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Machine learning molecular 
dynamics simulations 
toward exploration 
of high‑temperature properties 
of nuclear fuel materials: case 
study of thorium dioxide
Keita Kobayashi1*, Masahiko Okumura1,3, Hiroki Nakamura1,3, Mitsuhiro Itakura1,3, 
Masahiko Machida1,3 & Michael W. D. Cooper2,3

Predicting materials properties of nuclear fuel compounds is a challenging task in materials science. 
Their thermodynamical behaviors around and above the operational temperature are essential for the 
design of nuclear reactors. However, they are not easy to measure, because the target temperature 
range is too high to perform various standard experiments safely and accurately. Moreover, 
theoretical methods such as first‑principles calculations also suffer from the computational limitations 
in calculating thermodynamical properties due to their high calculation‑costs and complicated 
electronic structures stemming from f‑orbital occupations of valence electrons in actinide elements. 
Here, we demonstrate, for the first time, machine‑learning molecular‑dynamics to theoretically 
explore high‑temperature thermodynamical properties of a nuclear fuel material, thorium dioxide. 
The target compound satisfies first‑principles calculation accuracy because f‑electron occupation 
coincidentally diminishes and the scheme meets sampling sufficiency because it works at the 
computational cost of classical molecular‑dynamics levels. We prepare a set of training data using 
first‑principles molecular dynamics with small number of atoms, which cannot directly evaluate 
thermodynamical properties but captures essential atomistic dynamics at the high temperature 
range. Then, we construct a machine‑learning molecular‑dynamics potential and carry out large‑scale 
molecular‑dynamics calculations. Consequently, we successfully access two kinds of thermodynamic 
phase transitions, namely the melting and the anomalous � transition induced by large diffusions 
of oxygen atoms. Furthermore, we quantitatively reproduce various experimental data in the best 
agreement manner by selecting a density functional scheme known as SCAN. Our results suggest that 
the present scale‑up simulation‑scheme using machine‑learning techniques opens up a new pathway 
on theoretical studies of not only nuclear fuel compounds, but also a variety of similar materials that 
contain both heavy and light elements, like thorium dioxide.

Thorium has attracted much attention as a potential nuclear  fuel1,2. Thorium is now estimated to be three to 
four times more abundant in nature than uranium the shortage of which might become a concern in the coming 
future. Moreover, its nuclear-fuel material form, thorium dioxide, is chemically more stable than the uranium-
based  counterpart3. Owing to the above primary and other several advantages, thorium dioxide is considered to 
be a promising candidate fuel material in next-generation nuclear reactors.

The detailed information of nuclear fuel materials in a high temperature range around its melting point is 
prerequisite for not only design of reactors but also nuclear safety. However, it is generally difficult to measure 
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physical properties in such a high temperature range due to limitation of durability of experiment instruments 
and resultant concern about safety. It is also difficult to maintain the stoichiometry of some fuel compounds at 
such high temperatures (e.g. PuO2 ). Therefore, the experimental data of thermal properties of thorium dioxide as 
well as other fuel materials has not been still accumulated sufficiently in the temperature region. Thus, a theoreti-
cal approach accurately examining material properties in atomic-levels, i.e., molecular dynamics (MD) simulation 
has been intensively employed as an alternative important tool to complement insufficient experimental  data4,5.

Calculations of thermal properties through MD simulation require large-size and long-time runs in order to 
achieve statistical-mechanically reliable accuracy. Then, classical MD using empirical atomic force fields has been 
a primary scheme among various ones, because it allows statistically convergent properties to be obtained with 
reasonable computational costs. Indeed, several  authors6–13 studied thermal properties of thorium compounds 
using classical MD. However, it should be noted that the obtained results strongly depend on the empirical 
parameters of the force field. This fact clearly indicates that careful development of atomic potentials is crucial 
for reliability of the calculated thermal properties. Then, their comparative studies among possible potential 
candidates are essential together with experimental  results14.

An alternative way to calculate thermal properties of materials is using first-principles calculations based on 
density functional theory (DFT)15. Its ab-initio style has made a great impact on atomic-level simulation studies 
because of their non-empirical modeling. However, first-principles calculations for thorium dioxide have been 
so far limited only in a few  literatures16–19. In the previous  study19, two of the authors have explicitly shown that 
first-principles molecular dynamics (FPMD) simulations provide reliable data of thermal properties of thorium 
dioxides in the high temperature range, but the system size and averaging time were severely restricted due to 
its huge computational costs.

