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Osteoarthritis (OA) is one of the most prevalent disorders in today’s society, resulting in significant socio-
economic costs and morbidity. MRI is widely used as a non-invasive imaging tool for OA of the knee.
However, conventional knee MRI has limitations to detect subtle early cartilage degeneration before
morphological changes are visually apparent. Novel MRI pulse sequences for cartilage assessment have
recently received increased attention due to newly developed compositional MRI techniques, including: T2
mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), sodium MRI,
diffusion-weighted imaging (DWI)/ diffusion tensor imaging (DTI), ultrashort TE (uTE), and glycosami-
noglycan specific chemical exchange saturation transfer (gagCEST) imaging. In this article, we will first
review these quantitative assessments. Then, we will discuss the variations of quantitative values of knee
articular cartilage with cartilage layer (depth)- and angle (regional)-dependent approaches. Multiple MRI
sequence techniques can discern qualitative differences in knee cartilage. Normal articular hyaline cartilage
has a zonal variation in T2 relaxation times with increasing T2 values from the subchondral bone to the
articular surface. T1rho values were also higher in the superficial layer than in the deep layer in most
locations in the medial and lateral femoral condyles, including the weight-bearing portion. Magic angle
effect on T2 mapping is clearly observed in the both medial and lateral femoral condyles, especially within
the deep layers. One of the limitations for clinical use of these compositional assessments is a long scan
time. Recent new approaches with compressed sensing (CS) and MR fingerprinting (MRF) have potential
to provide accurate and fast quantitative cartilage assessments.
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Introduction

Osteoarthritis (OA) is the most common type of arthritis,
causing tremendous socioeconomic cost and morbidity.1

Early identification of degenerative changes is important for
the treatment of OA. MRI has been widely used as a non-
invasive imaging tool for OA of the knee since it was clinically
available. Early cartilage MRI studies were focused on signal
(contrast) and morphologic changes in cartilage and had been

used to detect cartilage surface fraying, fissuring, and cartilage
thinning.2 However, conventional MRI has limitations to
detect subtle early cartilage degeneration before morphologi-
cal changes. In recent decades, quantitative assessment of the
biochemical composition of cartilage has been more popular
along with advanced MRI techniques and availability of high
field magnet such as 3 Tesla (T). In this review article, we first
introduce quantitative MRI techniques. Then, variations of
quantitative values of knee articular cartilage are reviewed
with cartilage layer (depth)- and angle (regional)-dependent
approaches, and finally, the recent trends of compositional
knee MRI are discussed.

Quantitative Methods of Cartilage MRI

There are novel MRI sequences that characterize and quan-
tify the composition of the hyaline articular cartilage and
show promise in the detection of early osteoarthritic changes.
These include: T2 mapping, T1rho mapping, sodium ima-
ging, delayed gadolinium-enhanced MRI of cartilage
(dGEMRIC), diffusion-weighted imaging (DWI), diffusion
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tensor imaging (DTI), ultrashort TE (uTE) imaging, and
glycosaminoglycan (GAG) specific chemical exchange
saturation transfer (gagCEST). The summary of quantitative
cartilage MRI is shown in Table 1.

Biochemical properties of cartilage
Hyaline articular cartilage is composed of four major con-
tents: GAGs (which make up proteoglycans), type II col-
lagen, chondrocytes, and water. Cartilage material contents
and orientations vary depending on cartilage zones. The
GAG molecules trapped inside the collagen matrix resist
compressive loads and generate swelling pressure due to
their affinity for water.3 High GAG content and collagen
fiber integrity are essential for the mechanical functions of
healthy cartilage. During the early stage of OA, the molecu-
lar composition and organization of the extracellular matrix
is altered before cartilage fissuring. This progressive disrup-
tion of the matrix architecture with loss of GAG and collagen
results in poor mechanical function because of a consequent
increase in water content.4,5 These matrix changes are not
apparent on conventional morphological MR sequences,
while advanced compositional MR imaging techniques pro-
vide information on the biochemical properties of cartilage to
detect the initial stages of degeneration.

