULTS: The third dose induced high neutralization of the wild-type virus and delta variant (geometric

mean titer [GMT], 137.2 [95% CI, 84.8-221.9] and 80.6, [95% CI, 49.3-132.0], respectively), and to a

lesser degree of the omicron variant (GMT, 10.3 [95% CI, 5.9-17.9]). At 6 months, serum neutralizing

activity declined but was still high for the wild-type virus and for the delta variant (GMTs 38.1 [95%

CI, 21.2-69.4], p = 0.011; and 28.9 [95% CI, 16.6-52.3], p = 0.022, respectively), but not for the omi-

cron variant (GMT 5.9 [95% CI, 3.4-9.8], p = 0.463). The percentages of neutralizing sera against the

wild-type virus, delta and omicron variants increased from 70%, 65%, and 38%, before the third dose,

to 93% (p < 0.001), 88% (p < 0.001), and 48% (p = 0.021) at 3 weeks after, respectively; and remained

high through the 6 months for the wild-type (80%, p = 0.06) and delta (77%, p = 0.102). The third dose

induced the development of a sustained SARS-CoV-2-specific-T-cell population, which persisted

through 6 months.
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CONCLUSIONS: The third BNT162b2 dose elicited a durable SARS-CoV-2-specific T-cell response and
induced effective and durable neutralization of the wild-type virus and the delta variant, and to a lesser

degree of the omicron variant.
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� 2022 International Society for Heart and Lung Transplantation. All rights reserved.
In July 2021, Israel took the pioneering decision to

administer a third dose of the BNT162b2 vaccine. The first

population to receive the third dose consisted of immuno-

compromised patients, including heart transplant (HT)

recipients, who had demonstrated an inadequate immune

response to the 2-dose BNT162b2 vaccine regimen and

remained at high risk of developing severe complications

from COVID-19 infection.1 Our group showed that the

third dose of the BNT162b2 vaccine, given 6 months after

the second dose, induced enhanced humoral and cellular

immune responses in HT recipients with a good safety pro-

file.2 This positive immune response laid the ground for the

administration of a third dose for the general population,

driven by observations of waning immunity in the 6 months

following the second dose and a lowered protection

afforded by the vaccine.3,4 The third dose of the BNT162b2

vaccine did indeed reduce the rates of confirmed infection

and severe COVID-19 illness in the general population.4

However, the durability of the immune response following

the 3-dose vaccination regimen still remains unclear, and

the complexity of the situation is enhanced by the ever-

present threat that highly transmissible variants may further

accelerate the decline in the protection afforded by mRNA

vaccines.5,6 These concerns take on added urgency when

governments are faced with making decisions in light of the

emergence of variants of concern (VOCs), particularly the

current rapid emergence of the SARS-CoV-2 omicron vari-

ant responsible for the dramatic rise in cases of COVID-19

cases worldwide.

Third doses of some vaccines have been shown to

increase neutralization efficiency against variants. For

example, in non-immunocompromised individuals, at 5

months following the second BNT162b2 dose, only a low

neutralization efficiency against the wild-type virus was

observed. The third dose of the BNT162b2 vaccine induced

effective neutralization of the wild-type virus and the omi-

cron variant at 1 month after administration, but the durabil-

ity of this effect remains unknown.2,7 Being the first

individuals to receive the third dose, around mid-2021, our

HT population constitutes an important cohort for delineat-

ing the durability of the immune responses induced by the

third vaccine dose, particularly at this time in the ongoing

pandemic.

Currently, for immunocompromised patients, there are

no data on the effectiveness and duration of booster-

induced immune responses against emerging VOCs. Specif-

ically, the omicron variant, presenting with numerous spike

protein mutations, raises serious concerns of reduced vac-

cine effectiveness. Nonetheless, acknowledging the impor-

tance of ensuring effective and durable immunization for

solid organ transplant recipients, the Centers for Disease

Control and Prevention has recently suggested that
moderately and severely immunocompromised individuals