In the last decade, machine learning has been used as a tool to construct atomic potentials. The machine 
learning techniques are utilized to train potential energy surfaces (PES) with first principles accuracy by inter-
polation among a large number of reference data obtained by first principles  calculations20–23. One of promis-
ing machine learning approaches is a method using artificial neural networks (ANN) proposed by Behler and 
 Parrinello20,22. We call the ANN Behler-Parrinello neural networks (BPNN) throughout this paper. In contrast 
to empirical atomic force fields, BPNN is not based on any physical modeling but have a large number of adjust-
able parameters. The rich flexibility in BPNN enables us to make PES of which accuracy is comparable to those 
calculated from first-principles.

Generally, machine learning molecular dynamics (MLMD) using BPNN is expected to access thermal proper-
ties with first-principles accuracy even in unavailable large system sizes and long average times for FPMD. Actu-
ally, using the advantage of MLMD, structural phase transitions have been successfully examined by  MLMD24. 
However, these cases demand not so large system size because the phase transition among different solid phases 
can be well captured with periodic boundary conditions. On the contrary, mixture of phases including liquids 
and/or gases require large systems to evaluate physical processes. In this paper, using MLMD with BPNN, we 
evaluate thermal properties of thorium dioxide, as an example of nuclear fuels, with first principles accuracy in 
a wide temperature range, whose upper limit is beyond the melting point.

Thorium dioxide has a fluorite structure with space group Fm3̄ m, in which the 4a and 8c positions are occu-
pied by thorium and oxygen ions, respectively. The lattice constant at room temperature is 5.592 Å25, and the 
melting point is 3651  K26. In addition, another kind of phase transition was reported below the melting point 
as a pre-melting phase  transition27,28. The transition is expected as a diffuse transition of 8c position elements, 
which is called the Bredig  transition29 or simply �-transition. Recently, anomalous oxygen dynamics around the 
transition has been intensively studied using classical MD motivated by a close resemblance to anomalous atomic 
dynamics widely seen in glass forming  systems30,31. The electron structure of thorium dioxide is rather simple. 
The localized f-electrons of actinide oxides usually influence thermal properties at high temperature due to their 
strongly-correlated features as seen in the cases of plutonium  dioxide32. On the other hand, Th cations in thorium 
dioxide principally loose all electrons in the outer-f-shell, resulting no f-occupation. Then, the thermal properties 
of thorium dioxide are regarded to be well described by only the movement of atoms by the valence electrons. 
However, the ionic interaction is actually affected by atomic-charge polarizations and emergent interactions. In 
DFT calculation, their descriptions depend on the choice of exchange-correlation (XC) functional. Therefore, 
we train BPNN using DFT reference data sets based on different typical XC functionals. Using MLMD with 
several BPNNs, we conduct a systematic study on the high-temperature thermal properties of thorium dioxide.

Methods
Vienna ab initio Simulation Package (VASP)33,34 is used for obtaining reference data sets for BPNN. In all calcu-
lations, the projector-augmented wave  method35 is employed, and 500 eV energy cutoff is chosen. In this study, 
we use three types of XC functionals: the local density approximation (LDA) in the parametrization of Ceperly 
and  Alder36, the generalized gradient approximation of Perdew–Burke–Ernzerhof for solids (GGA-PBEsol)37, 
and the strongly constrained and appropriately normed (SCAN) meta-GGA XC  functional38.