T2 mapping
T2 relaxation time was found to be associated with water
content, as well as organization of the collagen matrix.6–8 An
increase in T2 relaxation time correlates with the areas of
cartilage damage particularly with loss of the integrity of
collagen.7 While conventional MRI sequences permits sub-
jective evaluation of cartilage signal changes, T2 mapping
allows a more objective assessment by generating a

grayscale or color map.9 In order to extract these T2 values
from different cartilage compartments, segmentation is
required. Calculation of T2 relaxation values from ROI is
done by mono-exponential curve fitting of the signal inten-
sity of each voxel.10,11

Multiple studies generally demonstrate that T2 mapping
shows promise in detecting pre-morphologic stage of OA
changes.12,13 A study by Mosher et al. demonstrated the asso-
ciation between age and higher T2 values in the superficial
layer,14 without a significant gender difference.11 A study over
4 years found that there was slower progression of T2 values in
patients with a 10% decrease in body mass index and faster
progression of T2 values in those with increased physical
activity, as well as those with sedentary lifestyle.10

There were contradicting data on the correlation between
severity of OA and T2 mapping. Dunn et al. reported that the
higher the OA stage, the T2 values tended to increase as
well,15 while several others, such as a study by Koff et al.,
showed no definite difference in T2 value across OA stages.16

In some chondral lesions, a heterogenous T2 pattern with the
areas of low T2 value was observed rather than the areas of
solely high T2.1,17 The mechanism for the low T2 values in the
chondral lesions is not well comprehended.

Although numerous investigators studied T2 mapping,
their methodology was not consistent. In addition, healthy
cartilage T2 values were not standardized.18 Most of the
studies used either a sagittal or coronal plane for cartilage
mapping, focusing on limited area of subregions.14,18,19 T2
mapping is the most researched and can be incorporated
relatively easily on most clinical MRI systems. The pulse
sequences and software required for generating T2 maps are
now offered in commercial packages and do not require
special coils.9

Table 1 Summary of quantitative cartilage MRI

Quantitative cartilage MRI Associated cartilage contents Interpretation

T2 mapping Water, organization of collagen matrix T2↑ = loss of collagen integrity

T1rho mapping Proteoglycan (GAG), orientation of collagen fiber,
concentration of other macromolecules

T1rho↑ = proteoglycan
depletion

dGEMRIC Proteoglycan (GAG) T1↓ = proteoglycan depletion

Sodium imaging Proteoglycan (GAG) Na signal↓ = proteoglycan
depletion, FCD↓

DWI & DTI Water molecules, collagen matrix, proteoglycans ADC signal↑ = cartilage
degeneration

uTE imaging Water molecules, collagen matrix, proteoglycans Useful for evaluation of
calcified cartilage

gagCEST Water and proteoglycan (GAG) gagCEST value ↓= GAG
depletion

ADC, apparent diffusion coefficient; dGEMRIC, delayed gadolinium-enhanced MRI of cartilage; DTI, diffusion tensor imaging; DWI, diffusion-
weighted imaging; FCD, fixed charged density; GAG, glycosaminoglycan; gagCEST, glycosaminoglycan specific chemical exchange saturation
transfer; uTE, ultrashort TE.
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T1rho imaging
T1rho mapping is similar to T2 mapping except, after the
magnetization is tipped into the transverse plane, it requires
an additional radiofrequency pulse.10 Similar to T2 mapping,
there is no requirement for contrast administration, but it
needs an MR scanner with the ability to generate a custo-
mized pulse sequence.10 Damaged cartilage generally exhi-
bits higher T1rho value.20,21 In cartilage degeneration,
depletion of proteoglycans is one of the earliest changes.22,23

Decrease in proteoglycan content in cartilage correlates with
alteration in T1rho values. Evidence shows that factors in
addition to proteoglycan depletion contribute to the T1rho
value, including orientation of collagen fiber and concentra-
tion of other macromolecules which are characteristic find-
ings of the early stage of OA.24 T1rho is higher in advanced
OA in comparison with intermediate OA.25

Several studies suggest higher sensitivity of T1rho than T2
mapping in the detection of cartilage degeneration.1,20,26,27

Regatte et al. compared the T1rho and T2 values obtained
from surgical human specimens and concluded that T1rho has
higher dynamic range than what can be used to detect smaller
cartilage changes with a higher grade of accuracy. That study
also showed that T1rho increase with OA grades was higher
(30%–120%) than T2 (5%–50%).28

Although numerous studies show that T1rho is more
sensitive for cartilage degeneration, measurement requires
special pulse sequences, which lead to the use of high RF
power and thus high specific absorption rate (SAR). Recent
technical developments have since been developed to miti-
gate these risks.29,30

