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Multiparty weighted threshold 
quantum secret sharing based 
on the Chinese remainder theorem 
to share quantum information
Yao‑Hsin Chou1, Guo‑Jyun Zeng1, Xing‑Yu Chen1 & Shu‑Yu Kuo2*

Secret sharing is a widely-used security protocol and cryptographic primitive in which all people 
cooperate to restore encrypted information. The characteristics of a quantum field guarantee the 
security of information; therefore, many researchers are interested in quantum cryptography 
and quantum secret sharing (QSS) is an important research topic. However, most traditional QSS 
methods are complex and difficult to implement. In addition, most traditional QSS schemes share 
classical information, not quantum information which makes them inefficient to transfer and share 
information. In a weighted threshold QSS method, each participant has each own weight, but 
assigning weights usually costs multiple quantum states. Quantum state consumption will therefore 
increase with the weight. It is inefficient and difficult, and therefore not able to successfully build a 
suitable agreement. The proposed method is the first attempt to build multiparty weighted threshold 
QSS method using single quantum particles combine with the Chinese remainder theorem (CRT) and 
phase shift operation. The proposed scheme allows each participant has its own weight and the dealer 
can encode a quantum state with the phase shift operation. The dividing and recovery characteristics 
of CRT offer a simple approach to distribute partial keys. The reversibility of phase shift operation can 
encode and decode the secret. The proposed weighted threshold QSS scheme presents the security 
analysis of external attacks and internal attacks. Furthermore, the efficiency analysis shows that our 
method is more efficient, flexible, and simpler to implement than traditional methods.

Secret sharing is a basic and essential cryptography protocol. The dealer can divide the secret into many shares 
and sends shares to different agents. Only when these authorized agents collaborate can reconstruct the original 
secret. Conversely, unauthorized users cannot complete this task. However, if one or more agents cannot get 
together for some reason, or the dealer wants to give different agents different weights of shares, the secret shar-
ing protocol should be more flexible to solve problems in different scenarios such as data repair, hierarchical 
structures, and financial infidelity, etc. The threshold secret sharing allows shares to reconstruct the secret when 
the number of shares is greater than or equal to the threshold value t. In application, it allows some involved 
computers to reconstruct the important data if others involved in the scheme are destroyed. The weighted 
threshold secret sharing allocates n agents or machines a respective weight (w1,w2, . . . ,wn) ∈ w . When the sum 
of weights of agents who cooperate together is greater than or equal to the weighted threshold value ω , they can 
successfully reconstruct the secret message. In application, it ensures a stable system. Let every user or machine 
have its own weight according to different levels. It is important that the high weighted individuals have higher 
authority than the low weighted individuals in a hierarchical structure. Therefore, users with high authority can 
complete something easily. Conversely, users with low authority can only decide something with the help of a 
user with higher authority or more users with low authority.

The security of traditional cryptography is based on computational complexity. With the advent of quantum 
algorithms in 19971, quantum computers began using algorithms to achieve parallel computations that were 
based on physics law, make them incredibly quickly crack RSA (Ron Rivest, Adi Shamir, and Leonard Adleman), 
AES (Advanced encryption standard), and protocols based on RSA and AES security, which are all based on 
mathematical complexity. With the development of quantum cryptography2 which based on physical law can 
achieve unconditionally secure3–7. As a result, quantum cryptography has attracted research attention and become 
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widely used in data transmission and information security. Quantum secret sharing (QSS) has been developed 
firstly by Hillery et al.8 in 1999, they built QSS with Greenberger-Horne-Zeilinger (GHZ) states, which inspired 
numerous studies afterward9,10. However, most studies use traditional methods such as Lagrange Interpolation 
to build quantum secret sharing schemes, which focuses on the distribution of classical bits as shares11,12 instead 
of sharing quantum bits. Hence, this study focus on sharing the quantum information with Chinese Remainder 
Theorem (CRT), because CRT can use different coprime divisors as the respective weight of the agents (unlike 
Lagrange Interpolation).