First, we perform FPMD NPT simulations with PBEsol functional from 300 to 5000 K with a 100 K tempera-
ture step. The combination of the Langevin thermostat and Parrinello–Rahman barostat is adopted to generate 
the NPT ensemble. The time step and simulation total time at each temperature are 2 fs and 16 ps, respectively. 
Potashnikov et al.14 pointed out that the smallest cell size to capture the Bredig transition in MD simulations is 
3× 3× 3 of the unit cell. Thus, we also choose 3× 3× 3 supercell of thorium dioxide (324 atoms) and only Ŵ 
point is used as a k-point mesh. We randomly pick up 9000 snapshots of the MD simulations as the reference 
data based on PBEsol. For creating the reference data based on LDA and SCAN functionals, we randomly select 
3000 structures from the dataset based on PBEsol, and evaluate the energies and forces of the 3000 configura-
tions by DFT calculations with LDA and SCAN. The 3000 structures recalculated by DFT with LDA and SCAN 
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are used as the reference data sets for BPNNs based on LDA and SCAN. Furthermore, the adaptive learning 
 scheme39–43 is used to improve the quality of the reference datasets. In this scheme, we create two BPNNs with 
different initial weights and conduct MLMD simulations to generate various structures of ThO2 . Next, we select 
structures with large force differences between the outputs of the two BPNNs from the generated structures. 
Finally, we re-evaluate the energies and forces for the selected structures by DFT and add these to the reference 
data. As a result, the total numbers of the reference data based on LDA and SCAN XC functionals are 7749 and 
7007 structures, respectively.

We use the n2p2  code44 for training BPNN. In BPNN, a local environment of each atom with a cutoff radius 
Rc is encoded to descriptor vectors. We adopt the following type-2 and type-4 symmetry  functions22 as the 
descriptors of the distances and the angles of atoms, respectively, i.e.,

with the cutoff function

where Rij is the distance between the i-th and j-th atoms, θijk is the angle formed by line segments between the 
i-th and j-th atoms and the i-th and k-th ones. The cutoff radius Rc for G(2)

i  and G(4)
i  are taken as 8.0 Å and 6.5 Å, 

respectively. We choose the parameter Rs = 0.0 , and the other parameters were selected by CUR  decomposition45. 
First, we creat symmetry functions with a total NSF = 240 dimension and construct Nsample × NSF feature matrix 
X, where each column vector consist of the symmetry function of the corresponding sample. Then, we perform 
a CUR decomposition for the feature matrix X and select the symmetry functions that satisfies the following 
criteria: ||X − CUR||F/||X||F ≤ 10−4 , where || · ||F denote the Frobenius norm. The detailed lists of the selected 
symmetry functions are shown in the Supplemental Materials. Using a dataset consisting of a selected descriptor 
vector and corresponding first-principles energy and forces, BPNNs are trained. We use two hidden layers with 
hyperbolic tangent activation functions with 30 nodes. The multistream Kalman filter  method46 is adopted as an 
optimizer for BPNN. 90% of the reference data is assigned to training data and the remaining 10% as test data. 
We construct three machine learning potentials using data generated by DFT with the LDA, PBEsol and SCAN 
XC functionals, which are referred to as BPNN-LDA, BPNN-PBEsol and BPNN-SCAN, respectively.

In this paper, all MD simulations are carried out by  LAMMPS47. NPT simulations are performed with 
Nosè–Hoover thermostat and barostat relaxation times being 0.1 ps and 0.5 ps, respectively.

Results
Accuracy of machine learning potentials. Table 1 summarizes the root mean square errors (RMSE) 
of energy and force for the training and test data. The RMSEs of the present BPNNs for the reference data are 
below 2.4 meV/atom for the reference energies and 8.3×10−2 eV/Å for the forces, which are comparable with the 
typical RMSEs in previous  studies20,43,48–50. In order to test the accuracy of BPNNs, we compare physical quan-
tities obtained by DFTs, BPNNs, empirical atomic potentials, and experiments data. In this paper, we choose 
 BD088 and the Cooper, Rushton and Grimes (CRG)9 empirical atomic potentials for comparison with DFTs 
and BPNNs. BD08 atomic potential is a relatively simple pairwise potential consisting of the Coulombic and the 
Buckingham  potentials51. On the other hand, CRG atomic potential includes many-body EAM-type  potential52 
in addition to the pairwise potentials.