Delayed gadolinium-enhanced MRI of cartilage
(dGEMRIC)
For dGEMRIC, intravenous contrast-medium administration
is necessary for quantitative cartilage assessment. Normal
cartilage contains negatively charged GAGs. After Gd-
DTPA2– injection in OA knee, negatively charged contrast
agent tends to aggregate in degenerative cartilage where
proteoglycan content is low (decreased negative charge),
resulting in diminished T1 value compared with normal
cartilage. Therefore, concentration of Gd-DTPA2– contrast
in normal cartilage with normal GAG will be generally low,
while its concentration will be relatively high in damaged
cartilage. Gd-DTPA2– distribution in cartilage can be quanti-
fied from MR measurements of T1value to indirectly assess
GAG content. which is known as dGEMRIC.22,31,32

Typically, the joint is moved for approximately 10 min
following intravenous administration of gadolinium contrast,
and images are acquired after 90-min delay. The time interval
allows contrast diffusion and penetration into hyaline carti-
lage to reach equilibration. Different time delays may be
used from joint to joint.33

Multiple studies validated that dGEMRIC is sensitive and
specific for the quantification of GAG and thus OA. One study
demonstrated that values in medial tibiofemoral compartments

decrease with increase in radiographic Kellgrene-Lawrence
grade.34 Also, low T1 relaxation time in femoral cartilage
after contrast administration (i.e. increase in cartilage signal
on post-contrast T1-weighted images) was correlated with the
development of osteophytes and the higher grade of joint
space narrowing after a follow-up of 11 years.35

High sensitivity and specificity of dGEMRIC were vali-
dated in some studies making this method considered the gold
standard. A disadvantage of dGEMRIC is the requirement for
double-dose intravenous contrast injection. In addition, this
technique is time consuming due to required exercise and time
delay post-contrast injection.22 Potential future introduction of
this technique in clinical practice at 7 T will benefit from a
reduction in scanning time, which can be obtained by omitting
the pre-contrast T1 mapping acquisition.36 Indeed, post-con-
trast T1 values were demonstrated sufficient to assess the
cartilage health status in the hip at 7 T.

Sodium MRI
Proteoglycan is composed of a protein core, which is attached
to many GAGs. The carboxyl and sulfate groups of GAGs are
responsible for the negative fixed charge density (FCD). The
FCD in order to achieve electrical neutrality attracts positive
ions, such as sodium.37 Sodium in cartilage is much higher
than sodium in the adjacent synovial fluid or bone. Therefore,
quantitative sodiumMRI has been shown to be highly specific
for the GAG content in cartilage. Sodium is relatively high in
normal cartilage with abundant proteoglycan, while in
damaged cartilage, there is proteoglycan, and therefore FCD
and sodium concentration will be low.10,38 Several studies
validated the high sensitivity of sodium imaging.37,39,40

There is also potential for post-operative cartilage repair
assessment.41

Both the Larmor frequency and concentration of sodium
are relatively lower than that of the proton. Sodium has also a
short T2 relaxation time. These factors result in images with
low resolution (2–4 mm isotropic), low SNR, and long
acquisition time of around 15–30 min.42 The low resolution
result in observed partial volume affects from the surround-
ing synovial fluid and subchondral bone edema. Another
challenge in the use of sodium imaging is that it requires
the use of high magnetic field (e.g., 3 T and 7 T) with high
magnetic field gradients and special RF coils.

On the bright side, a number of recently developed tech-
niques can increase the spatial resolution and lessen the scan
time.43 Improvements in the sodium acquisition could be to
further increase the spatial resolution, which can be done
using dedicated sequences, such as, for instance, 3D cones,
variable TEs gradient echo or density-adapted radial
sequences, which could be carried out with uTE pulses.44

Machine learning seems to be a potentially applicable tech-
nology for classifying OA patients and controls from sodium
MRI data.45 Advantages of sodium imaging are that sodium
is a naturally occurring element and does not require contrast
agent administration.