who have completed an mRNA COVID-19 vaccine primary

series plus an additional mRNA vaccine dose may receive a

fourth COVID-19 booster dose at least 3 months after

receiving the third mRNA vaccine dose.8

Here, we report the results of a longitudinal study of HT

patients that was conducted to assess the kinetics of

immune responses over the 6 months after administration

of the third dose of the BNT162b2 vaccine. We examined T

cell responses and neutralizing activity against the wild-

type virus (first identified in Wuhan, China), the B.1.617.2

(delta) variant, and the B.1.1.529 (omicron) variant.
Methods

Study population and design

The cohort comprised 103 adult (≥18 years) stable HT patients

vaccinated with 3 doses of the Pfizer BNT162b2 COVID-19 vac-

cine (Pfizer, New York and BioNTech, Mainz, Germany). The

study was conducted from July 12, 2021 to December 22. 2021.

Exclusion criteria included vaccination before transplant and

SARS-CoV-2 infection (presence of a positive polymerase-chain

reaction assay result for SARS-CoV-2, and a history of suspected

clinical SARS-CoV-2 infection). None of the patients in the cohort

was treated for rejection or with T-cell depleting agents or specific

B-cell depleting agents during the 9 months prior to vaccination or

during the study period.

Serum samples from all 103 HT patients vaccinated with the

third dose of the BNT162b2 vaccine were tested immediately

before (T0) and at 3 weeks after (T1) the third dose for neutraliz-

ing antibodies against sublineage B.1 of the wild-type virus, the

B.1.617.2 (delta) variant, and the B.1.1.529 (omicron) variant

(Figure 1). Patients who had exhibited third-dose induction of neu-

tralizing antibodies against the wild-type virus or the variants were

prospectively assessed for the durability of neutralization at 5 to 6

months after the third dose (T2) (Cohort 1, n = 60, Figure 1).

The SARS-Co-V-2-specific T-cell response was assessed at 5

to 6 months after the third dose in a subset of patients (Cohort 2,

n = 54, Figure 1). Based on our previous findings demonstrating

cellular responses in the absence of antibody responses,2 we non-

randomly selected from patients not exhibiting neutralizing activ-

ity after the third dose (n = 43, Figure 1), those with risk factors of

interest, such as patients with a history of recurrent symptomatic

rejections, allosensitization or established allograft vasculopathy

(n = 19, Figure 1). Limited by the availability of the assay we also

systematically sampled patients from Cohort 1 in a 2:1 ratio

(n = 35, 5 tests were disqualified technicall; Figure 1).

The institutional protocol for post-transplant immunosuppres-

sion comprises a calcineurin inhibitor, a mycophenolate-based

drug, and a corticosteroid. Conversion to everolimus is instituted

per the patient’s risk profile, as is corticosteroid withdrawal. The

study was approved by the Institutional review board of the Sheba

Medical Center (8314-21-SMC). Written informed consent was

obtained from all participants.



Figure 1 Recruitment of participants, testing, and follow-up. The study population comprised adult HT patients vaccinated with 3 doses

of the Pfizer BNT162b2 COVID-19 vaccine. Patients were longitudinally assessed for the kinetics of variant-specific neutralization (Cohort

1) and for SARS-Co-V-2-specific T-cell response (Cohort 2) over 6 months.
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Viral isolation of the wild-type virus and the delta
and omicron variants