We compute the lattice constant, elastic properties, and phonon dispersion curves at zero temperature using 
DFTs, BPNNs, and empirical atomic potentials. The elastic constants are calculated by a numerical differen-
tial of the stress tensors with respect to finite strains. The phonon bands within the harmonic approximation 
are obtained using  Phonopy58 with the finite difference method. In phonon calculations, to treat long range 
interaction of macroscopic electric field induced by polarization of atomic displacement near Ŵ point, we add 
non-analytical correction by dipole-dipole interaction to dynamical  matrix59,60 (see also the Supplementary 
Materials). The computed results are shown in Table 2 and Fig. 1. The lattice constant and elastic data of BPNN 
calculations agree well with those by DFT ones. The results computed by (BPNN-)PBEsol and (BPNN-)SCAN 
show similar lattice and elastic constants, which also agree with the experiment  ones25,53–55, whereas (BPNN-)
LDA slightly underestimates the lattice constant. Comparing the results obtained by DFTs, BPNNs and empirical 

(1)G
(2)
i =

∑

j

e−η(2)(Rij−Rs)
2
fc(Rij) ,

(2)G
(4)
i =21−ξ

∑

j �=i
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(

1+ � cos θijk
)ξ
e
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(

πR
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)

for R ≤ Rc

0 for Rc < R
,

Table 1.  RMSE of BPNN-LDA, BPNN-PBEsol and BPNN-SCAN for the training and test data.

BPNN-LDA BPNN-PBEsol BPNN-SCAN

Training Test Training Test Training Test

Energy (meV/atom) 2.085 2.108 2.297 2.357 1.207 1.264

Force ( 10−2 eV/Å) 5.705 6.551 7.906 8.239 5.812 5.769
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atomic potentials, the lattice constant and elastic data calculated by BD08 and CRG potentials seem to be more 
accurate than the results obtained by DFTs and BPNNs. Note that this is not necessarily surprising given that 
the empirical potentials are fitted to these experimental properties. The phonon dispersion curves calculated 
by BPNNs are also in good agreement with the curves obtained by DFTs, as shown in Fig. 1a,b. Furthermore, 
DFTs and BPNNs reproduce the experimental  data57 almost completely. Especially, we note that optical modes 
in the phonon dispersion curves calculated by the empirical atomic potentials show large deviation from the 
experimental data as shown in Fig. 1c though the results of DFTs and BPNNs are almost perfect in these modes.

So far, we have validated the BPNN potentials using static calculations. However, the validations for dynamical 
calculation are also required, since inappropriate BPNN potentials sometimes cause unstable MLMD and result in 
structural collapse with a long simulation period, especially at high  temperatures61. On the other hand, MLMDs 
using the present BPNNs show good stability in long-period NVE simulations as shown in the supplementary 

Table 2.  Lattice constant and elastic properties of ThO2 obtained by DFTs, BPNNs, emprical potentials, and 
experiments (Exp.). The round brackets (·) in the BPNN columns represent the percentage errors of the BPNN 
results against the DFT results.

DFT BPNN
Empirical 
potential

Exp.LDA PBEsol SCAN LDA PBEsol SCAN BD08 CRG 

Lattice constant (Å) 5.529 5.576 5.598 5.531 (0.04) 5.565 (0.20) 5.610 (0.21) 5.600 5.580 5.59225

C11 (GPa) 385.6 373.0 378.9 374.0 (3.01) 370.8 (0.59) 348.7 (7.97) 367 352.3 367.053

C12 (GPa) 130.2 120.7 118.2 142.2 (9.22) 122.7 (1.66) 124.2 (5.08) 106 113.4 106.053

C44 (GPa) 82.0 80.7 83.7 75.9 (7.44) 73.9 (8.43) 74.3 (11.23) 95 71.7 79.653

Bulk modulus (GPa) 215.3 204.8 205.1 219.5 (1.95) 199.0 (2.83) 205.4 (0.15) 193 193.0

193.053

195.0± 254

198.0± 255

Shear modulus (GPa) 98.0 96.6 100.0 90.0 (8.16) 91.1 (5.69) 87.7 ( 12.30) 107.9 88.1
95.6–100.653

103± 256
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Figure 1.  Phonon dispersion curves for ThO2 . (a–c) Phonon dispersion obtained by (BPNN-)LDA, (BPNN-)
PBEsol, and (BPNN-)SCAN where black and red line are the results computed by DFT and BPNN, respectively. 
(d) Are the results obtained by BD08 (green line) and CRG potential (purple line). Circle dots in (a–d) represent 
the experimental data.57
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materials. Thus, BPNNs trained in the present study enable us to conduct MLMD simulations over a long period 
with no anomalies.