Review of Quantitative Knee Cartilage MRI

Vol. 21, No. 1 31



DWI and DTI
Evaluation with diffusion imaging is based on the ease of
water molecules within the cartilage collagen matrix and
proteoglycans. Since DWI can detect water motion in tissues,
it can provide pertinent information in regard to tissue struc-
ture. Multiple gradient pulses are applied to incite magneti-
zation in water molecules, but water gains a random amount
of phase and cannot refocus, which results in loss of signal in
tissues undergoing diffusion.17,22 In normal healthy carti-
lage, water movement is restricted by the rest of cartilage
components, leading to low apparent diffusion coefficient
(ADC) signal. On the other hand, cartilage degeneration
and disruption of the normal structure enhance water mobi-
lity and increase ADC cartilage signal. These changes in
ADC values can be mapped.46

In vivo DWI cartilage mapping remains challenging due
to short T2 of cartilage. Also, DWI is sensitive to motion
artifacts and navigator motion correction is required. These
factors make it difficult to achieve the resolution needed for
cartilage assessment.17,47–49 Nevertheless, advancing in ima-
ging techniques shows that DWI seems to have a potential in
the evaluation of cartilage degeneration, as well as in mon-
itoring post-repair changes.47,50,51

In addition to DWI, DTI can also be applied to cartilage
imaging, evaluating directions of water within the extracellu-
lar matrix. In the normal cartilage, the microarchitecture leads
to anisotropic diffusion of water. Therefore, changes in aniso-
tropy are likely caused by changes in the microarchitecture of
cartilage.52 The concept of DTI is related to the known col-
lagen fiber orientation in multiple layers. Work byMeder et al.
on the samples of bovine knee joints suggested that orientation
of the maximum diffusion eigenvectors is related to collagen
fiber orientation and arrangement.53 Recent reports have
shown that DTI has the possibilities as a marker for joint
degradation and can shed light on the integrity of the articular
cartilage with good reproducibility.52–58

As with diffusion and ADC studies, it is challenging to
use DTI as a marker in the clinical setting due to difficulty in
balancing SNR, resolution, and acceptable scan time.55

uTE
Conventional spin echo sequences usually use TE of around
10 msec. In these sequences, low T2 structures, such as
ligaments, tendons, menisci, deep calcified layers of carti-
lage and the cortex of the bones, will demonstrate low signal,
and their internal structures are undetected. Much shorter
TEs (uTE) are now achievable with gradient echo pulse
sequences in the range of 0.05–0.20 msec by using half RF
excitations with radial mapping from the center of k-space.
The use of uTE technique enables the detection of signals
from those structures.59,60

The osteochondral junction consists mainly of the sub-
chondral bone and calcified layer of the cartilage (CC). The
junction transports solute between the cartilage and the ves-
sels, which has been implicated in the pathogenesis of OA.

The calcified cartilage is of importance in chondral repair
processes. It was reported that CC removal would lead to a
better surgical outcome.22,60–62 The uTE imaging can better
demonstrate the zonal architecture of cartilage and help
delineate the deepest layers, including CC.

In a study by Bae et al., the subtracted images of the
human patella with two complementary techniques demon-
strated linear high signal intensity near the osteochondral
junction. They have concluded that the high signal was
contributed by the deepest layer of the uncalcified cartilage
and the calcified cartilage with no significant contribution
from the subchondral bone.60

As with other quantitative methods, there are certain
difficulties observed. These challenges in uTE imaging
include error in the radial k-space trajectories, off-resonance,
and distortion of the slice profile. However, gradient calibra-
tion, off-resonance correction, and efficient fat suppression
may help improve the outcome.

gagCEST
The gagCEST is a relatively newer compositional MRI tech-
nique based on the constant transfer of labile protons between
solutes and water. Exchange saturation transfer is based on the
fact that water in extracellular matrix is either free or bound to
macromolecules. An off-resonance RF pulse can be used to
saturate water associated with macromolecules. The saturation
is then exchanged with the free water leading to signal loss.
gagCEST imaging uses RF pulses applied at frequencies spe-
cific to exchangeable protons residing in GAG, thereby pro-
posing a method for quantitative cartilage imaging. In the
areas of GAG loss, lower gagCEST values are demonstrated.

Seven T MRI improves the gagCEST performance for the
increased SNR, as well as for the more selective saturation
between hydroxyl GAG and water protons due to the
increased gap in resonance frequencies.36 In a study utilizing
7 T MR, there was a high correlation between gagCEST and
sodium imaging in post-cartilage repair assessment.63 Due to
limited frequency difference between hydroxyl protons and
water, better spectral separation at 7 T is preferred over 3 T.
Although the gagCEST still has limits, a study using 3 T MR
found gagCEST comparable to T2 mapping and dGEMRIC
in detecting normal and damaged cartilage.64 There may be a
potential for gagCEST to play an increasing role in research
and clinical settings.