Quantum secret sharing is more difficult than with classical information. Thus, most proposed schemes 
for sharing secrets use classical information10–12 not quantum information13–16. Moreover, (w,ω, n)-weighted 
threshold quantum secret sharing scheme are more difficult both than (n, n)-quantum secret sharing and (t, n)-
threshold quantum secret sharing schemes. The complication of (w,ω, n)-weighted threshold QSS makes them 
extremely difficult to successfully implement because most proposed schemes cannot use quantum states to 
distribute their weights fairly. Regarding (t, n)-threshold secret sharing schemes, the first threshold quantum 
secret sharing scheme based on a multi-dimensional Hilbert space13 was proposed in 1999. Tokunaga et al.14 
proposed a threshold method using the Lagrange Interpolation formula. However, Lagrange Interpolation is 
not efficient and flexible enough to construct a weighted scheme, and the number of transmissions it spends 
increases with the weight. Therefore, Iftene et al.15 proposed using the CRT to share quantum information. In 
2015, Qin et al.16 constructed a (t, n)-threshold quantum secret sharing schemes using the phase shift operation.

Many quantum threshold secret sharing protocols have been proposed. Most researchers try to build that 
based on error correction or the way traditional methods to turn quantum scheme, but it is still very diffi-
cult. Therefore, they hope to achieve quantum properties and share quantum states. The traditional method of 
Lagrange Interpolation is an extensive approach. It is difficult to achieve only by Lagrange interpolation. It is 
clear that both schemes are difficult to construct, and weighted threshold schemes are more difficult to build 
than threshold schemes. To the best of our knowledge, there is no significant study in the quantum field has built 
a (w,ω, n)-weighted threshold quantum secret sharing scheme yet, this study presented a novel method based 
on the CRT and phase shift operation to share quantum information and build a (w,ω, n)-weighted threshold 
quantum secret sharing scheme. CRT’s characteristics of dividing and recovery make it simply distributes shares 
and reconstructed secret. The reversibility of phase shift operation can revert the quantum states of the encoded 
secrets. Therefore, the proposed method is able to build a weighted threshold QSS scheme and share the quan-
tum information using the CRT and phase shift operation. The dealer divides the secret/key into n partial keys 
and distributes to every participant a share as a private key by quantum secure direct communication (QSDC)18 
according to the weight of each participant. Next, the dealer uses the phase shift operation to encode a quantum 
state with the key and then sends the quantum state to each participant. When the sum of the participants’ 
weights achieves ω , every participant will be able to perform the inverse phase shift operation one by one with 
CRT. The participants can then cooperate to reconstruct the secret and obtain quantum information. Conversely, 
if it cannot meet the above condition, the participants will be unable to cooperate to obtain the quantum infor-
mation. In addition, in order to detect eavesdroppers attempting to steal quantum particles when the dealer 
and participants transfer particles in a quantum channel, some decoy particles are inserted into the quantum 
sequence. Eavesdroppers can be detected by the measurement result, thereby building an unconditional security 
quantum channel. The proposed method not only can implement simpler than other traditional methods but 
also achieves unconditional security.

With the rapid development of the quantum computers19–27, IBM now provides remote access to their quan-
tum computers. People can use IBM Q experiences to learn quantum computation such as building quantum 
circuits and simulating some quantum algorithms. We have a registered IBM Q system account and have tested 
some tasks such as the Deutsch-Jozsa and Shor’s algorithm. However, IBM Q service mostly focuses on simulating 
quantum algorithms and circuits in a very small scale and does not provide multiple quantum computers and 
channels to simulate quantum networks. Nevertheless, in recent years, there are many outstanding researchers 
investigating the concept of quantum internet28–37 showing that the future of quantum networks is very promis-
ing. We have checked and simulated the proposed QSS protocol, and there is no doubt it will become a great 
secret sharing protocol and can be perfectly suited for large-scale quantum internet applications in the future.

Results
This section consists of three subsections, including the preliminaries, the proposed protocol, and its security and 
efficiency analyses. The preliminaries introduce phase shift operations, Lagrange interpolation, and Weighted 
Threshold Secret Sharing Based on CRT. Then, the proposed protocol is introduced step by step. Finally, security 
and efficiency analyses are presented.