Thermal expansion, enthalpy and specific heat capacity. In the above, BPNNs are found to have 
accuracy comparable to DFTs. Next, we apply MLMD to large-scale simulations, which are difficult to perform 
by FPMD. The present MLMD is about several hundred thousand times faster than FPMD (see the computa-
tional efficiency of BPNNs summarized in the Supplementary Materials). MLMD enables us to easily evaluate 
the thermal properties of ThO2 with the almost FPMD accuracy.

Here, we focus on a linear thermal expansion (LTE)

and an averaged coefficient of linear thermal expansion (ACLTE)

where L(T) is a lattice constant at temperature T. The values of the lattice constant at 300 K are listed in Table 3. 
We also calculate enthalpy H(T) and molar specific heat capacity at constant pressure, which is a critical quantity 
for discussion of the �-transition,

where n is the amount of substance in moles. Calculations of these properties require large system size and long 
averaging time to avoid the finite size effects. In addition, computations of the heat capacity and ACLTE require 
numerical measurements at a large number of temperature points with a tiny temperature step elevation for 
smooth numerical differentials. Therefore, it is difficult to evaluate these quantities by FPMD. Then, we perform 
MLMD NPT simulations using 6× 6× 6 supercell (2592 atoms) and totally 200 ps run per 10 K temperature 
step. The 6× 6× 6 supercell is large enough to neglect finite size effects and to evaluate the thermal properties 
of ThO2 as shown in the supplementary material. Moreover, in order to smooth the curves of heat capacity 
and ACLTE, we average their values over the interval of ± 100 K twice as performed in  reference14 (see also the 
Supplementary Material). For the comparison, we also calculate the thermal properties using classical MD with 
BD08 and CRG empirical potentials.

Figure 2 shows the temperature dependence of LTE, enthalpy, and specific heat capacity Cp . Among the LTEs 
obtained by MLMDs and classical MDs as shown in Fig. 2a, the results computed by BPNN-SCAN show the best 
agreement with the Touloukian fitting of the experimental results, which is available up to 2000 K. The ACLTEs 
in the range from 300 to 1600K are listed in Table 3. The ACLTE computed by BPNN-SCAN also shows good 
agreement with the experimental data 9.5× 10−6 K −1 from Momin (298–1600 K)62 and 9.67× 10−6  K −1 by 
Rodriguez (293–2273 K)63.

In enthalpy calculation as shown in Fig. 2a, the results computed by BPNN-SCAN and CRG potential provide 
close values to the Bekker fitting of the  experiment64 over the entire temperature range. All computed enthalp-
ies give close values in the low-temperature range, but show different behavior in the high-temperature range 
where the specific heat anomaly emerges as shown in Fig. 2b. The onset temperature of the specific heat anomaly 
can be characterized as Tα , which is defined as the temperature giving the minimum value of Cp/T

65. Tα are 
ordered as BPNN-LDA, BPNN-PBEsol < CRG, BPNN-SCAN < BD08 as listed in Table 3. The peak position of 
Cp obtained by BPNNs and CRG potential are in good agreement with the experimental results 2950  K27 and 
3090  K28 reported as the Bredig transition temperature.

Oxygen diffusion and defect concentration. We evaluate the mean square displacements (MSD) 
defined as

(4)LTE =
L(T)− L(300K)

L(300K)
,

(5)ACLTE =
1

T2 − T1

∫ T2

T1

1

L(T)

∂L(T)

∂T
dT =

log L(T2)− log L(T1)

T2 − T1
,

(6)Cp =
1

n

∂H(T)

∂T
,

(7)MSD(t) =
1

Nα

Nα
∑

i

|ri(t)− ri(0)|
2,

Table 3.  The lattice constant L(T) at 300 K, the averaged coefficient of linear thermal expansion (ACLTE), the 
onset temperature of heat capacity anomaly Tα , and the �-peak temperature Tc are summarized.

BPNN-LDA BPNN-PBEsol BPNN-SCAN BD08 CRG Exp.