Quantitative Cartilage Analysis – Layer
(Depth)-Dependent Approach

Cartilage zones (layers)
Cartilage consists of four zones (layers) from the articular
surface to the subchondral bone plate: superficial (tangential)
zone, transitional zone, radial or deep zone, and calcified
cartilage zone. The superficial zone is thin and protects
deeper layers from shear stresses.65 The transitional zone
provides an anatomic and functional bridge between the
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superficial and deep zones. It contains abundant proteogly-
cans and thicker type II collagen in an organized oblique
direction. The deep zone is responsible for providing the
greatest resistance to compressive forces. It consists of col-
lagen fibrils perpendicular to the articular surface and crosses
the tidemark. The deep layer contains the highest concentra-
tion of proteoglycans and the lowest water concentration.
The calcified layer plays an integral role in securing the
cartilage to bone by anchoring the collagen fibrils of the
deep zone to subchondral bone.

Quantitative analysis of layer (depth)-dependent
approach
Cartilage degeneration affects the zonal variation in T2
relaxation times. Normal articular hyaline cartilage illus-
trates a predictable zonal variation in T2 relaxation times
with increasing T2 values from the subchondral bone to the
articular surface.6,66 In the deep zone of normal hyaline
cartilage, the collagen fibers run perpendicular to the cortical
surface. Therefore, the magic angle effect was more apparent
in the deep layer compared with the superficial layer within
both the medial and lateral condyles (Fig. 1).6 Toward the
articular surface, the fibers have a more oblique or random
orientation that causes a different mobility for water protons
in this partly anisotropic tissue.67 Because of spatial resolu-
tion limitations, in many zonal variation studies, the cartilage
ROIs were divided into two equal-sized deep and superficial
layers (Fig. 2). Apprich et al. reported that the T2 relaxation
times increase with increasing cartilage defect grade, espe-
cially T2 values of the superficial layer. However, the zonal
variation is even present in higher grades of cartilage
degeneration.66 Mamisch et al. evaluated T2 values in the
superficial and deep layers on a high-resolution knee MRI at
different time points after matrix-associated autologous
chondrocyte transplantation (MACT).68 The results were
that, for the zonal T2 values, native control cartilage of the

early and late unloading measurements showed significantly
higher T2 values in the superficial zone, but not in the deep
zone. In contrast, the zonal evaluation of the cartilage repair
tissue showed significantly higher T2 relaxation times for the
early and late unloading for both cartilage layers. This result
suggested that T2 relaxation times can be used to assess the
early and late unloading values of articular cartilage in a
clinical setting and that the time point of the quantitative
T2 measurement affects the differentiation between native
and abnormal articular cartilage.

Regarding zonal variation of T1rho relaxation times, T1rho
values were higher in the superficial layer than in the deep
layer in most locations in the medial and lateral condyles,
including the weight-bearing portion (Fig. 3).69 In a previous
study, T1rho values were higher in the non-weight-bearing
portion than in the weight-bearing portion over the medial
and lateral condyles.69 This finding is more significant in the
deep layer. In other words, proteoglycan content was greater
and T1rho values were lower in the weight-bearing portion,
especially in the deep layer. Proteoglycans resist compression
and generate swelling pressure due to their affinity for water.
The deep zone consists of large-diameter collagen fibrils
oriented perpendicular to the articular surface. This layer con-
tains the highest proteoglycan, lowest water concentration,
and highest compressive modulus.3 More resistance to various
forces in knee activity is required in the weight-bearing por-
tion. Therefore, it makes sense that cartilage in the weight-
bearing portion needs more proteoglycan, which results in
lower T1rho values in this region.