Preliminaries.  This subsection introduces the main related knowledge and preliminaries, including phase 
shift operations explain how to change the quantum state. Lagrange Interpolation and weighted threshold secret 
sharing based on Chinese remainder theorem (CRT) explain what CRT is and how to use it to build the thresh-
old and weighted threshold schemes.

Phase shift operations.  According to quantum theory, quantum states can be changed by unitary operations. 
The phase shift operation is a kind of unitary operation as expressed in Eq. (1), that has additive and commuta-
tive properties. It can perform U(θ) to change the quantum state and then perform inverse U(−θ) to revert the 
quantum state.
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Lagrange interpolation.  Lagrange Interpolation uses multiple points to build line segments in the same con-
dition. Lagrange Interpolation has many applications in communication and computer science. In cryptogra-
phy, researchers have proposed many encoding and decoding methods using Lagrange Interpolation. Several 
versions of Lagrange Interpolation have also been proposed13,14,16. The principle of the Lagrange Interpolation 
method is that any different n+ 1 or more points can be used to reconstruct the only polynomial function of n 
degree. For example, in the Lagrange Interpolation method, it needs at least three points to construct a polyno-
mial function of 2 degrees. The advantages of the Lagrange Interpolation method are that it is easy to use points 
to construct functions and easy to build threshold schemes. However, it is not efficient and not flexible to build 
weighted schemes and the number of transmissions increases with the weight.

Weighted threshold secret sharing based on CRT​.  The principle of the CRT method is that any n coprime divisor 
and corresponding remainder can be used to reconstruct the number with the same conditions. The advantages 
of CRT are that it is easy to use the divisor and remainder to build a number and it is efficient and flexible to 
build weighted schemes. Therefore, the CRT is more flexible than Lagrange Interpolation in weighted threshold 
secret sharing because an n coprime divisor is taken as the respective weight of the users. The larger the weight, 
the larger the divisor. However, Lagrange Interpolation differs in that it cannot use point numbers of magnitude 
for the weight of the user. Lagrange Interpolation uses multiple different points to express the weights of users, 
which is inefficient. The proposed weighted threshold secret sharing scheme is based on the CRT scheme15. 
But, the range of remainder S differs from that of the threshold scheme. When the weight of the circle can be 
given, the possible range of S will shrink, and will be closer to S. When the sum of the weight is greater than the 
threshold weighted value, the range of S can be determined and a more flexible weight threshold can be achieved. 
Therefore, it is necessary to determine the limited range of S according to the respective user weights. Then, S 
can be reconstructed if and only if the sum of the weights of the users is greater than or equal to a fixed weighted 
threshold.

The proposed protocol.  Most proposed quantum threshold schemes13,14,16,17 were based on a multi-
dimensional quantum state and Lagrange Interpolation and are too complicated to implement practically. They 
are unable to fairly use the quantum states to distribute their weights and share quantum information. The 
proposed method is the first attempt to construct a (w,ω, n)-weighted threshold QSS method sharing quantum 
information. The scheme is flexible that the dealer can decide the different weight of the shares and distributes 
these shares to each participant. The condition to reconstruct the secret is that calculating of all weights of par-
ticipant who show up to cooperate, then when the sum of weight exceed the threshold ω set by dealer can find 
out the secret. The proposed method uses CRT, phase shift operations, and single quantum particles to build a 
(w,ω, n)-weighted threshold QSS scheme. Based on the principle of CRT, the dealer divides the key into n partial 
keys and distributes these shares to participants. Each participant receives a corresponding private partial key, 
according to its own weight value (which is the greater the weight, the larger the share). The dealer then converts 
the key into radian θ and performs phase shift operation U(θ) on the secret to encrypt the quantum state. It is 
not necessary to have all participants cooperate, when the sum of the weights of the participants is equal to or 
more than the weighted threshold, the participants can reconstruct the secret. In other words, when participants 
who have greater weight, the secret can be reconstructed by a smaller number of participants. On the contrary, 
when participants who have lesser weights, the secret should be reconstructed by a large number of participants. 
Also, according to the principle of CRT participants can convert their own private partial key into radian −θi 
and perform inverse phase shift operation −U(θ) on the quantum state one by one to reconstruct and receive 
quantum information.