L(300K) 5.545 5.580 5.624 5.616 5.595 5.59225

ACLTE (10−6 K −1) 9.95 10.65 9.71 10.84 10.05 9.562, 9.6763, 11.0726

Tα (K) 2360 2350 2460 2760 2450

Tc (K) 3040 2980 3200 3440 2930 295027,  309028
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where ri(t) is the position of the i-th atom at time t and Nα is the total number of α atoms ( α is Th or O). The 
employed system size and total time-step are the same as the cases computing the thermal expansion and the 
molar specific heat capacity. We conduct NVE simulations with 1 fs time-step at various temperatures using the 
volumes previously calculated in NPT ensemble. Figure 3a shows the MSD computed by MLMD with BPNN-
SCAN. In the previous study using  FPMD19, accurate evaluations of MSD could not be performed due to its 
high computational costs. In contrast, MLMD easily overcomes such a limitation, and then sufficiently long 
simulations allow us to detect the diffusive regime even in the temperature region below Tc =3200 K (see MSD 
of oxygen at 2300 K in Fig. 3a). It should also be mentioned that Th shows vibrational motions below and above 
the transition temperature. We evaluate the self-diffusion constant D for the oxygen atoms from the slope of 
MSD in the range 25 to 100 ps. Figure 3b shows the temperature dependence of the self-diffusion constant for 
the oxygen atom. In all MLMD and clasical MD simulations, one can find the bending of the Arrhenius plot 
of the self-diffusion constant above Tc . The deviation of the self-diffusion constant from Arrhenius law was 
experimentally reported in PbF2

66,67, which belongs to the fluorite-type structure like ThO2 . We calculate the 
activation energy of diffusion below Tc using the Arrhenius relation, D = D0 exp(−EAE/kT) . Table 4 shows 
the values of the activation energy obtained by MLMDs and empirical MDs. All BPNNs give similar activation 
energies, which are lower than those obtained by the empirical atomic potential.

The specific heat anomaly and dynamics of anions have been investigated related to the disorders in fluorite, 
and defect cluster models have been proposed so  far68,69. In this study, we focus on the vacancy concentration of 
oxygen in the regular site. In an ideal fluorite structure, one oxygen exits within a cube with vertices: (0, 0, 0), 
(0, 0, 1/2), (0, 1/2, 0), (1/2, 0, 0), (0, 1/2, 1/2), (1/2, 1/2, 0), (1/2, 0, 1/2), and (1/2, 1/2, 1/2). Thus, we count a 
number of cubes not including oxygen from MD trajectories and define the vacancy concentration as the ratio 
of the empty cubes. As with the self-diffusion constant for oxygen, the temperature dependence of the oxygen 
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BPNN-SCAN (red line), respectively, whereas the dashed lines are the results computed by MD with BD08 
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Figure 3.  (a) MSD obtained by MLMD with BPNN-SCAN. (b) Temperature dependence of the self-diffusion 
constant for oxygen. (c) Temperature dependence of the vacancy concentration.
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vacancy concentrations obeys the Arrhenius law below Tc , and the Arrhenius plots bent downwards above Tc as 
shown in Fig. 3c. These results indicate that the origin of the lambda transition and anion dynamics are closely 
related to the defect formation. The vacancy concentration of oxygen obtained by MLMDs and classical MDs 
are from 1 to 3% at Tc and are within 10% above Tc . The low defect concentration of ThO2 below Tc is consistent 
with the experimental results of fluorite  materials70–72.

Melting temperature. The melting temperature of thorium dioxide can be determined by the so-called 
two-phase simulation approach. A 6× 6× 12 supercell (5184 atoms) including both solid and liquid phases 
is prepared as an initial configuration as shown in Fig. 4a. MLMD NPT simulations are performed from 3000 
to 4000 K, in which the simulation time is taken over 500 ps. Figure 4b shows averaged enthalpy calculated by 
BPNN-SCAN in the periods from 0 to 100 ps, 200 to 300 ps, and 400 to 500 ps, respectively. From Fig. 4b, we 
can confirm that the enthalpy jump at 3620 K and the melting point evaluated by MLMD with BPNN-SCAN lies 
between 3610–3620 K. The melting temperatures evaluated by MLMDs and classical MDs are also summarized 
in Table 5. BPNN-SCAN closely reproduce the experimental melting point (3651 K) while BPNN-LDA give 
somewhat lower melting point (3450–3460 K) and BPNN-PBEsol significantly underestimate it as 3250–3260 
K. The choice of XC functional seems to be sensitive in evaluating accurate melting temperature. In calculation 
using empirical potentials, CRG potential provides accurate melting temperature, whereas BD08 potential over-
estimates it as shown in Table 5.