Quantitative Cartilage Analysis – Regional
(Angle)-Dependent Approach

Signal variations of normal knee cartilage
Articular cartilage signal of the knee joint is not uniform in
conventional MRI. In addition to signal variations in each

Fig. 1 T2 profiles on 2D surface map of (a) the whole layer, (b) the deep layer, and (c) the superficial layer of the entire femoral cartilage.
Arrows indicate ± 54.7° (the magic angle). (Reprinted with permission from #6).
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Fig. 2 Articular segmentation with angle- or layer-dependent approach. (a) After manual cartilage extraction, the central point of the
cartilage (red dot) was automatically approximated. (b) Static magnetic field (B0) was defined as 0 degrees, with negative and positive
angles located anterior and posterior to the central point. (c) Radial lines from a central point divided cartilage into 4-degree segments. (d)
Segmentation of cartilage into deep (0%–50%) and superficial layers (51%–100%) of relative thickness. (e) T2 profiles were generated for
whole thickness, deep, and superficial layers of cartilage. (Reprinted with permission from #6).
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cartilage layer in the depth direction, there are variations of
cartilage signal intensities in various areas within the knee
with fat-suppressed fast spin echo (FSE) and 3D spoiled
gradient-recalled echo sequence (SPGR) images in conven-
tional MRI.70 For example, decreased signal intensity in the
distal part of the trochlear cartilage was seen on images
obtained with all sequences in all volunteers and patients
with OA. The cause of the very low signal intensity in this
region is not clear, but it is presumably related to the aniso-
tropic arrangement of collagen fibers. Another normal
appearance on fat-suppressed SPGRMR images was a linear
area of low signal intensity in the center of the cartilage that
was probably caused by truncation artifact, which was present
in the patellofemoral compartment in 96% of the patients and
in the posterior region of the femoral condyles in 86% of the
patients. Approximately one-fourth patients showed linear
high signal intensity truncation artifact within intermediate
or low signal cartilage with FSE proton density (PD) or T2
sequences in the same location.

Magic angle effects
The magic angle is an MRI artifact, which occurs on
sequences with a short TE and causes increased signal
intensity. The magic angle effect is commonly seen and is
important in the clinical MRI of certain tissues (espe-
cially tendons, cartilage, and peripheral nerves) that are
highly structured and are oriented obliquely to the main
magnetic field at 54.74° from the main magnetic field
(B0). The magic angle effect causes laminar appearance
of articular cartilage. The direct cause is the T2 relaxation
anisotropy in the tissue, which is closely linked to the
structure of the collagen fibers, their orientation in the
magnetic field, and the water–proteoglycan interaction.
This amplifies the prevailing orientation of the collagen
fiber network.71

Quantitative analysis of angular dependent approach
Kaneko et al. analyzed the entire femoral cartilage at the
knee joint by angular segmentations in steps of 4-degrees
over the length of the segmented cartilage (Fig. 2).6 Magic
angle effect on T2 mapping was clearly observed in the both
medial and lateral femoral condyles, especially within the
whole and deep layers (Fig. 1). However, there were no
significant differences between the magic angle and other
angles within the superficial layer of the medial condyle.
The authors suggested that this might be due to the small
sample size. Another plausible explanation would be that
structural anisotropy of the collagen fibers decreases the
magic angle effect on the superficial layer.6 Nozaki et al.
reported normalized T1rho profiles of the entire femoral
cartilage in healthy subjects using similar manner in regard
to angular segmentation as above.69 Although T1rho pro-
files are not homogeneous over the entire femur and there is
angle-dependent variation in T1rho, there is no influence of
magic angle effect on T1rho profiles. In general, T2 and
T1rho values increase in degenerative cartilage. However,
in a previous study of early knee OA, the median values of
T2 and T1rho around the magic angle for early OA patients
actually tended to show lower values in both the deep and
superficial layers compared with those of the controls.1

This is due to the fact that normal cartilage T2 and T1rho
around the magic angle are relatively increased compared to
those of early degeneration. Another example of reginal or
angle dependent variations involves the most distal tro-
chlea. Meanwhile, T2 and T1rho are decreased in healthy
volunteers, especially in the deep layer as fat-suppressed
proton density-weighted imaging (FS PDWI) normally
demonstrates low signal intensity.70 Therefore, increased
T2 and T1rho values around the most distal trochlea should
be considered abnormal. These examples highlight the
fact that, in order to accurately detect early cartilage

Fig. 3 Difference in average T1rho
values between the superficial and
deep layers at the medial condyle,
lateral condyle, trochlea, and the
entire femoral cartilage. Average
T1rho values in the superficial
layer of the femoral articular carti-
lage are higher than in the deep
layer over the entire femur, medial
condyle, and lateral condyle, with
a statistically significant difference
(P < 0.05). (Reprinted with permis-
sion from #67).
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degeneration using T2 and T1rho values, it is necessary to
know the fact that cartilage T2 and T1rho have reginal- or
angle-dependent variations and to compare values between
potential lesions and expected regional specific normal
cartilage values.