Based on the above description, a (w,ω, n)-weighted threshold quantum secret sharing scheme with n par-
ticipants works as follows. The dealer gives every participant pi a respective weight wi that is lower than weighted 
threshold ω for all 1 ≤ i ≤ n . Then, when the sum of the weights of the participants is equal to or greater than 
the weighted threshold ω , the participants can cooperate to reconstruct the secret and receive the shared quan-
tum information. Consider a scheme involving three participants (A, B and C), this section gives an example to 
describe our protocol. The dealer assigns their weights as w1 = 1 , w2 = 1 , and w3 = 2 , respectively, and sets the 
weighted threshold value ω = 3 in order to establish a ((1, 1, 2), 3, 3)-weighted threshold QSS scheme. According 
the principle of CRT, the participants are able to cooperate to reconstruct the secret using phase shift operation. 
The six steps to complete the protocol and an example are provided as follows.

Step 1. The dealer sets private keys/ shares: Based on CRT, the dealer decides the private keys and depending 
on the weight wi of each participant pi , the dealer prepares the coprime positive integers mi and gcd(mi ,mj) = 1 
for all 1 < i < j < n to be respective private/partial keys for each participant. The function gcd ( mi , mj ) means 
finding the greatest common divisor (gcd) of two integers, mi and mj . The positive integer mi consists of prime 
numbers and the value of mi is according to the weight value of each participant. When the weight value wi is low, 
it means that the positive integer mi will be constituted of a lower product of prime numbers. Conversely, if the 
weight value wi is high, it represents that the positive integer mi is made up of a higher product of prime numbers. 
Therefore, the weight w1 ≤ w2 ≤ · · · ≤ wn and the corresponding different positive integer m1 < m2 < · · · < mn 
are obtained. For example, the dealer sets A, B, and C’s respective weights as w1 = 1 , w2 = 1 , and w3 = 2 . This 
means that m1 is made up of the product of 2, m2 is made up of the product of 7, and m3 is made up of the product 
of 3 and 5. Thus, the dealer sets m1 = 2 , m2 = 7 , and m3 = 15.

(1)U(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
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Step 2. The dealer decides the key: Depending on the weight wi of each participant pi and the correspond-
ing coprime positive integer mi , the dealer calculates set L, and combines it with the product of mi , where 
∑

i∈n wi ≤ ω − 1 . This means that the sum of the weights is lower than threshold ω . The maximum from set 
L is chosen to be positive integer K. Similarly, the dealer computes set G, and combines it with the product 
of mi , where 

∑

i∈n wi ≥ ω . This means that the sum of the weights is greater than weighted threshold ω . The 
minimum value from set G is selected as positive integer Q. Finally, the dealer can choose the random positive 
integer between K and Q and decide to be the key S. For example, after calculating the product of mi , set L is 
{{m1}, {m2}, {m1,m2}} , which is equal to {{2}, {7}, {14}} , and set G is {{m1,m3}, {m2,m3}, {m1,m2,m3}} , which is 
equal to {{30}, {105}, {210}} . Thus, K, the maximum from set L, is {{m1,m2}} , which is equal to 14, while Q, the 
minimum value from set G, is {{m1,m3}} , which is equal to 30. Finally, the dealer can choose a key S between 
14 and 30, and then decide to be 23.

Step 3. The dealer distributes private keys: Depending on the corresponding positive integer mi the dealer 
prepares key S. If mi is taken as the divisor, the dealer will perform the formula to obtain remainder ai for all 
1 ≤ i ≤ n . Then, according to the weight wi of each participant pi , the dealer will use QSDC46 to transfer the 
private partial keys mi and ai to corresponding participant pi . For example, the dealer divides S = 23 by m1 = 2 , 
to get a1 = 1 and sends it to p1 , divides S = 23 by m2 = 7 to get a2 = 2 and sends it to p2 , and divides S = 23 by 
m3 = 15 to get a3 = 8 and sends it to p3 , as shown in Fig. 1.

