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Abstract
Drug-likeness is a vital consideration when selecting compounds in the early stage of drug discovery. A series of drug-like properties are needed
to predict the drug-likeness of a given compound and provide useful guidelines to increase the likelihood of converting lead compounds into drugs.
Experimental physicochemical properties, pharmacokinetic/toxicokinetic properties and maximum dosages of approved small-molecule drugs
from multiple text-based unstructured data resources have been manually assembled, curated, further digitized and processed into structured
data, which are deposited in the Database of Digital Properties of approved Drugs (DDPD). DDPD 1.0 contains 30 212 drug property entries,
including 2250 approved drugs and 32 properties, in a standardized value/unit format. Moreover, two analysis tools are provided to examine
the drug-likeness features of given molecules based on the collected property data of approved drugs. Additionally, three case studies are
presented to demonstrate how users can utilize the database. We believe that this database will be a valuable resource for the drug discovery
and development field.

Database URL: http://www.inbirg.com/ddpd

Introduction
In the early stage of the drug design/discovery process, drug-
likeness is a vital consideration when selecting compounds.
Drug-likeness evaluation can provide useful guidelines to
increase the likelihood of converting lead compounds into
drugs. For example, to guarantee that a drug can function
effectively as a clinical treatment, an appropriate concentra-
tion at the target site must been ensured. Although dosage
and administration are obviously two important factors, the
concentration of a drug also depends on its absorption, distri-
bution, binding or local accumulation in the tissue, the degree
and rate of biotransformation, excretion and other variables
(1). Therefore, physicochemical property, pharmacokinetic
(PK), toxicological and maximum dosage studies of drugs are
important components of drug-likeness evaluation. Statistical
and computational modeling of the molecular dynamic regu-
lation of drugs within the body is of great theoretical value and
practical significance for broad usage. For instance, a number
of in silico approaches including machine-learning methods
have been successfully applied in the evaluation of drugs (2),
virtual screening (3), drug property prediction (4, 5), ADMET
prediction (6, 7), drug target prediction (8, 9), pharmaceutical

dosage form improvement (10) and design and optimization
of dosing regimens (11).

To facilitate the development of drug-likeness evalua-
tion methods, high-quality and comprehensive datasets of
drug-likeness properties are essential. However, most high-
quality datasets are not publicly accessible, primarily because
of commercial conflicts of interest. In particular, regard-
ing the PK, toxicity and dose information of drugs, most
of the related data are unorganized in different databases
or sparsely scattered in the text of relevant references. Sev-
eral databases contain property values for numbers of drugs.
For example, PK/DB, which has been unavailable for sev-
eral years despite being published in 2008, manages 2973
property values involving 1203 compounds and 8 PK fea-
tures (12). PK-DB is a database containing 512 PK studies
from clinical trials, and it provides automatic calculation of
eight PK parameters from the data (13). However, the data
contained in the available databases are limited. Most entries
only have several PK properties, and the databases suffer from
high rates of missing values. Furthermore, some databases
are not specifically designed for drug screening, comparison
and analysis based on property data. Therefore, the lack of a
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comprehensive standardized data portal for digital drug prop-
erties has been a major obstacle in drug-likeness prediction
and drug development.

In this study, we introduced a user-friendly database named
Database of Digital Properties of approved Drugs (DDPD)
that provides a centralized data portal of manually curated
and standardized digital drug properties. DDPD includes the
experimental physicochemical properties, PK/toxicokinetic
properties andmaximum dosages of approved small-molecule
drugs. Furthermore, downstream statistical analyses based
on the collected dataset were developed to provide confi-
dence intervals for the drug-likeliness of given small molecules
using appropriately chosen statistical assumptions and mod-
els. Driven by the need for in silico modeling of drug proper-
ties, the development of DDPD is paving the road for effective
virtual screening and small molecule drug design and ulti-
mately expected to contribute to accelerating drug discovery
and development.