Cluster analysis
Cluster analysis has been used to identify focal regions of
elevated or decreased quantitative metrics on individual pro-
jection maps of averaged pixel data within angular bins. Monu
et al. classified clusters as either increased or decreased by
setting two thresholds: intensity and size. For both cartilage
T2 and T1rho relaxation times, thresholds for increased and
decreased clusters were set at +2 mean standard deviation of
the healthy groups’ difference map.72 A cluster was defined as
a contiguous set of pixels above or below these thresholds.
Using cluster analysis technique, they have quantified carti-
lage lesion coverage and demonstrated that the anterior cruci-
ate ligament (ACL)-injured group had greater areas of
elevated T2 and T1rho relaxation times as compared to
healthy volunteers. The cluster analysis uses the subtracting
projection maps from the healthy population to set the inten-
sity threshold and cluster size across populations. It is essential
to account for the magic angle effect that could lead to incor-
rect detection of the areas of elevated T2 and to a lesser extent
T1rho relaxation times. Also, selecting appropriate cluster size
allows for characterizing focal lesions by mitigating the
effects of noise, such as single voxel changes while still
capturing focal lesions.72 T2 cluster analysis has been used
for bilateral femoral cartilage T2 asymmetry analysis of the
detection of early OA,73 early changes in ACL-reconstructed
knee,74 and acute exercise in knee OA.75

Quantitative MR Evaluation after Cartilage
Repair

Quantitative MRI is useful to evaluate repaired cartilage as a
non-invasive imaging modality without arthroscopy or
biopsy. T1rho mapping, T2 mapping, dGEMRIC, and DWI
are applicable to most clinical MR scanners. Currently, there
are several cartilage repair techniques, including microfrac-
ture (Mfx), osteochondral autograft transplantations (OAT),
and autologous chondrocyte implantation (ACI) or matrix-
associated ACI (MACI). We should keep in mind that dif-
ferent cartilage repair techniques are known to result in
repair tissues with different histological compositions that
vary during maturation.9 One of the advantages of quantita-
tive cartilage MRI is to demonstrate structural difference
between different cartilage repair techniques or between
repaired cartilage and surround normal cartilage quantita-
tively and noninvasively. For example, after Mfx, tissue has
been mostly reported as fibrous cartilage, which shows lower
T2 relaxation times than normal hyaline cartilage. After ACI
or MACI, tissue has been characterized as hyaline-like.
Kurkijärvi et al. showed that T2 values for ACI repair tissue

were higher and more heterogeneous than T2 of normal
control cartilage about 1 year after surgery with a lack of
zonal organization.76 T1rho was found to be elevated in
cartilage repair tissue after OAT and Mfx as compared to
normal cartilage up to 1 year after surgery.77 Watanabe et al.
reported that dGEMRIC measurements correlated with the
GAG content of the ACI grafts.78

However, there are several limitations of quantitative MR
evaluation after cartilage repair. First, Shimomura et al.
reported that there were no correlations detected between his-
tological scores and T2 values for each repair cartilage zone.79

This result suggests that T2 mapping is limited to demonstrate
accurate zonal variations after repair. Second, the results from
previous studies are sometimes divergent because of different
cartilage repair techniques and different maturation process, as
well as different quantitative MR imaging techniques, includ-
ing different imaging protocols, different coils, different ana-
lysis methods, and different patient cohorts. Third, clinical
correlations are limited, and clinical importance including
prediction of procedure outcome needs to be demonstrated in
larger cross-sectional and longitudinal cohort studies.77 Finally,
manual segmentation is required in many cases, which is
limited by inter- and intraobserver reliability errors. Deep
learning may solve this segmentation issue in the future.