Step 4. The dealer uses the key to encrypt quantum particles:  In this step, the dealer prepares n 
sequences s1,s2,. . .,sn of unknown quantum states for the participants. The sequence is combined with 
{|ϕ1� = α1|0� + β1|1�, |ϕ2� = α2|0� + β2|1�, . . . , |ϕm� = αm|0� + βm|1�} . Then, the dealer rotates the quantum 
state which is performing the phase shift operation U(θ) in every quantum state to encrypt the quantum state. 
The example is shown in Fig. 2.

Step 5. Quantum channel: The dealer randomly prepares a number of decoy particles in states 
{|0�, |1�, |+�, |−�} , where |+� = 1√

2
(|0� + |1�) and |−� = 1√

2
(|0� − |1�) ), and then randomly inserts these decoy 

particles into n sequences, as shown in Fig. 4. The position and the initial state of each decoy particle is recorded, 
and the sequences s1, s2, . . . , sn are transferred to the corresponding participants p1, p2, . . . , pn , as shown in Figs. 3 
and 4. When all participants have received these sequences, the dealer will announce the position of the decoy 
particles publicly and ask the participants to measure these particles in the Z-basis or X-basis according to the 
basis that was sent. For example, when the dealer prepares the decoy particle |0� in the Z-basis to send to 

Figure 1.   The dealer distributes private keys.

Figure 2.   The dealer encrypts the quantum states.
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participants A, B, and C, the participants should measure the decoy particle to obtain the |0� with the Z-basis 
rather than |1� . Similarly, when the dealer prepares the decoy particle |+� in the X-basis to send to the participants, 
the participant should measure the decoy particle to obtain the |+� with the X-basis rather than |−� . Therefore, 
the dealer can calculate the error rate by comparing the measurement results to the initial states. If the error rate 
exceeds the threshold value, the dealer instructs the participants to abort the process and starts a new one from 
step 1. Otherwise, they continue to the next step.

Step 6. The participants reconstruct the secret: When the dealer finishes his or her job to securely send the 
quantum partial key, the dealer has completed the process of sharing the quantum particles. Then the participants 
will receive those quantum sequences. The criteria for reconstructing the secret is through the participant coop-
eration, that is when t of n participants decide to work together and their sum of weight should meet the fixed 
weighted threshold ω . Assuming there are t participants {p1, p2, . . . , pt} who want to reconstruct the sequence. 
Every participant pi for all 1 ≤ i ≤ t have to use mi and pi which they have been sent during step 3 to calculate 
their own private partial key Si using CRT formula. Then, every participant pi should convert their own private 
partial key Si into radian −θi and performs the inverse phase shift operation U(−θi) which is rotating the quan-
tum state one by one on every quantum state in the sequence. Also, when participant pi delivers the quantum 
state in the sequence for next the participant pi+1 they must similarly prepare a number of decoy particles and 
inserted them at random in states {|0�, |1�, |+�, |−�} in accordance with Step 5 for eavesdropping detection. 
After that, they can cooperate to decrypt the sequence which encrypted by key S. For example, participant A 
and participant C can cooperate to reconstruct the sequence encrypted by key S, which is equal to 23, because 
the sum of w1 , which is equal to 1, and w3 , which is equal to 2, is equal to a fixed weighted threshold ω equal to 3. 
Participant p1 uses m1 and a1 to calculate their own private partial key S1 as 15, and converts S1 into radian −θ1 . 
Participant p3 uses m3 and a3 to calculate their own private partial key S3 as 8, and converts S3 into radian −θ3 . 
They then perform the inverse phase shift operation U(−θ1) and U(−θ3) on every quantum state in the sequence, 
respectively. Finally, they can cooperate to reconstruct the sequence encrypted by key S, which is 23, to obtain 
the quantum information. A simple diagram is shown in Fig. 5.

Figure 3.   The dealer sends encrypted quantum particles and decoy particles.

Figure 4.   Schematic diagram of the encrypted quantum state and decoy particles.