Nasopharyngeal samples from 3 SARS-CoV-2 positive indi-

viduals were identified by sequencing, one with the wild-type

sub-lineage B.1.1.50 (hCoV-19/Israel/CVL-45526-ngs/2020),

one with the B.1.617.2 (hCoV-19/Israel/CVL-12804-ngs/

2021) variant, and one with the B.1.1.529 (hCoV-19/Israel/

CVL-49814-ngs/2021) variant. Confluent Vero-E6 cells were

incubated for 1 hour at 33˚C with 300 mL of the nasopharyn-

geal sample containing the relevant variant, followed by the

addition of 5 mL of 2% FCS MEM-Eagle medium. Upon

CPE detection, supernatants were aliquoted and stored at

�80˚C.
Viral titration

To calibrate and determine the 50% tissue culture infectious

dose (TCID50) for each variant, Vero-E6 cells at a concentra-

tion of 20 £ 103/well were seeded in 3 sterile 96-well plates

with 10% FCS MEM-Eagle medium and stored at 37˚C for

24 hours. Tenfold serial dilutions of each variant were pre-

pared using 2% FCS MEM-Eagle medium and incubated for

5 days with the Vero-E6 cells. Following gentian violet stain-

ing, the TCID50 of each variant was calculated using the

Spearman-Karber method.
SARS-COV-2 micro-neutralization assay

Vero-E6 cells were seeded at 20 £ 103 cells/well in sterile 96-

wells plates with 10% FCS MEM-Eagle medium and stored at

37˚C for 24 hours. For the wild-type, delta, or omicron iso-

lates, 100 TCID50 were incubated with inactivated serum

diluted 1:8 to 1:16,384 in 96-well plates for 60 min at 33˚C.

Virus-serum mixtures were added to the Vero E-6 cells and

incubated for five days at 33˚C, after which gentian violet

(1%) was used to stain and fix the cell culture layer. The neu-

tralizing dilution of each serum sample was determined by

identifying the well with the highest serum dilution without an

observable cytopathic effect. A dilution equal to 1:10 or above

was considered neutralizing.
Isolation of peripheral blood mononuclear cells

Peripheral blood mononuclear cells (PBMCs) were isolated by

density gradient centrifugation using UNI-SEP+(Novamed).

Plasma was collected and spun at 1,000 £ g for 20min to remove

platelets before collection of PBMCs. Following one wash with

phosphate-buffered saline and one wash with 4Cell� Nutri-T

Medium (Sartorius), cells were resuspended in 4Cell Nutri-T-

Medium and counted using a Countess II Cell counter (Invitro-

gen).
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IFN-g ELISPOT assay

Fresh PBMCs were used in the ELISpot assay, performed with

the ELISpot IFN-g kit (Autoimmun Diagnostika GmbH)

according to the manufacturer's instructions. Briefly, fresh

PBMCs were added to duplicate wells at 2 £ 105 cells in

50mL per well and stimulated with 50mL of SARS-CoV-2

peptide pools (S-complete, Miltenyi Biotech) (2 mg/mL per

peptide). 4Cell Nutri-T Medium was used as the negative con-

trol, and phytohemagglutinin, as the positive control. After 16

to 20 hours at 37 ˚C, 5% CO2, 95% humidity, cells were

removed, and secreted IFN-g was detected by adding an alka-

line-phosphatase-conjugated secondary antibody for 2 hours.

The plates were developed using the BCIP/NBT substrate.

ELISpot plates were scanned on an AID ELISpot Reader. The

unspecific background (mean spot forming units from negative

control wells) was subtracted from the experimental readings.
Statistical analysis

Continuous variables were tested for distribution by using the

Shapiro-Wilk test, and results are presented as means § stan-

dard deviation if normally distributed, and as median (inter-

quartile range) if non-normally distributed. T-cell response

and neutralizing activity were compared between paired sam-

ples at 2 time points (T0 vs T1, T1 vs T2, T0 vs T2). For the

continuous variables, a logarithmic transformation was per-

formed, and each 2 time points were compared by non-

parametric Kruskal-Wallis followed by Dunn’s multiple com-

parison test, for wild-type and variants; and for the T-cell

response. For dichotomous variables McNemar’s test was

used. The Bonferroni method of P values adjustment for multi-

ple comparison was applied. Statistical significance was
Figure 2 Third dose induction and durability of neutralization again

heart transplant recipients were longitudinally assessed for the kinetics a

delta (blue) ,and omicron (red) variants over 6 months. Sixty patients d

variants at 3 weeks after the third dose (T1, n = 60), and were followed up

neutralization data was not available at the follow-up period at 5 to 6

obtained from all 103 patients at the time of third vaccination are also s

evident at time of vaccination also demonstrated neutralizing activity at 3

off titer. Solid lines and numbers indicate the geometric mean titer, and

p = 0.038; T2 vs T1, p = 0.011. Delta: T1 vs T0, p = 0.027; T2 vs T1, p

Fraction of individuals showing neutralization above the threshold at eac

Delta: T1 vs T0, p < 0.001; T2 vs T1, p = 0.102. Omicron: T1 vs T0, p =
inferred if P values were below 0.05. Statistical analyses were