Materials and methods
Data collection and curation
In this study, six authoritative resources of drugs were
explored, including DrugBank (14), T3DB (15), ATSDR
(https://www.atsdrcdc.gov/), PDR (https://www.pdrnet/),
‘The Pharmacological Basis of Therapeutics’ (1)
and a human intravenous PK dataset (16). Drug-like prop-
erty related features such as physicochemical properties (e.g.
log P, water solubility), PK properties (e.g. bioavailability,
biological half-life, protein-binding rate), toxicity informa-
tion and dosage data were extracted from these resources.
It is notable that only experimental property values and not
predictive values were extracted.

Specifically, drug structures represented using the simplified
molecular-input line-entry system (SMILES), physicochemi-
cal property and PK data of the small-molecule drugs were
extracted manually through reading the text of the drug
descriptions in DrugBank. In T3DB and ATSDR, the toxic-
ity information of small-molecule drugs was extracted. The
maximum dosage information of the corresponding com-
mercial drugs was obtained from the PDR database. In the
appendix of The Pharmacological Basis of Therapeutics and
the human intravenous PK dataset, drug properties includ-
ing bioavailability, urinary excretion, serum protein binding
rate, clearance rate, apparent volume of distribution, bio-
logical half-life, peak time and peak density were manually
obtained via text reading, and the eight drug properties from
this appendix were treated as supplementary to the data from
DrugBank. The origins of the properties of drugs were also
recorded in the DDPD.

Because the data were collected from multiple heteroge-
neous and unstructured databases, several data preprocessing
steps were implemented to increase data integrity for down-
stream data analytics either performed by users or provided
by the in-house developed services. Therefore, normaliza-
tion of the assembled data, including the standardization and
unification of units, was performed. Moreover, the character-
istics of individuals including age, weight, gender, cigarette
smoking habits, genomic variants and diseases and routes
of drug administration affect the property values. Conse-
quently, certain parameters of one drug might have multiple
values because of differences in the conditions for different

individuals. Therefore, it was necessary to digitize the record-
ings of these factors for each data entry in the database. The
aim was to reduce confounding and improve the quality of
knowledge distilled from data analyses.

Database implementation
Techniques including Ngnix and uwsgi were adopted as the
web containers for services supply. Django and MySql were
used for back-end data interchange, and Bootstrap4 and
Jquery were applied for front-end visualization. Statistical
analyses were performed using python packages including
Pandas (1.0.5), NumPy (1.18.5) and SciPy (1.4.1). Data anal-
yses were visualized using several visualization approaches
including Bar Chart and Radar Chart.

Results
Data retrieval
DDPD can be accessed at http://www.inbirg.com/ddpd. Mul-
tiple data-retrieval methods were developed for accessing
DDPD and summarized in a schematic view (Figure 1). A
quick search by gene name, gene ID or CAS number is pro-
vided on theHOME page (Figure 1A). On the SEARCH page,
users can perform three other types of searches in an effort
to improve the usability of the database. For the Advanced
Search, users can retrieve the property information of drugs
more accurately by inputting the drug ID/name and the inter-
vals of its property values (Figure 1B). For the SMILES
Search, drugs with similar SMILES strings to the input will
be obtained using the regular string comparison method of
RDKit (https://www.rdkit.org/) (Figure 1C). For the Structure
Search (Figure 1D), using structure drawing board Kekule.js
(17), a molecule structure of interest must be drawn manually
first and will then be automatically converted into SMILES
string, and drugs with similar SMILES strings would be
obtained subsequently. The SMILES/structure-based searches
allow users to retrieve drugs with similar sub-structures to
facilitate structure–property relationship analysis. All per-
formed searches will be linked to a Search Result Page on
which all matched drugs are listed and presented for down-
load. Users can click on the found drug ID, and they can be
redirected to a page displaying detailed information about the
drug (Figure 2), which contains the Basic Information, Exper-
imental Physicochemical Property, PK/Toxicokinetic Prop-
erty and Maximum Dosage. As unique features of DDPD,
annotations (e.g. routes, populations) and factors (e.g. foods,
ages) are also provided for many of the property entries.
A Drug Property Radar Chart is provided for each drug
to display the values of properties along their own prop-
erty axis within the dataset (Figure 2). On the BROWSE
page, the entire list of the collected drugs can be reviewed
by drug name/ID in alphabetical order. In addition, the entire
database can be downloaded from the DOWNLOAD page.
The HELP page walks users through essential definitions of
the terminologies on the website and explanations of the basic
functions of each webpage.