Figure 5.   Simple diagram of A and C cooperating to reconstruct the secret.
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Security analysis.  This section presents an analysis of the security of the proposed method. According to 
the way a key or message is intercepted, attacks are classified as either external attacks or internal attacks. In 
terms of external attacks, this study discusses whether an eavesdropper can steal the secret, or a lot of informa-
tion without being detected. In terms of internal attacks, this study discusses whether a participant can recon-
struct the secret alone, or participants can do when the weighted threshold requirement is not satisfied. There-
fore, we will discuss some common types of attack as follows.

External attack.  There are two common attacks: intercept-and-resend attacks and entangle-and-measure 
attacks. One discusses whether an eavesdropper can intercept the quantum state from the dealer and resend the 
new quantum state without detection. Another discusses whether an eavesdropper can use unitary operation 
Ue to entangle a random particle on the decoy particles to steal information. These two common attacks can be 
defenced by decoy qubits38.

Intercept‑and‑resend attack.  In step 5, before the dealer sends the quantum state sequences to the participants, 
they must randomly insert decoy particles in states {|0�, |1�, |+�, |−�} into the quantum state sequences. The 
dealer keeps a record of their positions and sends the sequences to the participants and asks them to measure 
these particles in the Z-basis or X-basis according to the basis that was sent and checks the measurement results 
with the participants. Since an eavesdropper will not know the position and state of the decoy particles, they 
will possibly measure them with the incorrect basis. Eavesdroppers will thus be detected with a probability of 
1− ( 3

4
)d for every decoy particle, where d is the number of decoy particles. When d is sufficiently large, the prob-

ability of detecting eavesdroppers will converge to 100%, thus ensuring absolute eavesdropper detection just like 
the detection rate in a quantum key distribution (BB84).

Entangle‑and‑measure attack.  Although eavesdroppers can be detected in intercept-and-resend attacks, there 
is a possibility that they will use unitary operation Ue to entangle a random particle on the decoy particles and 
measure the random particle in the Z-basis or the X-basis to steal the secret39,40. In the following, an eavesdrop-
per performs unitary operation Ue to entangle a particle |E� on the decoy particles in states {|0�, |1�, |+�, |−�}.

After the eavesdropper entangles Ue to a particle |E� on the decoy particles, and obtains states 
|e00�, |e01�, |e10�, |e11� , |a|2 + |b|2 + |c|2 + |d|2 = 1 . In order to distinguish states {|0�, |1�, |+�, |−�} and avoid 
detection, the eavesdropper must set b = 0 and c = 0 to distinguish |0� or |1� . This means that the eavesdropper 
can measure the state to obtain |e00� , deduce that its state is |0� , measure the state to obtain |e11� , and then deduce 
that its state is |1� . Then, they set a− b+ c − d = 0 and a+ b− c − d = 0 to distinguish |+� or |−� . In order to 
satisfy both conditions, the result becomes a− d = 0 . However, that result in a a|e00� + b|e01� + c|e10� + d|e11� 
and a|e00� − b|e01� − c|e10� + d|e11� becomes a|e00� + d|e11� . Therefore, eavesdropper will be unable to effectively 
distinguish |e00� or |e11� and will not get any useful information.

Internal attack.  The condition to reconstruct the secret of (w,ω, n)-weighted threshold quantum secret sharing 
schemes is that the total sum of the weights of whom the participants who want to cooperate, have to exceed 
a fixed weighted threshold ω , and then they can recover the secret. However, if this requirement is not met, 
the secret cannot be reconstructed. That is because the maximum range of the key is decided by the minimum 
value from a set that achieves the weighted threshold, and the minimum range of the key is decided by the 
maximum value from a set that cannot achieve the weighted threshold. Therefore, the closer the sum of the 
weights is to the weighted threshold, the greater the possibility of the key being reconstructed. For example, in a 
((1, 1, 2), 3, 3)-weighted threshold quantum secret sharing scheme, the respective weights of participants A, B, 
and C are w1 = 1 , w2 = 1 , and w3 = 2 , and shares m1 = 2 , m2 = 7 , and m3 = 15 . If participants A and B want 
to cooperate to reconstruct the secret, and they can get a minimum positive integer of 9 by CRT, they can use 
the products of m1 = 2 and m2 = 7 to get the information 23, 37, 51, . . . , 9+ 14k to perform the inverse phase 
shift operation, where k ∈ Z . However, they will not know the range of the key, so they will not know how many 
products to use to perform the inverse phase shift operation to get key 23 and the quantum information.