conducted using R (version 4.0.3). Plots of log-transformed

neutralizing antibodies and geometric mean titers (GMTs)

with a 95% confidence interval (CI) were obtained using

GraphPad Prism 5.0 (GraphPad Software, Inc., San Diego,

CA).
Results

Third dose induction and durability of
neutralization against variants

Of the 103 HT patients assessed for third dose-induced

neutralization at 3 weeks, 60 patients demonstrated neu-

tralizing antibodies against the wild-type virus or the

variants (Figure 1, Cohort 1; Figure 2A, T1, n = 60),

and were followed up at 5 to 6 months for the durability

of neutralization. For 4 of the 60 patients, neutralization

data was not available at the second time period

(Figure 2A, T2, n = 56). Mean age of the 60 patients

was 59.3 (§15.4) years, 45 (75%) were male, and

median time from transplant to third dose was 8.1 (4.5-

13.3) years. Comorbidities were frequent, with hyperten-

sion (67%) and diabetes mellitus (45%) being the most

common. Immunosuppression with a calcineurin inhibi-

tor and mycophenolate was the most frequently followed

protocol (72%); 16 (27%) patients were treated with

everolimus and a low dose of a calcineurin inhibitor,

and 17 (27%) had been weaned off chronic steroids

(Table 1).
st variants over 6 months. (A) 103 BNT162b2-3-dose-vaccinated

nd durability of neutralization against the wild-type virus (black),

emonstrated neutralizing antibodies against the wild-type virus or

at 5 to 6 months for the durability of neutralization. For 4 patients

months (T2, n = 56). Neutralizing antibodies from sera samples

hown (T0, n = 20; all patients for whom neutralizing activity was

weeks after the third vaccine dose). Dashed lines indicate the cut-

error bars show the 95% confidence interval. Wild-type: T1 vs T0,

= 0.022. Omicron: T1 vs T0, p = 0.294; T2 vs T1, p = 0.463. (B)

h time point. Wild-type: T1 vs T0, p < 0.001; T2 vs T1, p = 0.060.

0.021; T2 vs T1, p = 0.618.



Table 1 Baseline Characteristics and Vaccination Timetable for the Neutralization Study Cohort

Variable
Total cohort

n = 60

Recipient characteristics
Age, years, (mean § SD) 59.3 § 15.4
Male sex, n (%) 45 (75)
Body mass index, kg/m2 (mean § SD) 27 § 4.6
Diabetes mellitus, n (%) 27 (45.0)
Hypertension, n (%) 40 (66.7)
Cardiac allograft vasculopathy, n (%) 16 (26.7)

Immunosuppression data
Mycophenolic acid therapy, n (%) 44 (74.6)
Everolimus therapy, n (%) 16 (27.1)
Chronic prednisone, n (%) 43 (72.9)

Immunosuppression protocol
Tacrolimus + mycophenolate + prednisone, n (%) 26 (44.1)
Cyclosporine + mycophenolate + prednisone n (%) 5 (8.5)
Tacrolimus + mycophenolate, n (%) 10 (16.9)
Cyclosporine + mycophenolate, n (%) 1 (1.7)
Cyclosporine + everolimus + prednisone, n (%) 2 (3.4)
Tacrolimus + everolimus + prednisone, n (%) 9 (15.3)
Everolimus + cyclosporine, n (%) 2 (3.4)
Everolimus + mycophenolate, n (%) 1 (1.7)
Everolimus + tacrolimus, n (%) 1 (1.7)
Tacrolimus + prednisone, n (%) 1 (1.7)
Tacrolimus + everolimus + mycophenolate + prednisone, n (%) 1 (1.7)

Laboratory data (on day of 3rd vaccine)
Lymphocyte absolute, K/mL, median (IQR) 1.7 [1.1-2.2]
White blood cell, K/mL, (mean § SD) 7.2 § 2.4
Neutrophil absolute, K/mL, median (IQR) 4.7 [3.8-5.9]
Neutrophil/lymphocyte ratio, median (IQR) 2.9 [2.3-4.1]
Estimated glomerular filtration rate, mL/min/1.73 m2, median (IQR) 85.6 [60.8-107.9]
C-reactive protein, mg/L (mean § SD) 5.4 § 6.2

Timetable
Heart transplantation to 3rd vaccine, years, median (IQR) 8.1 [4.5-13.3]
Time of 2nd vaccine from 1st vaccine, days (mean§SD) 21.3 § 3.1
Time of 3rd vaccine from 2nd vaccine, days (mean§SD) 167.5 § 18.0
Time of neutralization assay from 3rd vaccine, days (mean § SD) 154.7 § 4.4

SD, standard deviation.