The statistics of DDPD
To gain further information about the distributions of the
drug properties, users can consult the STATISTICS and
HOME pages. The current version of DDPD contains 2250

https://www.atsdrcdc.gov/
https://www.pdrnet/
http://www.inbirg.com/ddpd
https://www.rdkit.org/)


Database, Vol. 2022, Article ID baab083 3

Figure 1. The search pages of DDPD: (A) On the home page, users can conduct simple search via drug name, DDPD ID or CAS number. (B, C, D) On the
search page, users can perform more advanced searches via one or more drug property values, SMILES or structure. (D) In Structure Search tab, users
can draw chemical structures using the developed drawing tool.

approved drugs and 32 properties (i.e. 7 physicochemi-
cal properties, 18 PK/toxicokinetic properties and 7 maxi-
mum dosages of different populations). A total of 30 212
(18 011 non-redundant) drug–digital properties including
4443 physicochemical properties, 18 016 PK/toxicokinetic
properties and 7753 maximum dosage values with standard-
ized value/unit format are deposited. On the STATISTICS
page, statistics of the number of properties per drug
are given (Figure 3A); the statistics of the properties are
also provided to indicate the distributions of drug prop-
erties, and they can be potentially useful for statisti-
cians to construct more appropriate parametric hypotheses
(Figure 3B).

Drug property analysis
It is assumed that the property values of the approved drugs
collectively contribute to a distribution that is informative for
the eligibility of being a usable drug. More specifically, for the
given investigated molecules, the confidence that a molecule
can become an effective drug increases as the drug property
value approaches the center of the distribution. Therefore,
several statistical models were adopted to implicitly estimate
the confidence of drug-likeness for the givenmolecules via uni-
variate analysis. Two analysis tools were designed according
to the assumptions, and they could be used on the ANALYSIS
page (Figure 4). First, Drug-like Property Evaluation was
designed to check whether the property values of the inves-
tigated drug(s) are significantly different from those of the
approved drugs in DDPD. Radar chart is provided to dis-
play median values of the given property values along their
own property axis within the dataset. The P-values calcu-
lated using Student’s t-test and the Mann–Whitney U test are
given to measure the significance of the differences between

the sample mean and population mean (the whole dataset) of
the input drug property. Furthermore, violin plots are pre-
sented to visualize the distributions of the queried features
of the whole dataset and input. Second, Drug Property Con-
centration Analysis was developed to investigate whether the
property values of the given list of drugs with a common func-
tion are concentrated at a higher/lower level compared with
those of the approved drugs in this database (Figure 4). Radar
chart, calculated P-values and violin plots are also provided.

Case studies
Three case studies investigating different drug properties are
presented to demonstrate how users can utilize the database.

Case study 1: Esmolol
Esmolol, a cardio selective beta blocker, is used for the short-
term control of ventricular rate and heart rate in various
types of tachycardia (18). By searching (or browsing) through
DDPD, users can get the property values of esmolol as follows:

i. On the search bar of Home Page, type in ‘esmolol’ and
press enter.

ii. The search result will display esmolol as the only
result along with its DDPD Drug ID, CAS number,
etc.

iii. Clicking on the drug ID will redirect users to the
detailed information page. By scrolling to the bot-
tom, users can view the drug property radar chart of
esmolol.

As shown on the radar chart, esmolol has relatively high
clearance and maximum dosages for various demographic
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Figure 2. Detailed information page of a drug example. Users can view detailed information of the selected drug, including basic information,
physicochemical properties, pharmacokinetic and toxicokinetic properties, as well as maximum dosages. A radar chart which displays the values of all
the properties of the selected drug is shown at the bottom.

groups (Figure 5A). Furthermore, it also has relatively short
time to reach steady state, which indicates good absorption
(18). Esmolol can maintain a steady state within 5min of

infusion and can be effectively cleared after the discontinu-
ation of the infusion. (18) In other words, esmolol can be
quickly cleared in the human body and safely administered
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Figure 3. Statistics page of DDPD. (A) Barplot shows the number of properties per drug. (B) Property value statistics such as histogram for log P is
provided. Log P of all drugs in our database is to some degree normally distributed with a median of 2.2 (normality test P -value=0.034).

in high tolerated dose as demonstrated in Figure 5A. This
study indicates that DDPD can help users improve overall
understanding of a drug’s PK behavior.