Several excellent researchers recently propose studies41–44 about an internal attack on a multi-party quantum 
secret sharing protocol and their strategy to protect against it. The scenario of this kind of internal attack, as 
discussed in studies41–44, does not happen in our protocol, because the dealer distributes the parts of secrets to 
each participant individually by a secure quantum channel, such as QKD, and the participants do not need to 
distribute or forward information with each other. Once the distribution is finished, the dealer has no more 
information (nothing is left for stealing) and also does not need to anticipate the reconstruction process of 
the secret. Only the other participants have to cooperate with each other to reconstruct the secret. Only if the 
weights of the participants meet the threshold can the secret be reconstructed, and this is the basic operation 

(2)

Ue(|0�|E�) = a|0�|e00� + b|1�|e01�
Ue(|1�|E�) = c|0�|e10� + d|1�|e11�

Ue(|+�|E�) =
1
√
2
(a|0�|e00� + b|1�|e01� + c|0�|e10� + d|1�|e11�)

=
1

2
(|+�(a|e00� + b|e01� + c|e10� + d|e11�))+

1

2
(|−�(a|e00� − b|e01� + c|e10� − d|e11�))

Ue(|−�|E�) =
1

2
(|+�(a|e00� + b|e01� − c|e10� − d|e11�))+

1

2
(|−�(a|e00� − b|e01� − c|e10� + d|e11�))



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6093  | https://doi.org/10.1038/s41598-021-85703-7

www.nature.com/scientificreports/

principle in weighted threshold QSS. On the contrary, if there are not enough participants to cooperate, then 
they cannot rebuild the secret.

Efficacy analysis.  For quantum secret sharing protocols, a lower consumption of qubits is important to 
keep the cost is relatively low. Similarly, lower private key transmissions are significant, as this shows that the 
transmission effectiveness is better than others. Therefore, we will compare the proposed protocol with seven 
current protocols, namely, Cleve13, Tokunaga14, Qin16, Yang 145, Yang 246, Dehkordi47, and Li17.

There are two types of comparisons, according to different characteristics of the scenes. In order to test the 
efficiency of sharing information, we will analyze how many qubits each method costs. Therefore, in the same 
(t, n)-threshold scheme, we will compare the consumption of qubits for the same number of sharing bits. In order 
to test the efficiency of assigning the weight to the participants, we analyze how many private keys are trans-
mitted for each method based on a single dimensional quantum state and how many qubits each method costs 
based on the multi-dimensional quantum state cost. We expand the threshold scheme to the weighted threshold 
scheme. In a (w,ω, n)-weighted threshold scheme, we compare the number of private key transmissions and the 
consumption of qubits for the same weight of a participant.

Consumption of qubits for same number of sharing bits.  In the same threshold scheme, in order to compare 
the consumption of qubits with other protocols fairly in the same number of sharing bits, we will calculate how 
many qubits are spent in sharing N bits for each protocol. The following is an analysis for Tokunaga14, Qin16, 
Yang_145, Yang_246, and Dehkordi47.

Tokunaga14 and Qin16: In the threshold scheme, in order to share N bits, the dealer prepares the N qubits 
for each participant.

Yang145: In order to share N bits, the dealer prepares the N qubits and 2N bell state for each participant.
Yang246: In order to share N bits, the dealer prepares the 2N bell state for each participant.
Dehkordi47: In order to share N bits, the dealer prepares the 3N GHZ state for each participant.
First, we compare the consumption of qubits for the same number of sharing bits in the same (t, n)-threshold 

secret sharing scheme and test whether our method is better than the other protocols based on a single dimen-
sional quantum state as shown in Fig. 6 and Table 1. When the number of sharing bits increases, the consumption 
of quantum resources is several times the sharing bits for the other protocols, but the proposed method is the 
same as the number of shared bits.