Peled et al. Kinetics of cellular and humoral responses 1421
Three vaccine doses led to better neutralization of the

wild-type virus and the two variants. Samples obtained at

the time of third vaccination exhibited neutralizing activity

against the wild-type virus and the delta variant (GMT,

42.2 [95% CI, 19.0-93.7] and 24.2 [95% CI, 10.1-58.3],

respectively, Figure 2A, T0), but no neutralizing activity

against the omicron variant [GMT, 3.8 (95% CI, 1.5-10.3),

Figure 2A, T0]. At 3 weeks after the third dose, serum sam-

ples exhibited high neutralizing activity against the wild-

type virus (GMT, 137.2 [95% CI, 84.8-221.9]; p = 0.038,

T1 vs T0) and the delta variant [GMT, 80.6 [95% CI, 49.3-

132.0]; p = 0.027, T1 vs T0), and lower neutralizing activity

against the omicron variant (GMT, 10.3 [95% CI, 5.9-17.9];

p = 0.294, T1 vs T0). At 6 months following the third dose

(Figure 2A), serum neutralizing activity declined but was

still high for the wild-type virus (GMT, 38.1 [95% CI, 21.2-

69.4]; p = 0.011, T2 vs T1) and for the delta variant (GMT,
28.9 [95% CI, 16.6-52.3]; p = 0.022, T2 vs T1) but not for

the omicron variant (GMT, 5.9 [95% CI, 3.4-9.8];

p = 0.463, T2 vs T1]. These titers were lower than the peak

titers by a factor of 3.6, 2.8, and 1.7 for the wild-type virus

and the delta and omicron variants, respectively, through

the 6 months of follow-up.

The percentages of sera demonstrating neutralizing

activity (i.e., above the threshold) against the wild-type

virus, delta and omicron variants increased from 70%,

65%, and 38%, before the third dose (T0), to 93% (p <
0.001), 88% (p < 0.001), and 48% (p = 0.021) at 3

weeks after the third dose (T1), respectively; and

remained high through the 6 months for the wild-type

(80%; p = 0.060, T2 vs T1) and delta (77%; p = 0.102,

T2 vs T1; Figure 2B). The percentage of neutralizing

sera against the omicron variant remained low (39%;

p = 0.618, T2 vs T1).



Figure 3 Third dose induction and durability of SARS-CoV-2-specific T-cell response. (A) IFN-g responses (spot numbers) were com-

pared between the first time point (T0, before the third dose), the second time point, T1 (3 weeks after the third dose), and the third time

point, T2 (5-6 months after the third dose). Data are presented as median and interquartile range (IQR). (B) Fraction of individuals showing

positive SARS-CoV-2-specific T-cell response at baseline (T0, before the third dose), 3 weeks after the third dose (T1), and 5 to 6 months

after the third dose (T2).
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Third dose induction and durability of SARS-CoV-2-
specific T-cell response

Of a total 103 BNT162b2-3-dose-vaccinated patients,

whole blood samples were obtained for 54 patients (Cohort

2; mean age 56.3 [§15.0] years, and 39 [72%] male;

Figure 1 and Supplementary Table 1). The lymphocyte

count on the day of third vaccine dose was 1.5 K/mL (1.1-

2.2), with a neutrophil/lymphocyte ratio of 3.2 (2.3-4.5).