Case Study 2: Characteristic of drugs with high lipophilicity
The common properties of drugs with high lipophilicity have
been investigated in this case study, demonstrating the usage
of the advanced search function and the ‘Drug Property
Concentration Analysis’ tool.

i. First, based on the statistics in DDPD, log P, a
measure of lipophilicity, exhibits normal distribution
(Figure 3B).

ii. In the advanced search, select log P > 4 in this case, and
232 drugs can be found and downloaded (Supplemen-
tary Table S1).

iii. In the next step, input the extracted Drug IDs into
the text frame in ‘Drug Property Concentration Anal-
ysis’ on the analysis page. By clicking the submit
button, the results show that these drugs are sig-
nificantly concentrated in a higher volume of distri-
bution (19) (Figure 5B), higher protein binding rate
(20) (Figure 5C), lower log S (21) (Figure 5D) and
lower bioavailability (22) (Figure 5E), compared to all
approved drugs in the database.

This analysis reveals the relationship between lipophilicity
and other drug properties, and it provides clues for chemical
property research and predictive modeling.

Case study 3: Analysis of serum albumin related drugs
In this case study, property value distributions of serum albu-
min related drugs have been investigated. The workflow is
described below and the use of DrugBank is also included.

i. First, select 373 approved small molecule drugs from
serum albumin’s drug relations table in DrugBank.

ii. On the Analysis page, under the Drug Property Con-
centration Analysis tab, enter the converted IDs (replace
‘DB’ to ‘DDPD’) for all 373 drugs in the Drug ID List
query box (Supplementary Table S2).

iii. Select ‘All’ for the Administration option underneath
the query box and click submit.

iv. Results show a radar chart summarizing properties
values for the 373 searched drugs. Below the radar
chart is the property value comparison between the 373
searched drugs and all approved small molecule drugs.

Half-life is the most significantly enriched property of
these drugs. The selected 373 drugs have a median half-
life of 7.4, which is significantly higher than the median
(6.04) of the half-life of all approved small molecule drugs
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Figure 4. Analysis tools of DDPD. Using the Drug Property Concentration Analysis tab of the Analysis page, users can query a list of drugs via DDPD ID
and visualize the property value distribution of the query list via violin plots. The blue violin plots represent the property value distribution of all the
approved drugs in our database. The orange plots represent the distribution of the queried compounds. For the queried drugs for caco-2 permeability,
only one data entry is found, therefore, one orange dot is shown. Additionally, the pvalues of the selected statistical tests are calculated and listed in the
respective columns.

(P-value=0.0003, Figure 5F). It has been reported that albu-
min could extend the circulatory half-life of drugs (23, 24).
As the main protein of plasma, serum albumin has a good
binding capacity for drugs. In other words, according to this
finding, it is likely that certain drugs can be modified or engi-
neered to bind to serum albumin so as to prolong half-life and
improve drug-likeness (25).

Discussion
The complexity of evaluating drug-likeness of given molecules
should never be underestimated, and practical methods are
urgently demanded for inferring the drug-likeness of inves-
tigated molecules. For the drug-likeness evaluation in this
study, we assumed that the quantitative principles of molec-
ular properties including physicochemical and PK properties
must be obeyed to permit the molecules to reach the drug
target at a sufficient concentration for a sufficient duration.
Traditional methods for drug-likeness evaluation such as Lip-
inski’s Rule of Five (26) provide useful information and sug-
gest that molecules disobeying quantitative rules of the drug