Private key transmission and consumption of qubit for same weight.  In order to compare the number of pri-
vate key transmissions in a single dimensional quantum and the consumption of qubits in a multi-dimensional 
quantum state for the same weight of a participant, we expand the threshold scheme to the weighted threshold 
scheme. Then, for each protocol, we calculate how many private key transmissions they transfer for M weights 

Figure 6.   Comparison of the consumption of qubits for the same number of sharing bits.

Table 1.   The cost of single dimensional quantum state.

Consumption of qubit/sharing bit Private key transmission/weight

Tokunaga14 N M

Qin16 N M

Yang_145 3N M

Yang_246 2N M

Dehkordi47 3N M

Our N 1
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of the participants, and how many qubits are consumed for K weight of participants. The following is an analysis 
for Cleve13, Tokunaga14, Qin16, Yang_145, Yang_246, and Dehkordi47, Li17.

Tokunaga14, Qin16, Yang_145, Yang_246 and Dehkordi47: In the weighted threshold scheme, the dealer uses 
Lagrange Interpolation to transmit M private keys for each participant according to the weight of the participant.

Cleve13: The dealer utilizes the 2K multi-dimensional quantum state to express Lagrange Interpolation for 
each participant according to the weight of the participant.

Li17: The dealer utilizes the K multi-dimensional quantum state to express Lagrange Interpolation for each 
participant according to the weight of the participant.

Next, because the proposed method is based on the CRT and phase shift operation, we can build not only a 
(t, n)-threshold secret sharing scheme but also a (w,ω, n)-weighted threshold scheme. In order to fairly test, we 
will extend the other protocols based on a single dimensional or multi-dimensional quantum state to a (w,ω, n)
-weighted threshold scheme to compare the number of private key transmissions and the consumption of qubits 
for same weight of a participant, as shown in Fig. 7, Tables 1 and 2.

According to result of Fig. 7a, when the weight of a participant increases, the demand for the private key 
increases for the other protocols based on a single dimension, and the proposed method only needs one. Accord-
ing to result of Fig. 7b, when the weight of a participant increases, the consumption of quantum resources has 
increases drastically for the other protocols based on multiple-dimension, and the consumption of quantum 
resources of the proposed method still remain one.

Discussion
Most proposed quantum threshold schemes are based on a multi-dimensional quantum state and Lagrange Inter-
polation which are too complicated to implement practically. The proposed method is different from traditional 
method and it based on the CRT and phase shift operation. The reason we use CRT is that the characteristic of 
CRT dividing and recovery offers a simple and efficient way to make partial keys/ shares. The reversibility of phase 
shift operation can encode and decode a secret on quantum bits to share quantum information. In the proposed 
weighted threshold QSS method, the dealer is able to decide the key and encode the key in a quantum bit using 
the phase shift operation, divide the key into a partial key to be shared using CRT, and then using QSDC to send 
these partial keys to all participants as their private keys. To reconstruct the secret does not necessary to have all 
participants. When some participants want to cooperate and reconstruct the secret and the criteria is that their 
sum of the weights have to exceed a fixed weighted threshold ω . Then, participants can use their own private 
key to perform inverse phase shift operations on the quantum states one by one to decode the quantum states. 
After that, participants can obtain the original secret which is the quantum information back. This study has 
three major contributions. First, the proposed weighted threshold QSS method is flexible, unconditionally secure 
cryptosystem, and easy to implement. Second, most traditional QSS schemes share classical information, while 
the proposed method is the first attempt to share quantum information. Third, the proposed scheme requires 
lower resources than other protocols, as we using single quantum particles rather than using multi-dimension 
quantum states which the previous methods do, making our method more efficient.

Data availability
No datasets were generated or analysed during the current study.

Table 2.   The cost of multi-dimensional quantum state.

Consumption of qubit/weight

Cleve13 2K

Li17 K

Our 1

Figure 7.   Comparison of the number of private key transmissions and the consumption of qubits for the same 
weight of a participant.
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