There was a significant increase in IFN-g spot numbers

from the time of the third dose to 3 weeks after the dose

(p = 0.007). The IFN-g spot response was maintained

through the 6 months after the third dose (p = 1.0; T2 vs
Figure 4 Spike-specific T cell responses induced by the third booste

between paired samples at 2 time points (T2 vs T1, n = 12).
T1, Figure 3A). Notably, over 70% of individuals in the

cohort showed an inducible SARS-CoV-2-specific T-cell

response at 3 weeks after the third dose (T1), and this pro-

portion was maintained during the 6 months after the

booster dose (p = 0.951; Figure 3B). In 12 of the patients,

the SARS-CoV-2-specific T-cell response was measured in

2 time periods, namely, 3 weeks (T1) and 6 months (T2)

following the third dose (Figure 4). Comparison of paired

samples from the same patient at 3 weeks (T1) and 5 to 6

months after the third dose (T2) showed no significant dif-

ference in IFN-g spot numbers (Figure 4), supporting the

durability of the third dose-induced T-cell response. Impor-

tantly, an inducible SARS-CoV-2-specific T-cell response
r dose of the BNT162b2 vaccine. IFN-g responses were compared
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but negative neutralization was observed for 3 patients. No

correlation was found between the SARS-CoV-2-specific

T-cell response and neutralization.
Discussion

Principal findings

Several important findings emerged from this prospective

longitudinal study in severely immunocompromised but

third-dose vaccinated individuals. First, the third

BNT162b2 dose induced high neutralization of the wild-

type virus and the delta variant and to a lesser degree of the

omicron variant. Second, at 6 months following the third

dose, serum neutralizing activity elicited by the third

BNT162b2 vaccination was still evident for the wild-type

virus and for the delta variant, albeit to a lesser degree, but

not for the omicron variant. Third, the third dose induced

the development of a sustained SARS-CoV-2-specific T-

cell population. Fourth, cellular responses were evident in

the absence of measurable neutralizing antibodies, suggest-

ing a cellular benefit, even when there did not appear to be

an antibody response.
Comparison with other studies

The BNT162b2 vaccine was previously reported to have

>90% efficacy in the general population against the ances-

tor Wuhan virus,9,10 but not for HT recipients. Detectable

antibodies against the receptor-binding domain were dem-

onstrated in only 10% to 57% and a cellular response in

10% to 70% of HT recipients at different time points fol-

lowing 2 doses of mRNA vaccines.1,11-13 With the emer-

gence of new VOCs, significant concerns continue to be

raised regarding the effectiveness of the vaccines against

these novel variants. We have, uniquely, longitudinally

assessed the 3-dose BNT162b2-induced neutralization

response to the wild-type virus and to 2 variants responsible

for COVID-19 surges by using micro-neutralization assays

involving cell cultures infected with live viruses (wild type

and variants). In contrast to previous studies reporting the

waning of vaccine (2 doses)-induced or disease-induced

neutralization responses, we provide longitudinal data on

the ability of the 3-dose vaccine regimen to induce initial

variant-specific neutralizing responses at different time

points following 2 and 3 vaccine doses.
Meaning of the study: possible explanations and
implications for clinicians and policymakers

We demonstrate that the third dose elicited high neutraliza-

tion of the wild-type virus and delta variant and to a lesser

degree of the omicron variant. The clinical significance of

this observation has yet to be determined, but it raises con-

cerns regarding efficacy of the BNT162b2 vaccine in the

immunocompromised population against this now dominant

variant. Whether a fourth dose will induce higher
neutralization response against the omicron variant in this