Conclusion
MLMD simulations using BPNN were extensively performed to evaluate the thermal properties of a fuel mate-
rial, thorium dioxide. In this paper, we made three types of BPNNs based on DFT reference data with LDA, 
PBEsol, and SCAN XC-functionals. We confirmed that the constructed BPNNs have close accuracy with DFTs 
through the comparisons of lattice constant, elastic properties, and phonon dispersion, which also well agree 
with the experimental data. Moreover, large-size and long-run simulations being inaccessible for FPMD were 
successfully performed by using MLMD. Through the systematic studies for thermal properties of thorium 

Table 4.  Activation energy of diffusion below Tc and vacancy concentration at Tc.

BPNN-LDA BPNN-PBEsol BPNN-SCAN BD08 CRG 

Activation energy below Tc (eV) 4.851 4.446 4.400 7.049 6.696

Vacancy concentration at Tc (%) 2.5 1.7 2.3 1.3 1.5

Figure 4.  (a) Configuration of 6× 6× 12 supercell including solid (left) and liquid phase (right). (b) 
Temperature dependence of the enthalpy obtained by the two-phase simulation approach using MLMD with 
BPNN-SCAN. The blue filled circles and the open green squares and red circles represent the enthalpies 
calculated in the periods as 0 ps to 100 ps, 200 ps to 300 ps and 400 ps to 500 ps, respectively.

Table 5.  The melting points evaluated by two phase simulations.

BPNN-LDA BPNN-PBEsol BPNN-SCAN BD08 CRG Exp.

Tm (K) 3450–3460 3250–3260 3610–3620 3810–3820 3640–3650 365127
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dioxide, the BPNN-SCAN especially gave the closest results to the experimental fitting data for the thermal 
expansion and the enthalpy, and well reproduced the experimental melting temperature. Therefore, we judge that 
the BPNN-SCAN provides reasonable results for all testable experimental data. The BPNN-LDA and -PBEsol 
also showed reasonable results for several thermal properties of thorium dioxide, but they underestimated the 
experimental melting temperature. Comparing the XC functionals employed in this study, SCAN functional 
includes intermediate-range attractive dispersion  interaction73, which is absent in other standard DFT function-
als. Actually, it has been reported that the inclusion of dispersion interaction improves not only the description 
of the structural  properties73,74 but also melting temperature and liquid  properties75. Therefore, it turns out that 
the intermediate-range attractive dispersion interaction of the BPNN-SCAN leads to a correct description of 
the thermal properties of thorium dioxide.

In this study, we focused on the perfect bulk system and did not explicitly include the defect structures of 
thorium dioxide in the reference data. However, the present BPNNs can predict the defect formation energies for 
various defect structures with a certain degree of accuracy as shown in the Supplementary Material. The inclusion 
of liquid structures and the structures with oxygen diffusion at high temperatures is considered to make BPNNs 
possible to describe the various defect structures. Therefore, by adding some DFT data on defect structures to 
the reference data, the present BPNNs is expected to be applied to damage analysis under high radiation fields 
intrinsic to nuclear fuels. Further extension of the BPNNs to describe irradiation damage and surface state of 
thorium dioxide is an important future work.

In conclusion, we confirmed that the present MLMD is a powerful computation tool to explore high-tem-
perature materials properties of thorium dioxide, one of oxide fuel compounds, with keeping first-principles 
accuracy. The state-of-the-art simulation scheme is further expected to find out the detailed physics of some 
unsolved phenomena just below the melting transition from microscopic levels. In principle, MLMD can be 
applicable for the calculation of thermal properties of other actinide dioxides. A key issue will be the construc-
tion of the reference dataset based on XC functionals describing strongly correlated f-electrons correctly. For 
example, to reproduce the insulator phase of other actinide dioxides, it is essential to use more sophisticated 
methods such as DFT+U or hybrid functional  approach76–79. Once the reference dataset based on proper DFT 
methods is created, MLMD can capture high-temperature thermodynamical features in the first-principles 
accuracy as shown in the present study.

Data availibility
The machine learning potentials (BPNNs) created in this study are included in the Supplementary Information 
files. The datasets generated during the current study are available from the corresponding author on reason-
able request.
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