Quantitative Cartilage MRI Combined with
New Techniques

Main challenges of quantitative cartilage MRI are long
acquisition times and low spatial resolution. In other
words, new techniques with shorter acquisition time and
higher spatial resolution are desired in the present and
future. Compressed sensing (CS) is a novel concept for
reconstructing images from highly undersampled data. CS
has the potential to greatly shorten scanning times and has
many different applications, including quantitative carti-
lage map sequences.29 CS theory affirms that certain sig-
nals and images can be recovered from highly compressed
k-space data with an appropriate reconstruction algorithm.
To make this possible, CS should meet three requirements:
sparsity, incoherence of a sampling trajectory, and non-
linear reconstruction. Efficient data acquisition using CS
is extremely important for compositional mapping of the
musculoskeletal system, in general, and knee cartilage
mapping techniques, in particular.80 High-resolution quan-
titative information about tissue biochemical composition
could be obtained in just a few minutes using CS MRI
(Fig. 4). The combination of parallel imaging and CS are
especially useful. Both are fast imaging techniques that
could potentially accelerate the acquisition speed of carti-
lage quantitative imaging by means of k-space undersam-
pling below the Nyquist rate.81

Regarding cartilage T2 mapping using CS, Huang et al.
reported that CS T2 mapping data were acquired in only
2 min and 12 s compared with the 17 min and 8 s acquisition
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needed for the gold standard T2 map reconstructed from
eight TE images with 256 k-space radial lines each.82

Wang et al, reported that, for macroscopic MRI, where the
resolution mimics the clinical MRI of human cartilage, the
quantitative T2 mapping at accelerating factors up to 4 times
showed negligible variations.83 Therefore, clinical MRI can
benefit from the use of CS in image acquisition without
losing significant accuracy in the quantification of T2 maps
in osteoarthritic cartilage.

Zhou et al. combine an advanced CS-based dynamic ima-
ging technique, k-t locally adaptive iterative support detection
(LAISD) and an advanced parallel imaging technique (joint

image reconstruction and sensitivity estimation in SENSE
[JSENSE]) to achieve maximum acceleration of cartilage
T1rho imaging.81 T1rho maps obtained from accelerated
scans (acceleration factors of 3 and 3.5) showed results com-
parable to conventional full scans without sacrificing accuracy
(T1rho errors in all compartments below 1%). They concluded
that CS will greatly facilitate the clinical translation of quanti-
tative cartilage MRI. 3D sequences usually come at the cost of
a significant increase in scan time. Zibetti et al. reported that
accelerating 3D T1ρ mapping of cartilage with CS using
specific sparsifying transforms is feasible up to accelerations
factors of 10 with T1rho errors below 6.5%.80

a

dc

b

Fig. 4 2D and 3D knee cartilage T2mapping using SENSE or CS. (a) 2D T2mapping with SENSE (factor = 2, 7 min 5 sec), (b) 2D T2mapping
with CS (factor = 3, 4 min 44 sec), (c) 3D T2 mapping with SENSE (factor = 4, 11 min 28 sec), and (d) 3D T2 mapping with CS (factor = 6, 8
min 2 sec). (Courtesy of Dr. Atsuya Watanabe and Mr. Takayuki Sakai at Eastern Chiba Medical Center, Japan). CS, compressed singing;
SENSE, sensitivity encoding.
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The preliminary study by Madelin et al. showed that CS
can be applied to sodium MRI of cartilage at 7 T in order to
decrease the acquisition time by a factor of 2 without losing
accuracy in tissue sodium concentration over different ROIs
in the cartilage for detecting early signs of OA.84 A further
improvement, upon acquisition of multichannel double-
tuned (1H + 23Na) RF knee coils at 3 T and 7 T, would be
to apply CS sodium MRI in combination with parallel ima-
ging to further reduce the imaging time by another factor 2
or 3.84

The performance of CS is limited in cases where the fully
sampled image already has low SNR. This makes the appli-
cation of CS to DWI challenging since diffusion-weighted
images inherently have lower SNR. Knoll et al. introduce a
new image reconstruction technique for DTI, which com-
bines the concepts of parallel imaging, model-based recon-
struction, and CS.85 They concluded that this may enable an
essential reduction in the acquisition time in radial spin echo
DTI without degrading parameter quantification and/or
SNR.85

MR fingerprinting (MRF) is a new approach to quanti-
tative MRI that allows simultaneous measurement of multi-
ple tissue properties in a single time-efficient acquisition.86

This technique can estimate multiple MR parameters
simultaneously (e.g., T1 and T2) using dynamic signal
patterns.87 Sharafi et al. demonstrated the feasibility of an
MRF sequence that can simultaneously measure the T1, T2,
and T1ρ maps in a single scan.87 Their in vivo results
showed that it could distinguish the mild OA patients
from the healthy controls and has the potential to be used
for the quantitative assessment of the cartilage for the early
detection of OA.
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