population is yet to be determined. Notably, for the general

population, a third dose induced an increase in neutralization

of the wild-type virus (GMT, 891.4) and, to a lesser degree,

of the omicron variant (GMT, 108) at 1 month after the third

dose,7 with the latter titer being close to that observed for

the wild-type in our HT population 3 weeks after the third

dose (GMT, 137). The low neutralization for the HT patients

might be partially explained by the low inducible SARS-

CoV-2-specific T-cell response observed in our HT popula-

tion after the second dose. The high inducible SARS-CoV-

2-specific T-cell response observed in our study following

the third dose might indicate that a fourth dose would induce

more effective neutralization against the omicron variant in

severely immunocompromised populations.
Unanswered questions and future research

The balance between the adaptive immune responses, com-

prising both humoral and SARS-CoV-2-specific T-cell

responses, that work together is an important factor in the

development of protective immunity against viral infec-

tions.14 Activated CD4+ T-cells are important for B-cell

activation and the generation of neutralizing antibodies to

maintain a durable antibody response.14 Whether SARS-

CoV-2-specific T-cells, in the absence of an effective neu-

tralization response, induce immunity/protection is

unknown, but numerous studies support the correlation

between the induction of neutralization and immunity. The

utility of vaccine-induced neutralizing activity as a predic-

tive metric of protection has been demonstrated in the pre-

clinical and clinical studies of SARS-CoV-2 vaccines

designed to elicit robust T-cell responses based on the

induction of neutralizing antibodies.15-17 We should, how-

ever, keep in mind that the interplay and balance between

the humoral and cellular immune responses against SARS-

CoV-2 is complex and much is still to be learnt, particularly

as recent data suggest that exposure to SARS-CoV-2 can

induce virus-specific T-cell responses without

seroconversion.18
Strengths and limitations

The strength of our study lies in several directions: (1) The

research is timely, deals with urgent public health concerns,

is relevant to the medical community due to the exponential

rise in omicron variant COVID-19 infections. (2) This is a

longitudinal study of the first population vaccinated with 3

doses of the BNT162b2 vaccine with data up to 6 months

after the third dose. Thus, the study population constitutes a

leading cohort for delineating the durability of the immune

responses induced by the third vaccine dose, particularly at

this time in the ongoing pandemic. Importantly, any hint of

vaccine immunological efficacy in HT patients may be

magnified several-fold in the non-suppressed vaccinated

population. (3) We examined BNT162b2 vaccine neutrali-

zation of emerging SARS-CoV-2 variants, including delta

and rapidly spreading omicron, using micro-neutralization



1424 The Journal of Heart and Lung Transplantation, Vol 41, No 10, October 2022
assays involving cell cultures infected with the original live

viruses. The importance of neutralization assays is empha-

sized by data demonstrating a correlation between the level

of neutralizing antibodies and symptomatic disease. (4) We

provide longitudinal data on the ability of the 3-dose

BNT162b2 vaccine regimen to induce SARS-CoV-2-spe-

cific cellular responses and on the durability of these

responses. Vaccine-induced spike-specific T cells are multi-

specific and are capable of recognizing different regions of

the spike protein.19,20 Thus, despite the ability of emerging

variants to alter T-cell specificities, these variants do not

escape the entire repertoire of spike-specific T cells. Indeed,

it has been demonstrated that, for most vaccinated individu-

als, VOCs are recognized by the spike-specific T cells

induced by mRNA vaccines.21,22 Here, we present novel

data indicating a third dose-induced durable SARS-CoV-2

specific T-cell response for up to 6 months.

The limitations of the study include the relatively small

number of patients (although this is the leading and largest

cohort for long-term boosting data). In addition, only periph-

eral circulatory virus-specific T cells were analyzed (i.e., no

information on other localized SARS-CoV-2-specific T

cells, e.g., bone marrow), and the IFN-g ELISpot assay can

detect only peripheral T cells secreting the Th1 cytokine

IFN-g. The values for the SARS-CoV-2-specific T cell

response that confer protection are unknown.23 We did not

longitudinally routinely perform polymerase-chain-reaction

testing for SARS-CoV-2, which could have resulted in

underdiagnosis of SARS-CoV-2 infection. Also, the study

was not designed to establish predictors of vaccine-induced

neutralization, since its aim was to assess the long-term

kinetics of vaccine-induced neutralizing antibody. Finally,

clinical correlation of these data will be needed.
Conclusions

The third BNT162b2 dose elicited a durable SARS-CoV-2-

specific T-cell response and induced high and durable neu-

tralization of the wild-type virus and the delta variant, and

to a lesser degree of the omicron variant, providing an

encouraging indication of vaccine neutralization against

virulent variants. Any hint of vaccine immunological effi-

cacy in HT patients may be magnified several fold in the

non-suppressed vaccinated population. Our findings may

inform vaccination strategies to control the future trajectory

of the COVID-19 pandemic, particularly the need for

scheduling booster doses into immunization protocols.
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