properties would not function effectively in biological sys-
tems However, because simple models may not always be
accurate, this type of analysis is inherently limited, and it
should be used with caution. An increasing number of com-
pounds disobeying Lipinski’s Rule of Five are being approved
by the FDA (27). It has also been proven that by com-
bining more descriptors of molecules, the identification of
drug-likeness molecules can be substantially improved using
machine learning (28) compared with using Lipinski’s Rule of
Five. Therefore, DDPDwas developed to provide high-quality
digital properties including the experimental physicochem-
ical properties, PK/toxicokinetic properties and maximum
dosages of approved small molecule drugs, and it might
emerge as a useful resource for researchers to mine more accu-
rate patterns for inferring drug-likeness. Popular databases,
such as DrugBank (14), contain large amount of information
about drugs and offer broad scope, comprehensive refer-
encing and detailed data descriptions. Yet, most numerical
values of drug properties in DrugBank are embedded in tex-
tual descriptions, which makes the values of drug properties
hard to be indexed and extracted for data analysis. Property



Database, Vol. 2022, Article ID baab083 7

Figure 5. Case studies. (A) Case study 1. Radar chart for properties of esmolol. Property values related to maximum dosage and clearance are shown to
be at the maximums of the corresponding ranges. (B, C, D, E). Case Study 2. Drugs with log P value greater than 4 are selected as the sample group; as
shown, property value distributions for these drugs (orange plots) are significantly different from those of all approved small molecule drugs (blue plots):
(B) Volume of distribution is significantly higher for the sample group (median 3.4>0.85, P -value=3.1e–11); (C) Protein binding is significantly higher for
the sample group (median 97>85, P -value=9.8e-21); (D) Log S is significantly lower for the sample group (median −4.39 < −3.03, P -value= 1.6e-7);
and (E) bioavailability is significantly lower for the sample group (median 50<60, P -value= 0.0061). (F) Case study 3. Half-life of 373 albumin related
drugs is compared with half-life of all approved small molecule drugs. Half-life is significantly higher for albumin related drugs (median 7.4>6.04,
P -value=0.0003). All P -values are calculated using Mann–Whitney U Test performed by the developed analysis tool.

values in DDPD have been manually extracted, standard-
ized and annotated to enable accurate statistical comparisons
and modeling. Moreover, the structured data can be easily
searched, browsed, extracted and downloaded through a user-
friendly interactive interface in DDPD. Other databases such
as PK/DB and PK-DB primarily focuses on curating PK prop-
erties (12, 13). In addition to larger number of PK properties
(32, 8, 8 for DDPD, PK/DB, PK-DB, respectively), DDPD
also curates toxicokinetics, physicochemical properties, as
well as maximum dosage properties. Additionally, PK-DB
mainly contains time-course measurements in clinical studies
in semi-structured format, however, DDPD deposits drug-
centered property values in structured format to make the

process of drug property analysis streamlined. Furthermore,
DDPD provides built-in analysis tools as a preparatory appli-
cation based on the collected digital drug properties, which
could provide information for the drug-likeness of the given
molecules.

Despite the complexity of drug-like mechanisms, it is
promising that the developed tools could be informative for
researchers to direct their studies and contribute to shortening
the path for drug screening and design. In silico approaches,
including machine-learning methods, can be applied for drug
evaluation (2) and drug property prediction. (4) Therefore,
in future versions of DDPD, models and methods of predic-
tions of drug features based on machine learning and/or big
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data techniques will be implemented. Usability of DDPD will
be continuously improved, so that a streamlined prediction
of drug-likeness can be easily achieved by users. Further plans
are in place to regularly updating the database every 6months
with newly published data. Moreover, drugs in clinical trials
or those withdrawn from development are scheduled to be
incorporated to expand the datasets. In addition, drug sen-
sitivity data for cell lines and model organisms will also be
collected.

In summary, DDPD is a remarkable comprehensive public
repository presently available for obtaining the standardized
experimental property values of approved drugs. DDPD both
provides high-quality manually curated digital drug proper-
ties and offers advanced computational analysis services. This
database is expected to become a public hub for in silico drug-
likeness assessment. We believe that this database will be a
valuable resource for the drug discovery and development
field.

Supplementary data
Supplementary data are available at Database Online.
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